Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Necrotizing enterocolitis: specific human milk oligosaccharides prevent enteric glia loss and hypomotility

Abstract

Background

Necrotizing enterocolitis (NEC) is mediated by toll-like receptor 4 (TLR4)-induced inflammation and is preceded by reduced intestinal motility. Human milk oligosaccharides (HMOs) are non-digestible components of breast milk that prevent NEC in preclinical models. We now hypothesize that HMOs can reduce the risk of NEC through restoration of intestinal motility and reduced TLR4-mediated inflammation.

Methods

NEC was induced in C57-BL/6 mice through the combination of formula gavage, hypoxia, and oral administration of NEC stool. Mice were administered either 2’-FL (5 g/L), 6’-SL (5 g/L), or a blend of 5 specific HMOs (5 g/L) containing 2’-FL (2.606 g/L), 3’-FL (0.652 g/L), LNT (1.304 g/L), 3’-SL (0.174 g/L), and 6’-SL (0.260 g/L). Gastrointestinal motility was assessed by 70 Kd FITC-dextran transit time. Enteric glia were quantified by immunohistochemistry and qRT-PCR expression.

Results

Administration of either 2’-FL, 6’-SL, or HMO blend significantly attenuated NEC severity and reversed intestinal hypomotility. HMOs prevented enteric glia loss and regulated key genes critical for enteric glia maintenance, attenuated pro-apoptotic genes, and increased anti-apoptotic genes in vitro, resulting in a reduction in apoptosis. Strikingly, HMOs reduced LPS-TLR4-induced NFκB signaling and ROS generation in enteric glia.

Conclusions

HMOs protect against NEC at least in part through protective effects on inflammation and the enteric nervous system.

Impact

  • This study sheds light on the role of certain human milk oligosaccharides in a clinically relevant mouse model of NEC and adds additional insights into their underlying mechanism of action by revealing a protective effect on the enteric nervous system.

  • These results reveal that HMOs prevent the loss of enteric glia in NEC and influence the expression of genes that regulate enteric glia maintenance.

  • HMOs also limit TLR4-NFkB signaling, providing an additional mechanism of enteric glia maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Administration of human milk oligosaccharides (HMOs) protects against NEC development in neonatal mice.
Fig. 2: Administration of human milk oligosaccharides (HMOs) rescues NEC-induced intestinal hypomotility in neonatal mice.
Fig. 3: Administration of human milk oligosaccharides (HMOs) prevents NEC-induced enteric glia and Bdnf loss in neonatal mice.
Fig. 4: Administration of human milk oligosaccharides (HMOs) prevents NEC-induced loss of prominent enteric neuronal signaling genes in neonatal mice.
Fig. 5: Administration of human milk oligosaccharides (HMOs) inhibits LPS-induced NF-κB translocation and reactive oxygen species (ROS) generation in cultured enteric glial cells (EGCs).
Fig. 6: Administration of human milk oligosaccharides (HMOs) prevents LPS-induced apoptosis and rescues LPS-induced cell proliferation loss in cultured enteric glial cells (EGCs).

Similar content being viewed by others

Data availability

All materials described in the manuscript, including all relevant raw data, are freely available to any researcher wishing to use them for non-commercial purposes after appropriate material transfer agreements.

References

  1. Duess, J. W. et al. Necrotizing enterocolitis, gut microbes, and sepsis. Gut Microbes 15, 2221470 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hackam, D. J. & Sodhi, C. P. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis. Cell Mol. Gastroenterol. Hepatol. 6, 229–238 e221 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hackam, D. J. & Sodhi, C. P. Bench to bedside - new insights into the pathogenesis of necrotizing enterocolitis. Nat. Rev. Gastroenterol. Hepatol. 19, 468–479 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Scheese, D. J., Sodhi, C. P. & Hackam, D. J. New insights into the pathogenesis of necrotizing enterocolitis and the dawn of potential therapeutics. Semin. Pediatr. Surg. 32, 151309 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Holman, R. C. et al. Necrotising enterocolitis hospitalisations among neonates in the United States. Paediatr. Perinat. Epidemiol. 20, 498–506 (2006).

    Article  PubMed  Google Scholar 

  6. Neu, J. & Walker, W. A. Necrotizing enterocolitis. N. Engl. J. Med. 364, 255–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Samuels, N., van de Graaf, R. A., de Jonge, R. C. J., Reiss, I. K. M. & Vermeulen, M. J. Risk factors for necrotizing enterocolitis in neonates: a systematic review of prognostic studies. BMC Pediatr. 17, 105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cai, X., Liebe, H. L., Golubkova, A., Leiva, T. & Hunter, C. J. A review of the diagnosis and treatment of necrotizing enterocolitis. Curr. Pediatr. Rev. 19, 285–295 (2023).

    Article  PubMed  Google Scholar 

  9. Hackam, D. J., Sodhi, C. P. & Good, M. New insights into necrotizing enterocolitis: from laboratory observation to personalized prevention and treatment. J. Pediatr. Surg. 54, 398–404 (2019).

    Article  PubMed  Google Scholar 

  10. Roberts, A. G., Younge, N. & Greenberg, R. G. Neonatal necrotizing enterocolitis: an update on pathophysiology, treatment, and prevention. Paediatr. Drugs 26, 259–275 (2024).

    Article  PubMed  Google Scholar 

  11. Thurl, S., Munzert, M., Boehm, G., Matthews, C. & Stahl, B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr. Rev. 75, 920–933 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Autran, C. A. et al. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut 67, 1064–1070 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Masi, A. C. et al. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut 70, 2273–2282 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Sodhi, C. P. et al. The human milk oligosaccharides 2’-fucosyllactose and 6’-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling. Pediatr. Res. 89, 91–101 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Hackam, D. J., Afrazi, A., Good, M. & Sodhi, C. P. Innate immune signaling in the pathogenesis of necrotizing enterocolitis. Clin. Dev. Immunol. 2013, 475415 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sampath, V. et al. Sigirr genetic variants in premature infants with necrotizing enterocolitis. Pediatrics 135, e1530–e1534 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Neal, M. D. et al. Discovery and validation of a new class of small molecule toll-like receptor 4 (TLR4) inhibitors. PLoS ONE 8, e65779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kovler, M. L. et al. Toll-like receptor 4-mediated enteric glia loss is critical for the development of necrotizing enterocolitis. Sci. Transl. Med. 13, eabg3459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hill, D. R., Chow, J. M. & Buck, R. H. Multifunctional benefits of prevalent hmos: implications for infant health. Nutrients 13, 3364 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Good, M. et al. Breast milk protects against the development of necrotizing enterocolitis through inhibition of toll-like receptor 4 in the intestinal epithelium via activation of the epidermal growth factor receptor. Mucosal Immunol. 8, 1166–1179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Good, M., Sodhi, C. P. & Hackam, D. J. Evidence-based feeding strategies before and after the development of necrotizing enterocolitis. Expert Rev. Clin. Immunol. 10, 875–884 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sodhi, C. P. et al. Intestinal epithelial Tlr-4 activation is required for the development of acute lung injury after trauma/hemorrhagic shock via the release of Hmgb1 from the gut. J. Immunol. 194, 4931–4939 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Hoshiba, J. Method for hand-feeding mouse pups with nursing bottles. Contemp. Top. Lab. Anim. Sci. 43, 50–53 (2004).

    CAS  PubMed  Google Scholar 

  24. Afrazi, A. et al. Toll-like receptor 4-mediated endoplasmic reticulum stress in intestinal crypts induces necrotizing enterocolitis. J. Biol. Chem. 289, 9584–9599 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Good, M. et al. The human milk oligosaccharide 2’-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. Br. J. Nutr. 116, 1175–1187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halpern, M. D. et al. Apical sodium-dependent bile acid transporter upregulation is associated with necrotizing enterocolitis. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G623–G631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sodhi, C. P. et al. Fat composition in infant formula contributes to the severity of necrotising enterocolitis. Br. J. Nutr. 120, 665–680 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yazji, I. et al. Endothelial Tlr4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via enos-no-nitrite signaling. Proc. Natl. Acad. Sci. USA 110, 9451–9456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Z. et al. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 31, 8998–9009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller, M. S., Galligan, J. J. & Burks, T. F. Accurate measurement of intestinal transit in the rat. J. Pharm. Methods 6, 211–217 (1981).

    Article  CAS  Google Scholar 

  31. Sodhi, C. P. et al. Fat composition in infant formula contributes to the severity of necrotising enterocolitis. Br J. Nutr. 120, 665–680 (2018).

  32. Hansebout, C. R. et al. Enteric Glia mediate neuronal outgrowth through release of neurotrophic factors. Neural Regen. Res. 7, 2165–2175 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoehner, J. C., Wester, T., Pahlman, S. & Olsen, L. Localization of neurotrophins and their high-affinity receptors during human enteric nervous system development. Gastroenterology 110, 756–767 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, Y. et al. Enteric nervous system abnormalities are present in human necrotizing enterocolitis: potential neurotransplantation therapy. Stem Cell Res. Ther. 4, 157 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Klein, S. et al. Interstitial cells of cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat. Commun. 4, 1630 (2013).

    Article  PubMed  Google Scholar 

  36. Chow, A. K. & Gulbransen, B. D. Potential roles of enteric glia in bridging neuroimmune communication in the Gut. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G145–G152 (2017).

    Article  PubMed  Google Scholar 

  37. Bassotti, G. et al. Enteric neuroglial apoptosis in inflammatory bowel diseases. J. Crohns Colitis 3, 264–270 (2009).

    Article  PubMed  Google Scholar 

  38. Villanacci, V. et al. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol. Motil. 20, 1009–1016 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Ghoshal, U. C. Marshall and Warren lecture 2019: a paradigm shift in pathophysiological basis of irritable bowel syndrome and its implication on treatment. J. Gastroenterol. Hepatol. 35, 712–721 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Sperber, A. D. et al. Greater overlap of ROME IV disorders of gut-brain interactions leads to increased disease severity and poorer quality of life. Clin. Gastroenterol. Hepatol. 20, e945–e956 (2022).

    Article  PubMed  Google Scholar 

  41. Neumann, C. J. et al. Clinical nec prevention practices drive different microbiome profiles and functional responses in the preterm intestine. Nat. Commun. 14, 1349 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wejryd, E. et al. Low diversity of human milk oligosaccharides is associated with necrotising enterocolitis in extremely low birth weight infants. Nutrients 10, 1556 (2018).

  43. Bering, S. B. Human milk oligosaccharides to prevent gut dysfunction and necrotizing enterocolitis in preterm neonates. Nutrients 10, 1461 (2018).

  44. Nolan, L. S., Rimer, J. M. & Good, M. The role of human milk oligosaccharides and probiotics on the neonatal microbiome and risk of necrotizing enterocolitis: a narrative review. Nutrients 12, 3052 (2020).

  45. Wang, C. et al. Human milk oligosaccharides protect against necrotizing enterocolitis by inhibiting intestinal damage via increasing the proliferation of crypt cells. Mol. Nutr. Food Res. 63, e1900262 (2019).

    Article  PubMed  Google Scholar 

  46. Moukarzel, S. & Bode, L. Human milk oligosaccharides and the preterm infant: a journey in sickness and in health. Clin. Perinatol. 44, 193–207 (2017).

    Article  PubMed  Google Scholar 

  47. Vandenplas, Y. et al. Human milk oligosaccharides: 2’-fucosyllactose (2’-Fl) and lacto-N-neotetraose (Lnnt) in infant formula. Nutrients 10, 1161 (2018).

  48. Sodhi, C. P. et al. Human milk oligosaccharides reduce necrotizing enterocolitis-induced neuroinflammation and cognitive impairment in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 325, G23–G41 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abbas, S. et al. Tailoring human milk oligosaccharides to prevent necrotising enterocolitis among preterm infants. Front. Nutr. 8, 702888 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Neal, M. D. et al. Enterocyte Tlr4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J. Immunol. 176, 3070–3079 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Jilling, T. et al. The roles of bacteria and Tlr4 in rat and murine models of necrotizing enterocolitis. J. Immunol. 177, 3273–3282 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Lopez, C. M. et al. Models of necrotizing enterocolitis. Semin. Perinatol. 47, 151695 (2023).

    Article  PubMed  Google Scholar 

  53. Sodhi, C., Richardson, W., Gribar, S. & Hackam, D. J. The development of animal models for the study of necrotizing enterocolitis. Dis. Model. Mech. 1, 94–98 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sodhi, C. P. et al. Intestinal epithelial toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology 143, 708–718.e705 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Lu, P. et al. Animal models of gastrointestinal and liver diseases. animal models of necrotizing enterocolitis: pathophysiology, translational relevance, and challenges. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G917–G928 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sangild, P. T. et al. Preterm birth affects the intestinal response to parenteral and enteral nutrition in newborn pigs. J. Nutr. 132, 3786–3794 (2002).

    Article  PubMed  Google Scholar 

  57. Sangild, P. T. et al. Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology 130, 1776–1792 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Cannavo, L. et al. Oxidative stress and respiratory diseases in preterm newborns. Int. J. Mol. Sci. 22, 12504 (2021).

Download references

Funding

This study was supported in part by a sponsored research grant from Abbott Nutrition. D.J.H. is supported by R35 GM141956, and C.T., and D.S. are supported by T32DK007713.

Author information

Authors and Affiliations

Authors

Contributions

D.J.H., C.P.S., D.J.S., C.T., W.B.F., J.W.D., K.T., M.E.S., R.H.B., D.R.H., A.S., T.P., S.W., and M.W. made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data. D.J.H., C.P.S., R.H.B., D.R.H., and A.S. drafted the article or revised it critically for important intellectual content, and all authors gave their final approval of the version to be published.

Corresponding authors

Correspondence to Chhinder P. Sodhi or David J. Hackam.

Ethics declarations

Competing interests

R.H.B., D.R.H., and A.S.-D. are employees of Abbott, Nutrition Division, which supplied the products used in the current study and which provided funding for the current study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodhi, C.P., Scheese, D.J., Tragesser, C. et al. Necrotizing enterocolitis: specific human milk oligosaccharides prevent enteric glia loss and hypomotility. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04077-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04077-y

This article is cited by

Search

Quick links