Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Decreased endothelial micro-RNA-30b-5p impairs angiogenesis in fetal lambs with persistent pulmonary hypertension

Abstract

Background

Impaired angiogenesis contributes to increased pulmonary vascular resistance in persistent pulmonary hypertension of the newborn (PPHN). Notch signaling, critical to lung angiogenesis, is modulated by micro-RNAs (miR). RNA sequencing of pulmonary arterial endothelial cells (PAEC) from a PPHN lamb model revealed downregulated miR-30b-5p.

Methods

We investigated whether decreased levels of miR-30b-5p in PPHN affect angiogenesis by facilitating excess Dll4, a predicted target for miR-30b-5p. We obtained PAEC from a fetal lamb model of PPHN and transfected them with miR-30b-5p mimic and inhibitor. We assessed protein levels by immunoblotting and in vitro angiogenesis by tube formation in Matrigel. We performed In-situ RNA hybridization for in vivo miR-30b-5p levels in the lamb lungs.

Results

PPHN lamb lungs showed decreased miR-30b-5p levels in vivo. PPHN PAEC transfected with miR-30b-5p mimic showed improved capillary tube formation. Control PAEC showed inhibition of tube formation after transfection with miR-30b-5p inhibitor. Transfection with miR-30b-5p led to the downregulation of Dll4, in PPHN PAEC.

Conclusion

We conclude that decreased miR-30b-5p in PPHN facilitates overexpression of Dll4, which contributes to impaired angiogenesis in PPHN. MiR-30b-5p improves angiogenesis in PPHN by improving Dll4/Jag1 balance (Jag1, a proangiogenic notch ligand), suggesting an epigenetic role in PPHN.

Impact

  • The present study describes a novel mechanism of epigenetic control of impaired angiogenesis in PPHN via miR-30b-5p.

  • The present study also provides new direction for future in vivo studies in animals and patients with PPHN to investigate the role of miR-30b-5p as a biomarker of angiogenesis in PPHN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histology and Fluorescent in situ hybridization of lung tissues from control and PPHN lambs.
Fig. 2: In vitro angiogenesis function assay in control PAEC.
Fig. 3: In vitro angiogenesis function assay in PAEC.
Fig. 4: Effects of miR-30b-5p mimic on Notch pathway proteins, Dll4 and Jag1, expression in PAEC from control and PPHN lambs.
Fig. 5: Effects of miR-30b-5p mimic on Notch pathway proteins, Notch1, Hes1 and Hey1, expression in PAEC from control and PPHN lambs.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Haworth, S. G. & Reid, L. Persistent Fetal Circulation: Newly Recognized Structural Features. J. Pediatr. 88, 614–620 (1976).

    Article  PubMed  CAS  Google Scholar 

  2. Gien, J. et al. Chronic Intrauterine Pulmonary Hypertension Increases Endothelial Cell Rho Kinase Activity and Impairs Angiogenesis in Vitro. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L680–L687 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Teng, R. J., Eis, A., Bakhutashvili, I., Arul, N. & Konduri, G. G. Increased Superoxide Production Contributes to the Impaired Angiogenesis of Fetal Pulmonary Arteries with in Utero Pulmonary Hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 297, L184–L195 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mahajan, C. N., Afolayan, A. J., Eis, A., Teng, R. J. & Konduri, G. G. Altered Prostanoid Metabolism Contributes to Impaired Angiogenesis in Persistent Pulmonary Hypertension in a Fetal Lamb Model. Pediatr. Res. 77, 455–462 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Rana, U. et al. Amp-Kinase Dysfunction Alters Notch Ligands to Impair Angiogenesis in Neonatal Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 62, 719–731 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Konduri, G. G., Afolayan, A. J., Eis, A., Pritchard, K. A. Jr & Teng, R. J. Interaction of Endothelial Nitric Oxide Synthase with Mitochondria Regulates Oxidative Stress and Function in Fetal Pulmonary Artery Endothelial Cells. Am. J. Physiol. Lung Cell Mol. Physiol. 309, L1009–L1017 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Potente, M. & Carmeliet, P. The Link between Angiogenesis and Endothelial Metabolism. Annu. Rev. Physiol. 79, 43–66 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Akil, A. et al. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front. Cell Dev. Biol. 9, 642352 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blanco, R. & Gerhardt, H. Vegf and Notch in Tip and Stalk Cell Selection. Cold Spring Harb. Perspect. Med. 3, a006569 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Benedito, R. et al. The Notch Ligands Dll4 and Jagged1 Have Opposing Effects on Angiogenesis. Cell 137, 1124–1135 (2009).

    Article  PubMed  CAS  Google Scholar 

  11. Aspriţoiu, V. M., Stoica, I., Bleotu, C. & Diaconu, C. C. Epigenetic Regulation of Angiogenesis in Development and Tumors Progression: Potential Implications for Cancer Treatment. Front. Cell Dev. Biol. 9, 689962 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Siddika, T. & Heinemann, I. U. Bringing Micrornas to Light: Methods for Microrna Quantification and Visualization in Live Cells. Front. Bioeng. Biotechnol. 8, 619583 (2020).

    Article  PubMed  Google Scholar 

  13. Guo, L. et al. Evolutionary and Expression Analysis of Mir-#-5p and Mir-#-3p at the Mirnas/Isomirs Levels. Biomed. Res. Int. 2015, 168358 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guo, L. & Lu, Z. The Fate of Mirna* Strand through Evolutionary Analysis: Implication for Degradation as Merely Carrier Strand or Potential Regulatory Molecule? PLoS One 5, e11387 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gebert, L. F. R. & MacRae, I. J. Regulation of Microrna Function In animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tétreault, N. & De Guire, V. Mirnas: Their Discovery, Biogenesis and Mechanism of Action. Clin. Biochem. 46, 842–845 (2013).

    Article  PubMed  Google Scholar 

  17. Rupaimoole, R. & Slack, F. J. Microrna Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 16, 203–222 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Pullamsetti, S. S. et al. Inhibition of Microrna-17 Improves Lung and Heart Function in Experimental Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 185, 409–419 (2012).

    Article  PubMed  CAS  Google Scholar 

  19. Xu, Y. P. et al. Mir-126a-5p Is Involved in the Hypoxia-Induced Endothelial-to-Mesenchymal Transition of Neonatal Pulmonary Hypertension. Hypertens. Res. 40, 552–561 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. Mukherjee, D. et al. Fetal Pulmonary Hypertension: Dysregulated Microrna-34c-Notch1 Axis Contributes to Impaired Angiogenesis in an Ovine Model. Pediatr. Res. 93, 551–558 (2023).

    Article  PubMed  CAS  Google Scholar 

  21. Konduri, G. G., Ou, J., Shi, Y. & Pritchard, K. A. Jr Decreased Association of Hsp90 Impairs Endothelial Nitric Oxide Synthase in Fetal Lambs with Persistent Pulmonary Hypertension. Am. J. Physiol. Heart Circ. Physiol. 285, H204–H211 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. Konduri, G. G., Bakhutashvili, I., Eis, A. & Pritchard, K. Jr Oxidant Stress from Uncoupled Nitric Oxide Synthase Impairs Vasodilation in Fetal Lambs with Persistent Pulmonary Hypertension. Am. J. Physiol. Heart Circ. Physiol. 292, H1812–H1820 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. Mao, L. et al. Mir-30 Family: A Promising Regulator in Development and Disease. Biomed. Res. Int. 2018, 9623412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu, T. et al. Mir-30b-5p Promotes Proliferation, Migration, and Invasion of Breast Cancer Cells Via Targeting Aspp2. Biomed. Res. Int. 2020, 7907269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang, Y., Wang, C., Fu, Z., Zhang, S. & Chen, J. Mir-30b-5p Inhibits Proliferation, Invasion, and Migration of Papillary Thyroid Cancer by Targeting Galnt7 Via the Egfr/Pi3k/Akt Pathway. Cancer Cell Int. 21, 618 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tian, S. B. et al. Mir-30b Suppresses Tumor Migration and Invasion by Targeting Eif5a2 in Gastric Cancer. World J. Gastroenterol. 21, 9337–9347 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang, T. et al. Microrna-30b Is Both Necessary and Sufficient for Interleukin-21 Receptor-Mediated Angiogenesis in Experimental Peripheral Arterial Disease. Int. J. Mol. Sci. 23, 271 (2021).

  28. Chen, K. et al. Hypoxic Pancreatic Cancer Derived Exosomal Mir-30b-5p Promotes Tumor Angiogenesis by Inhibiting Gja1 Expression. Int. J. Biol. Sci. 18, 1220–1237 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bridge, G. et al. The Microrna-30 Family Targets Dll4 to Modulate Endothelial Cell Behavior During Angiogenesis. Blood 120, 5063–5072 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Gong, M. et al. Mesenchymal Stem Cells Release Exosomes That Transfer Mirnas to Endothelial Cells and Promote Angiogenesis. Oncotarget 8, 45200–45212 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y. et al. Microrna-30a as a Candidate Underlying Sex-Specific Differences in Neonatal Hyperoxic Lung Injury: Implications for Bpd. Am. J. Physiol. Lung Cell Mol. Physiol. 316, L144–l156 (2019).

    Article  PubMed  CAS  Google Scholar 

  32. Bray, S. J. Notch Signalling in Context. Nat. Rev. Mol. Cell Biol. 17, 722–735 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Ridgway, J. et al. Inhibition of Dll4 Signalling Inhibits Tumour Growth by Deregulating Angiogenesis. Nature 444, 1083–1087 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. Williams, C. K., Li, J. L., Murga, M., Harris, A. L. & Tosato, G. Up-Regulation of the Notch Ligand Delta-Like 4 Inhibits Vegf-Induced Endothelial Cell Function. Blood 107, 931–939 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Howe, G. A., Kazda, K. & Addison, C. L. Microrna-30b Controls Endothelial Cell Capillary Morphogenesis through Regulation of Transforming Growth Factor Beta 2. PLoS One 12, e0185619 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by 1R01HL 136597-01 and 1R01HL174635-01 from NHLBI; Children’s Research Institute Pilot Innovation Research Award and Muma Endowed Chair in Neonatology; and Advancing a Healthier Wisconsin Foundation Endowment (GGK).

Author information

Authors and Affiliations

Authors

Contributions

Sunil Kumar Sati, MBBS - had substantial contributions to conception and design; acquisition of data; analysis and interpretation of data; drafting the article and revising article critically for important intellectual content; and approving the version to be published. Ujala Rana, PhD - had substantial contributions to acquisition of data. Chintamani Joshi, PhD - had substantial contributions to acquisition of data. Ru-Jeng Teng, MD - had substantial contributions to acquisition of data, analysis, and interpretation of data. Girija G. Konduri, MD - had substantial contributions to conception and design; analysis and interpretation of data; revising article critically for important intellectual content; and approving the final version to be published.

Corresponding author

Correspondence to Girija G. Konduri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sati, S.K., Rana, U., Joshi, C. et al. Decreased endothelial micro-RNA-30b-5p impairs angiogenesis in fetal lambs with persistent pulmonary hypertension. Pediatr Res 98, 1912–1919 (2025). https://doi.org/10.1038/s41390-025-04098-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-025-04098-7

This article is cited by

Search

Quick links