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Scar-associated macrophages and biliary epithelial cells
interaction exacerbates hepatic fibrosis in biliary atresia
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BACKGROUND: Biliary atresia (BA) is a severe pediatric biliary disorder characterized by the progressive obstruction of liver bile
ducts. In the absence of treatment, fibrosis advances rapidly in most affected children. Despite the identification of various factors
contributing to fibrosis progression, comprehensive investigations into the microenvironmental alterations within the liver are still
scarce.
METHODS: Single-cell RNA sequencing (scRNA-seq) was conducted on two normal tissues adjacent to liver tumors, two
choledochal cyst liver tissues, and four BA liver tissues. This analysis, combined with spatial localization data, elucidated the
heterogeneity of the livers affected by BA. Ultimately, a diagnostic model for BA was developed, leveraging high-resolution fibrosis-
related gene signatures.
RESULTS: We identified scar-associated macrophages (SAMs) originating from monocytes, which played a pivotal role in fibrosis
progression and may be implicated in the epithelial-mesenchymal transition (EMT) of biliary epithelial cells (BECs). Furthermore, the
hub genes CD96, EVL, S100A6, and S100A11 were found to be upregulated in SAMs and regulatory T cells (Tregs), aiding in the
diagnosis of BA.
CONCLUSION: SAMs and BECs not only exhibited a pro-fibrotic phenotype but also co-localized within fibrotic regions. Their
interaction may facilitate the activation of EMT, highlighting a potential therapeutic target for BA treatment.
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IMPACT:

● Analysis of the immune landscape: Through single-cell and spatial transcriptomic techniques, the paper reveals the complex
immune landscape associated with BA fibrosis.

● Exploration of new therapeutic targets: This paper reveals that SAMs can promote the progression of liver fibrosis by regulating
the EMT conversion of BECs, opening up a new therapeutic approach.

● Application of diagnostic markers: The paper identifies biomarkers that may improve early diagnostic accuracy and
postoperative prognosis and recommends their incorporation into clinical practice.

INTRODUCTION
Biliary atresia (BA) is a severe fibroinflammatory disease affecting
both the intrahepatic and extrahepatic bile ducts.1 It is characterized
by rapid fibrosis progression and subsequent liver failure.2 The
disease is thought to be driven by multiple factors, including
inflammation, genetic predisposition, and immune dysregulation.
However, the precise mechanisms underlying its abnormal fibrotic
progression remain unclear.3 Further research is needed to elucidate
the heterogeneous cellular alterations, differentiation dynamics, and
complex interactions within the BA liver microenvironment.
Single-cell RNA (scRNA) sequencing is a highly sensitive, accurate,

and efficient method for sorting and sequencing individual cells.
However, its limitation in capturing the spatial context of cells is
addressed by spatial transcriptomics (ST), which provides deeper

insights into cellular distribution within tissues. A recent scRNA-seq
study identified several key features in BA livers, including
macrophage hypo-inflammation, impaired Kupffer cell function,
cytotoxic T cell expansion, and a deficiency of CX3CR1+ effector T
and NK cells.4 Additionally, significant cellular heterogeneity was
observed in the BA liver microenvironment.5 Our study further
identified aberrant proliferation and epithelial-mesenchymal transi-
tion (EMT) activation in Bile duct epithelial cells (BECs), as well as the
heterogeneity of scar-associated macrophages (SAMs). These
findings contribute to a more comprehensive understanding of
the microenvironmental alterations in BA livers.
Kasai portoenterostomy (KPE) surgery is effective in restoring

biliary drainage in BA. Research indicates that early KPE
intervention is crucial, making the differentiation of BA from
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other cholestatic diseases essential.6,7 While MMP7 is a promising
non-invasive biomarker for BA, its clinical utility is limited by the
lack of standardized protocols.8,9 In this study, we employed a
combined approach of ST and scRNA-seq to construct, for the first
time, a four-gene diagnostic model for BA with higher resolution.
Additionally, these four genes also serve as predictors for native
liver survival.
In this study, we integrated scRNA-seq and ST techniques

to reveal microenvironmental changes across different stages
of BA fibrosis. Pseudo-time and Cell Chat analyses indicated
that SAMs may play a role in promoting EMT activation in
BECs and were co-localized in fibrotic regions. Lastly, we
developed a high-resolution fibrosis score to aid in the diagnosis
of BA.

METHODS
Figure S1 shows the flowchart of this study.

Data collection and sample collection
The cohort consisted of four children with type III BA, two with
choledochal cysts (CC), one with hepatoblastoma, and one with
hemangioma who were treated at the Department of General Surgery of
Tianjin Children’s Hospital between 2023 and 2024. All children received
surgical treatment from the same team. Clinical and pathologic data were
obtained from histopathology reports and electronic records of the
Department of General Surgery, Tianjin Children’s Hospital. Fibrosis
grading using the METAVIR scoring method. Deep scRNA-seq was
performed on cells in liver tissues of BA, CC, and in normal tissues
adjacent to liver tumors (NC). Meanwhile, deep ST sequencing was
performed on the fibrosis Grade IV BA liver tissues and normal tissues
adjacent to hepatoblastoma. Sequencing information and clinical informa-
tion for these samples were presented in Table S1.
The study was approved by the Ethics Committee of Tianjin Children’s

Hospital (2022-SYYJCYJ-008) and informed consent was obtained from the
legal guardian of each patient. The livers of patients in the BA and control
groups were collected during the procedure.
Single-cell suspension preparation and quality control: Tissue samples

are dissociated into single-cell suspensions using sCelLiVE™ Tissue
Dissociation Solution, and the cells are diluted to a suitable concentration
of 2.5–3.5 × 105 cells/mL.
Single cell isolation and labeling: The cell suspension is injected into the

SCOPE-chip™ microfluidic chip, and single cells are separated according to
the principle of “Poisson distribution”. After cell lysis, the magnetic beads
with unique Barcode and UMI tags capture the mRNA by binding to the
poly(A) tails on the mRNA, labeling the cells and mRNA.
Reverse transcription and amplification: Collect the magnetic beads in

the microarray, reverse transcribe the mRNA captured by the magnetic
beads into cDNA and amplify it.
Single-cell sequencing library construction: The cDNA is fragmented

and ligated to construct a sequencing library for Illumina sequencing
platform.
The gene microarray data (GSE15235,10 GSE46960,11 GSE122340,12

GSE159720,13 GSE221346, GSE16365014 and GSE17618915) were down-
loaded from the Gene Expression Omnibus (GEO) database. We
provide information about each sample in the supplementary materials
(Table S2).

ST barcoded microarray slide information
ST experiments were performed according to the manufacturer’s protocol
(10x Genomics). Briefly, HE-stained sections of 5 μm thick paraffin block
samples of liver tissue were taken, selected areas were incubated with
probes, and then transferred to 10x air-transferred slides by the CytAssist
system for capture and library construction.

ST barcoded microarray processing
The batch effect was removed using the “tidyverse” package (version 1.3.2)
and the “SCTransform” function.16 To improve ST resolution, the top 30
highly expressed genes in each cluster from scRNA-seq data originating
from the same sample were extracted. These genes were scored by the
“AUCell” method in ST barcoded microarray.

The scRNA-seq analysis
First, doublets were removed from the samples by the “DoubletFinder”
package (version 2.0.3).17 Both sets of cells were normalized with the
“Seurat” package (version 4.1.1)18 with parameters nFeature_RNA ≥ 200,
nCount_RNA ≥ 500, log10FeaturePerUMI ≥ 0.8, and percent_mito ≤ 15.
Detailed cell counts for the samples can be accessed in Table S3.
Afterwards, the batch effect was removed and scRNA-seq data were

integrated using the “tidyverse” package (version 1.3.2) and the “SCTrans-
form” function.16 Unified manifold approximation projection (UMAP)
method was used as a visualization method for cell clustering.19 To
identify differentially expressed genes (DEGs), we used the “FindAllMar-
kers” function in Seurat. The Benjamini-Hochberg method estimated the
false discovery rate (FDR).20 The criterion for selecting DEGs was an FDR
value of less than 0.05. The “clusterProfiler” package (version 4.6.2) and
“GSVA” package (version 1.46.0) was used to compute cell-enriched
pathways.21 In order to characterize the correlation between cells and
fibrosis, “AddModuleScore” function22 was performed to quantify the
fibrosis score of each cell through the 33 liver fibrosis-specific matrisome
genes (LFMGs) identified in the study of Hong You et al.23. The Kupffer
score and (marrow monocyte-derived macrophages) MoMF score for MPs
(Mononuclear phagocyte system) were also collected.24

Analysis of tissue heterogeneity
To quantify the heterogeneity of cell types in different tissues, we compared
the observed and expected number of cells for each cluster in each tissue
according to the following previously described formula, Ro/e= (observed/
expected), where the expected number of cells of cell clusters in a given
tissue was calculated by Chi-square test.24 If Ro/e > 1.5, we assume a weak
positive (+) enrichment of a cell cluster in the given tissue. If Ro/e > 3, the
identification is positive (++); Ro/e > 5, it is a strong positive (+++).

Single-cell pseudo time analysis
We used “monocle” to analyze the lineage differentiation of cell subtypes
with potential developmental relationships.25

Single-cell interaction analysis
The “CellChat” package (version 1.5.0)26 was used to compute intercellular
communication relationships and visualized with the “patchwork” package
(version 1.1.2).

Meta-analysis of public datasets
To further validate BA liver cell heterogeneity, we performed scRNA deconvolu-
tion analyses of the GSE46960, GSE122340, GSE159720, and GSE221346 cohorts
via the Cibersort website (https://cibersortx.stanford.edu/). Hedges’g is mainly
used to calculate standardized mean difference in small studies, thus integrating
the data through meta-analysis and making the conclusions more reliable.27

When I2 < 0.5, the fixed effects model is chosen, and when I2≥ 0.5, the random
effects model is chosen.

Identifying molecular models of fibrosis
Firstly, through the “SPARK” package, screening and spatial localization of
genes with significant correlation existed.28 After that, the fibrosis region
highly expressed genes, BA highly expressed genes in ST and BA highly
expressed genes in scRNA were screened by “FindAllMarkers” function
respectively. The overlapping genes were taken into account including
Lasso regression, Neural Network (MLP), Logistic Regression (LR), Linear
discriminant analysis, Quadratic discriminant analysis, k-Nearest Neighbor,
Decision tree, Random Forest (RF), XGBoost, Ridge Regression (RR), Elastic
Net regression (ENR), Support vector machine, Grandient Boosting
Machine, stepwise LR and Naive Bayesian algorithm. Finally, Lasso
regression combined with RF achieved the best diagnostic results. We
also validated the predictive effect of the integration of the four hub genes
of the model on BA autologous liver survival.

Statistical analysis
The data were analyzed through the use of R software (version 4.1.3). Data
conforming to the normal distribution were evaluated using the unpaired
Student’s t-test and data conforming to the non-normal distribution were
evaluated using the Wilcoxon test, and the statistical significance threshold
was set at p < 0.05. Spearman correlation analysis for two sets of normal
quantitative data.
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RESULTS
The scRNA-seq analysis
First, eight scRNA-seqs were integrated for a total of 58,850 cells,
including T and NK cells, B cells, MPs, EndoCs, proliferating cells,
hepatocytes, Plasma cells (PCs), EpiCs, neutrophils and fibroblasts
(Fig. 1a, b). Total 14,905 cells after integration of GSE163650,
including T and NK cells, B cells, MPs, neutrophils, other cells, PCs,
and proliferating cells (Fig. S2A, B).
Cellular annotations were taken for marker genes and references

in Table S4. The cell occupancy ratios showed an increase in MPs
infiltration and a decrease in EndoCs infiltration with increasing
fibrosis. While hepatocytes and EpiCs showed an increase and then
a decrease (Fig. 1c, d). The percentage of T and NK cells, MPs,
hepatocytes, and EpiCs was increased in BA compared to NC. While
the percentage of B cells, EndoCs, and neutrophils decreased
(Figs. 1e; S2C). Consistent with clinicopathological observations, BA
in the high fibrosis grade group had the highest fibrosis scores
(Fig. 1f). MPs, endothelial cell, EpiCs, and fibroblasts had significantly
higher fibrosis scores (Figs. 1g; S2D).

BECs exhibit EMT activation and pro-fibrotic phenotypes
In the present study, we found that epithelial alterations play an
important role in the progression of BA. EpiCs and hepatocytes
were reclusttered into 10 clusters (Fig. S3A). The starting point of
cell differentiation was determined based on differentiation
trajectories and marker genes of the EpiCs (Fig. S3B). Cluster 0
was labeled as BECs. Clusters 1, 3, 4, and 5 were labeled as
hepatocytes. The remaining cells were classified as bipotent,
hepatocyte-mediated bipotent and bile duct-mediated bipotent
based on differentiation trajectory (Figs. 2a; S3C). Gene Ontology
(GO) enrichment analysis showed that BECs were associated with
bile secretion and hepatocytes with metabolism (Fig. S3D, E).
Further functional analysis revealed elevated fibrosis scores in

BECs, bipotent cells, and bile duct-mediated bipotent cells (Fig. 2b).
With increasing levels of fibrosis, BECs and bipotent cells
increased, while hepatocytes and hepatocyte-mediated bipotent
cells decreased (Fig. 2c, D). Besides that, with the differentiation of
bipotent cells to BECs, the fibrosis-related genes ANXA2, CXCL6,
MMP7 and S100A6 showed a significant elevation in BA compared
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to CC and NC (Fig. 2e). Gene set variation analysis (GSVA) showed
that fibrosis-related pathway EPITHELIAL_MESENCHYMAL_TRAN-
SITION were up-regulated in hepatocytes and cholangiocytes in
BA compared to CC and NC (Fig. 2f). In addition, there were
overlapping genes for up-regulated genes of BECs and EMT-
related genes in BA (Fig. 2g, h). Combined with ST analysis, we
further demonstrated the correlation between BECs and BA
fibrosis. BECs were significantly enriched in fibrotic areas. In

contrast, hepatocytes were significantly enriched in the NC (Fig. 2i).
In conclusion, aberrant activation of EMT and upregulation of
fibrotic gene expression in BECs may promote fibrotic
progression in BA.
In addition to this, we analyzed the heterogeneity of EndoCs

and fibroblasts. Cells were classified as liver sinusoidal endothelial
cells (LSECs), vein ECs, artery ECs, and hepatic stellate cells (HSCs)
based on genetic markers (Fig. S4A, B). Decreased LSECs
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Fig. 2 BECs exhibit EMT activation and pro-fibrotic phenotypes. a UMAP projection showing the distribution of 1603 EpiCs from the Tianjin
Children’s Hospital scRNA-seq cohort after dimensionality reduction clustering. b Differences in Fibrosis Score of five cell clusters. c Percentage
difference between BA(Fibrosis ≤ 2), BA(Fibrosis > 2), C,C and NC cell clusters. d Percentage difference between BA, CC, and NC cell clusters. e 4
LFMGs change heterogeneity with cell track expression. f Differential GSVA enrichment analysis of BECs between BA and controls. g Volcano
map showing results of differential analysis between BECs and other cells. h Venn diagram showing overlapping genes of EMT-related
signaling pathway genes from GSEA website and genes up-regulated by BECs. i ST analysis reveals heterogeneity of five cell clusters localized
in the liver. BECs Bile duct epithelial cells, EMT epithelial-mesenchymal transition, UMAP Uniform manifold approximation and projection,
EpiCs epithelial cells, BA biliary atresia, CC Choledochal cysts, NC Normal control, LFMGs liver fibrosis-specific matrisome genes, GSVA Gene set
variation analysis, ST Spatial transcriptome.

X. Li et al.

365

Pediatric Research (2026) 99:362 – 374



infiltration in BA but increased percentage of artery ECs and vein
ECs (Fig. S4C, D). HSCs showed higher fibrosis scores, while HSCs,
arterial ECs, and venous ECs were enriched in fibrotic areas (Fig.
S4E, F). We observed abnormal proliferation of arteries and veins
in areas of fibrosis.

Partial BECs have a tendency to differentiate towards HSCs
To further demonstrate EMT activation, we subjected hepatocytes,
EpiCs, and HSCs to pseudo time analysis. Interestingly, partial BECs
have a phenotype of conversion to HSCs, which does not occur in
hepatocytes (Fig. 3a). This cluster of cells was identified as EMT-
associated BECs that may have undergone EMT activation. Pseudo
time difference analysis revealed that differential gene changes in
cluster 2 converged with the differentiation of EMT-associated
BECs (Fig. 3b). Compared to other BECs, fibrosis-related genes
were specifically expressed in EMT-associated BECs, including
EGR1,29 IGFBP7,30 ITGB131 and TPM132 (Fig. 3c). GO enrichment
analysis revealed that cluster 2 differential genes were associated
with fibrotic pathways such as wound healing and myofibril
assembly (Fig. 3d). EMT-related genes CDH2, CALU, CDH6, COPA,
CALD1 and CADM1 are up-regulated in EMT-associated BECs
compared to other BECs (Fig. 3e). In conclusion, EMT-associated

BECs and HSCs have similar phenotypes, which may be a key
process in their promotion of fibrosis.

SAMs play a key role in liver fibrosis progression
To further analyze which cells play a key role in MPs with high
fibrosis scores, we derived 19,728 MPs and classified them into 10
clusters based on marker genes, including CD14+Mon1,
CD16+Mon2, TIMD4+Kupffer cells (KCs), TREM2+SAMs, CD300E+int-
Mon, CD1E+cDC2, IL1B+Pi Mon, FCN1+Monlike-Mac, IL3RA+pDC and
CLEC9A+cDC1 (Figs. 4a; S2H, I; S5A). GO enrichment analysis showed
that CD14+Mon1 and CD16+Mon2 regulated cell chemotaxis and
migration (Fig. S5B, C). TIMD4+KC plays a role in the regulation of
innate immunity and viral clearance (Fig. S5D). TREM2+SAMs play
roles such as regulating apoptosis and CD300E+intMon promotes
cell adhesion (Fig. S5E, F). In addition, IL1B+Pi Mon has functions
such as regulating the NFKB signaling pathway and Th17 cell
differentiation (Fig. S5G).
The proportion of TREM2+SAMs and CLEC9A+cDC1 were

increased in BA compared to NC (Fig. 4b, S2J). Elevated fibrosis
scores in CD14+Mon1, TREM2+SAMs, CD300E+intMon, and
IL1B+Pi Mon (Fig. 4c). To understand the origin of subpopula-
tions of MPs, this study defined macrophages derived from
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Kupffer score or MoMF score based on reported markers. MoMF
scores were higher for CD14+Mon1, TREM2+SAMs, CD300E+int-
Mon, and IL1B+Pi Mon. Meanwhile, based on the original report,
it was hypothesized that TREM2+SAMs may act as mature cells
and play a pro-fibrotic role (Fig. 4d, e).33 The ST analysis further
revealed that CD14+Mon1, TREM2+SAMs, CD300E+intMon, and
IL1B+Pi Mon were enriched in fibrotic areas (Fig. 4F). In
conclusion, TREM2+SAMs in MPs were identified as a key cluster
promoting fibrosis.

SAMs are derived from monocytes and are associated with
EMT activation
Pseudo time analysis revealed different differentiation trajectories
of SAMs between and within groups (Fig. 5a). Expression of
fibrosis-associated genes ANXA2, LGALS3, S100A8, SPP1 and

TGFB1 was progressively elevated in BA with progressive
differentiation of monocytes to SAMs (Fig. 5b). However, we
observed a progressive increase in CD9 and TREM2 expression
accompanied by a progressive decrease in IL1B expression
(Fig. 5b). This further suggests a pro-inflammatory to pro-fibrotic
phenotypic switch in BA different from NC. Furthermore, GSVA
enrichment analysis showed that four cell types in BA were
upregulated in fibrosis-related pathways EPITHELIAL_MESENCHY-
MAL_TRANSITION compared to NC and CC (Fig. 5c). Meanwhile,
there was a significant correlation between KRT18 and the marker
genes of SAMs (CD9 and TREM2) in GSE46960, GSE122340 and
GSE1523 cohorts (p < 0.001) (Fig. 5d). The key gene for EMT, CDH2,
showed the same strong correlation (p < 0.001) (Fig. 5d). There-
fore, SAMs are not only a key cluster of pro-fibrosis but may also
be involved in EMT activation.
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Immunoregulatory effects of Treg and Th1 are associated with
liver fibrosis
We derived 20,195T and NK cells for analysis. A total of 11 cell
types were labeled according to markers for T and NK cells,
including NCAM1+NK cells, SKAP1+T cells, FYN+T cells, SELL+T cells,

ZNF683+T cells, FCGR3A+NK cells, CCL5+T cells, LEF1+T cells,
MKI67+T cells, IFNG+Th1 cells and FOXP3+Treg cells (Table S4; Figs.
S3E, F; S6A). With increasing fibrosis, the percentage of NCAM1+NK
cells gradually decreased, while ZNF683+T cells, CCL5+NKT cells,
IFNG+Th1 cells, and FOXP3+Treg cells gradually increased (Figs.
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S3G; S6B). Besides that, the percentage of SKAP1+T cells,
IFNG+Th1 cells and FOXP3+Treg cells was increased in BA
compared to NC (Figure S6C). The ST indicated that
IFNG+Th1 cells and FOXP3+Treg cells were enriched in fibrotic
areas (Fig. S6D). These results suggest that Treg and Th1 may
promote fibrosis by exerting immunomodulatory functions in BA.
We derived 7844 B cells and 783 PCs. A total of 7 clusters were

obtained after performing the reclustering annotation, including
IGHM+naive B, CD19+T1B, RAG1+Pre B, IGHD+T2B, MME+Immature
B, IGHA+PCs, and IGHG+PCs (Fig. S6E). Similar to previous studies,
we found an increased percentage of RAG1+Pre-B, IGHD+T2B, and
IGHG+PCs in BA compared to NC and CC (Fig. S6F, G).34

Validation of meta-analysis of public data
Bulk sequencing data with both BA and controls were included for
deconvolution analysis of all single-cell species (Fig. S7). Results of
meta-analysis showed that BECs, ZNF683+T cells, IFNG+Th1 cells,
TREM2+SAMs, CD14+Mon1, and CD19+T1B infiltrated increased in
BA samples. Hepatocytes, TIMD4+KC, Neutrophils, and IGHG+PCs
were less infiltrated in BA. This further confirms the important role
of SAMs and BECs in the occurrence and development of BA.

Intercellular interaction
We selected fibrosis-associated immune cells, BECs, and HSCs for cell
interaction analysis. Increased PERIOSTIN, CHEMERIN, FGF, GAS, ANGPT,
PARs, IL6, TGFb, PTN ligand-receptor interactions in BA compared to CC
and NC (Fig. 6a). HSCs, BECs, CD14+Mon1, TREM2+SAMs, CD300E+int-
Mon, IL1B+Pi Mon, FOXP3+Treg and IFNG+Th1 interactions are
enhanced (Fig. 6b). The loop diagram also demonstrates that
CD14+Mon1, TREM2+SAMs, and CD300E+intMon not only have
increased interactions with HSCs but also enhanced interactions with
BECs (Fig. 6c). TREM2+SAMs can act on BECs via SPP1-(ITGAV+ ITGB1)
and AREG-(EGFR + ERBB2), which may promote the abnormal
proliferation of BECs (Fig. 6d). In turn, BECs may also promote
TREM2+SAMs complement activity via C3-(ITGAX+ ITGB2) (Fig. 6e).
Several studies found that both SPP1-(ITGAV+ ITGB1) and AREG-
(EGFR + ERBB2) promoted EMT activation.35–37 In addition, TREM2, CD9,
and KRT19 co-localized in the fibrotic zone, further demonstrating the
strong interactions between SAMs and BECs (Fig. 6f). ST analysis also
showed that C3-(ITGAX+ ITGB2), SPP1-(ITGAV+ ITGB1), TGFB signaling
pathway, and FGF1-FGFR3 co-localized in fibrotic regions in BA
compared to NC (Fig. S8A–E). Therefore, SAMs may promote EMT
activation in BECs to exert the pro-fibrotic effect, which may be a
potential basis for the rapid progression of BA fibrosis.
In addition, Treg and Th1 cells may promote the convergence of

SAMs towards fibrous regions via the CXCL signaling pathway
(Fig. 6g).

External validation of SAMs facilitates the occurrence of EMT
in BECs
The single-cell dataset GSE176189 was used for external valida-
tion. After quality control, a total of 106,897 cells were used for
subsequent analysis. To further validate the interaction between
SAMs and BECs, we performed secondary annotation only on the
MPs. Eventually, 16 subgroups were identified (Fig. S9A, B).
Compared to CC, the EMT signaling pathways in BECs, FCN+Mon,
and TREM2+SAMs were significantly upregulated in BA (Fig.
S9C–E). Similarly, cell communication analysis showed that the
interaction between BECs and SAMs was significantly enhanced in
BA (Fig. S9F). Compared to CC, in BA, SAMs significantly
upregulated their influence on BECs through the SPP1-ITGAV/
ITGB1 signaling pathway (Fig. S9G). In summary, these results
further support that SAMs can promote EMT in BECs through the
SPP1-ITGAV/ITGB1 signaling pathway.

Identifying molecular models of fibrosis
SPARK identifies spatial expression models of genes by detecting
highly variable genes in space. A total of 9668 genes were

screened by SPARK for differences in spatial location in BA liver
(adjP-value < 0.05). A total of 6385 highly expressed genes in the
fibrotic region of the ST (adjP-value < 0.05). A total of 664 genes
were highly expressed in BA in the ST (adjP-value < 0.05) and 248
genes were highly expressed in BA in the scRNA (adjP-value <
0.05). A total of 16 overlapping genes were further screened
(Fig. 7a). Among 15 machine learning algorithms individually or in
combination, we chose Lasso regression incorporating RF as the
best algorithm, including a total of four hub genes, namely
S100A6, S100A11, CD96 and Enah/Vasp-Like (EVL) (Fig. 7b). The
fibrosis model constructed for the four hub genes had an Area
under the cure (AUC) of 1.000 for the Receiver operating
characteristic curve (ROC) in the training cohort GSE46960 and
0.839 and 0.879 for the ROC in the validation cohorts GSE122340
and GSE221346, respectively (Fig. 7c–e). Meanwhile, these four
genes could divide the 45 BA samples of GSE159720 into high and
low expression groups (Fig. 7f). Kaplan-Meier curves observed that
the high expression group showed poorer autologous liver
survival (Fig. 7g).
S100A6, S100A11, CD96, and EVL are all expressed at elevated

levels in grade III and IV fibrosis of BA. Of these four genes, CD96
and EVL are predominantly expressed in T and NK cells (Fig.
S10A, B). CD96 expression was elevated in SKAP1+T cells,
LEF1+T cells, and FOXP3+Treg T cells compared to controls. EVL
expression was elevated in SKAP1+T cells, MKI67+T cells, and
IFNG+Th1 cells compared to controls. S100A11 and S100A6 are
predominantly expressed in MPs (Fig. S10C, D). S100A11 expres-
sion was elevated in TIMD4+KC cells, TREM2+SAMs cells, and
FCN1+Monlike-Mac cells compared to controls. S100A6 expression
was elevated in TIMD4+KC cells and TREM2+SAMs cells compared
to controls. Correlation analysis of the four external datasets
showed that these four genes and fibrosis-related genes remained
strongly correlated (Figure S10E,F). Finally, we summarized the
mechanism of the process of fibrosis in BA discovered in this study
(Fig. 8).

DISCUSSION
Studies have shown that fibrosis in BA progresses rapidly, often
leading to early-stage cirrhosis; however, the precise mechan-
isms remain unclear. Yuxia Zhang et al. were pioneers in using
single-cell immuno-mapping to highlight the potential of B-cell-
targeted therapies in mitigating liver inflammation.4 Subse-
quently, Shan Zheng et al. described immune cells that may be
involved in fibrosis progression.5 Our study focuses on fibrotic
region-specific cells and the highly expressed genes associated
with fibrosis promotion and predictive value. We observed
abnormal proliferation of BECs in fibrotic regions, potentially
regulated by CD14+Mon1, TREM2+SAMs, CD300E+intMon, and
IL1B+Pi Mon. Additionally, IFNG+Th1 and FOXP3+Treg were
enriched in fibrotic regions, promoting the chemotaxis of
TREM2+SAMs. Importantly, by integrating ST with scRNA
sequencing, we developed high-resolution diagnostic models
for BA, with four genes in the model also showing predictive
value for native liver survival.
In BA, BECs exhibit both damage and proliferative repair, which

may be linked to disease progression. The accumulation of
interferon-responsive neutrophils has been shown to induce BEC
apoptosis in BA.38 Additionally, direct viral actions can also result
in BEC apoptosis.39,40 The repair process of BECs is characterized
as non-functional, as evidenced by the downregulation of genes
involved in ciliary signaling.41,42 We observed advanced fibrosis
with BEC infiltration in fibrotic regions, accompanied by a marked
upregulation of ANXA2, CXCL6, MMP7, and S100A6 as BECs
matured. Notably, hepatocyte infiltration was predominant in the
early stages of BA fibrosis, while BEC infiltration became more
pronounced in the later stages, suggesting that BECs may serve as
the initiating factor in fibrosis.2
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In this study, we observed that a subset of BECs in BA
underwent abnormal EMT, acquiring a mesenchymal phenotype.
Previous research has identified abnormal activation of the
Hedgehog signaling pathway in BA, which, in turn, stimulates
EMT in BECs.43 Our previous work also demonstrated that EGF can

promote EMT in BECs.44 However, there remains a lack of
comprehensive studies exploring the role of EMT in promoting
fibrosis. Our current findings, derived from scRNA-seq and ST
sequencing, suggest that SAMs may act as initiators of EMT in
BECs. The interaction between SAMs and BECs primarily occurs
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through the SPP1-(ITGAV + ITGB1) and AREG-(EGFR + ERBB2) path-
ways. SPP1-(ITGAV + ITGB1) facilitates cell adhesion and prolifera-
tion, while AREG-(EGFR + ERBB2) supports epithelial cell damage
repair.45–47 Notably, SPP1 has been shown to induce EMT in
alveolar epithelial cells in studies of lung fibrosis.37 In lung
adenocarcinoma research, SPP1 was found to promote the
expression of COL11A1,48 and in colorectal cancer studies, SPP1
was implicated in inducing EMT.49 Additionally, AREG has been
shown to promote EMT activation in oral epithelial cells.50 EGFR, as
an epidermal growth factor receptor, is known to enhance cell
proliferation.51 The strong interactions between SAMs and BECs
may represent a novel avenue for future research on BA fibrosis
and could inform the development of targeted therapies.
Macrophages infiltrate and accumulate extensively in the livers

of children with BA, and studies have shown that depletion of
these macrophages can mitigate fibrosis.52,53 In this context,
CD14+Mon1, TIMD4+SAMs, CD300E+intMon, and IL1B+Pi Mon
have been implicated in fibrosis progression. Pseudo time analysis
indicated that TIMD4+SAMs are derived from CD14+Mon1,
CD300E+intMon, and IL1B+Pi Mon. Fibrosis-associated genes such
as ANXA2, LGALS3, and SPP1 were progressively upregulated
during the maturation of TIMD4+SAMs. N.C. Henderson et al.
demonstrated that SAMs are elevated in liver fibrosis and exert a
pro-fibrotic effect.33 Concurrently, MMP9+neutrophils in the liver,
which participate in TGF-β1 activation, facilitate the differentiation
of SAMs.54 Treg cells have immunomodulatory roles, and their
dysfunction is linked to autoimmune mechanisms in BA. Studies
have reported reduced peripheral Treg proportions, along with a
decrease in both the number and function of hepatic Tregs in the
RRV-induced BA mouse model.55–57

CD96, a member of the immunoglobulin superfamily, plays a
role in regulating NK cell effector function and metastasis.58

Consistent with previous studies, CD96 is primarily expressed on
the surface of T and NK cells.59 However, whether CD96 acts as an
inhibitor or activator of NK and T cells remains controversial.60 In
hepatocellular carcinoma, CD96+NK cells predominantly express
TGF-β and IL-10, with reduced expression of IL-15, perforin, T-bet,
and granzyme B.60 B. Jin et al. observed that serum sCD96 levels
were significantly elevated in patients with cirrhosis due to
chronic viral hepatitis B, though the underlying mechanism
remains unclear.61 In our study, we found that CD96 was primarily
expressed in fibrotic regions during the advanced stages of
hepatic fibrosis, suggesting a potential pro-fibrotic role. EVL, a
member of the Ena/VASP family, is involved in actin cytoskeleton
reorganization, cell migration, contractile ring formation, and
intercellular attachment.62 Our findings indicate that EVL is
predominantly expressed in T and NK cells, which may facilitate
their migration to fibrotic regions.63 S100A6 and S100A11, both
members of the S100 protein family, have been closely associated
with fibrosis in several studies. S100A6 serves as a cellular marker
for activated fibroblasts and promotes the proliferation of
activated HSCs, thereby contributing to fibrosis.64,65 Additionally,
S100A6 was found to be overexpressed in intrahepatic cholan-
giocytes of BDL mice.66 In hepatocellular carcinoma, overexpres-
sion of S100A11 has been shown to promote inflammation and
fibrosis in vivo.67 S100A11 activates HSCs and the fibrotic process
by regulating the deacetylation of Smad3 in the TGF-β signaling
pathway.68 These findings suggest that S100A6 and S100A11 play
a promotive role in liver fibrosis. In our study, we observed that
S100A6 and S100A11 were predominantly expressed in MPs, with
significantly higher expression in TREM2+SAMs.
In addition, S100A6 and S100A11 also exhibit pro-inflammatory

effects. Studies have found that in patients with systemic sclerosis,
S100A6 may be an upstream molecule in pulmonary fibrosis,
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innate immunity, and vascular injury.69 S100A6 can also promote B
cell infiltration, exacerbating autoimmune encephalitis.70 Feng-
guang Yang et al. discovered that S100A6 regulates nucleus
pulposus cell apoptosis via the Wnt/β-catenin signaling path-
way.71 S100A11 can inhibit the viability of nasal mucosal epithelial
cells, promoting apoptosis and inflammation.72 In rheumatoid
arthritis, extracellular S100A11 increases the secretion of IL-6 and
TNF by neutrophils.73 The expression of the S100A11 gene
promotes IL-29 expression, which inhibits vaccinia virus replica-
tion.74 Increased expression of S100A6 and S100A11 may jointly
enhance the inflammatory response in the livers of children
with BA.
This study has several limitations. First, despite extensive

validation using publicly available data, our analysis was
based on only eight single-cell samples and two ST samples,
which may have introduced bias. We plan to conduct further
experimental validation to address this. Secondly, due to the
absence of IGHM, IGHD, IGHA, and IGHG genes in the GSE163650
dataset, we were unable to validate our findings for B cells and
PCs. Lastly, the study included four BA cases with varying degrees
of fibrosis. To reduce bias, we performed a partial merge, which
may have limited our ability to precisely delineate the progression
of fibrosis.

CONCLUSIONS
This study offers a comprehensive overview of the cellular
composition at different stages of fibrosis and identifies cell types
that may contribute to fibrosis in BA. These findings further
elucidate the microenvironmental changes associated with the
progression of BA fibrosis. The interaction between SAMs and
BECs may promote EMT activation, highlighting a potential
therapeutic strategy for BA treatment. Additionally, the high
expression of CD96, EVL, S100A6, and S100A11 in fibrotic regions
suggests their potential use as diagnostic and prognostic markers
for BA.
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