Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shifting outlooks after neonatal encephalopathy in the era of therapeutic hypothermia

Abstract

In the era of therapeutic hypothermia (TH), more infants are surviving moderate to severe hypoxic-ischemic encephalopathy (HIE) with no or less apparent injury on neonatal brain magnetic resonance imaging (MRI). Despite a reduction in death and severe neurodisability for infants with neonatal encephalopathy from HIE, children remain at risk for challenges in learning, language, coordination, behavior, and socioemotional development. Neither neonatal MRI nor early developmental testing is completely predictive of outcomes at school age. This review summarizes current data on long-term outcomes of infants who have received TH for HIE, most in the absence of cerebral palsy or significant neonatal brain injury. Many children with a history of neonatal HIE face challenges in their motor skills, emotion regulation and behavior, language and communication, cognition and learning, and academic achievement. All children with a history of neonatal HIE can benefit from close neurodevelopmental surveillance into adolescence. It is important for providers to counsel families about the spectrum of long-term outcomes and potential effects on later stages of neurodevelopment even when brain MRI is reassuring. Understanding the broader spectrum of neurodevelopmental impairment at school-age in children with neonatal HIE can inform new therapies, early intervention strategies, and pre-school readiness to optimize outcomes.

Impact Statement

  • Children with a history of moderate to severe hypoxic ischemic encephalopathy (HIE) without evidence of significant brain injury on post-cooling neonatal MRI are still at risk for a range of neurodevelopmental challenges at school-age and beyond.

  • Neonatal neuroimaging and early neurodevelopmental evaluations do not reliably indicate outcomes at school-age, making early prognostication and counseling families in the NICU period and during neonatal follow-up clinics challenging.

  • All children with perinatal HIE, regardless of MRI findings, should have long-term follow up and support through school age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Acun, C. et al. Trends of neonatal hypoxic-ischemic encephalopathy prevalence and associated risk factors in the United States, 2010 to 2018. Am. J. Obstet. Gynecol. 227, 751.e1–751.e10 (2022).

    Article  PubMed  Google Scholar 

  2. Cornet, M. C. et al. Perinatal Hypoxic-Ischemic Encephalopathy: Incidence Over Time Within a Modern US Birth Cohort. Pediatr. Neurol. 149, 145–150 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. McIntyre, S. et al. Neonatal encephalopathy: Focus on epidemiology and underexplored aspects of etiology. Semin Fetal Neonatal Med. 26, 101265 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Kurinczuk, J. J., White-Koning, M. & Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 86, 329–338 (2010).

    Article  PubMed  Google Scholar 

  5. Glass, H. C. Hypoxic-Ischemic Encephalopathy and Other Neonatal Encephalopathies. Contin. (Minneap. Minn. 24, 57–71 (2018).

    Google Scholar 

  6. Branagan, A. et al. Consensus definition and diagnostic criteria for neonatal encephalopathy—study protocol for a real-time modified delphi study. Pediatr. Res. 97, 430–436 (2025).

  7. Wassink, G. et al. The mechanisms and treatment of asphyxial encephalopathy. Front. Neurosci. 8, 40 (2014).

  8. Bonifacio, S. L. et al. Neuroprotection for hypoxic-ischemic encephalopathy: Contributions from the neonatal research network. Semin Perinatol. 46, 151639 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Proietti, J., Boylan, G. B. & Walsh, B. H. Regional variability in therapeutic hypothermia eligibility criteria for neonatal hypoxic-ischemic encephalopathy. Pediatr. Res. 96, 1153–1161 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee, K. S. et al. Practice Variations for Therapeutic Hypothermia in Neonates with Hypoxic-ischemic Encephalopathy: An International Survey. J. Pediatr. 274, 114181 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Shankaran, S. et al. Whole-Body Hypothermia for Neonates with Hypoxic–Ischemic Encephalopathy. N. Engl. J. Med. 353, 1574–1584 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Gluckman, P. D. et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365, 663–670 (2005).

    Article  PubMed  Google Scholar 

  13. Eicher, D. J. et al. Moderate hypothermia in neonatal encephalopathy: Efficacy outcomes. Pediatr. Neurol. 32, 11–17 (2005).

    Article  PubMed  Google Scholar 

  14. Simbruner, G. et al. Systemic Hypothermia After Neonatal Encephalopathy: Outcomes of neo.nEURO.network RCT. Pediatrics 126, e771–e778 (2010).

    Article  PubMed  Google Scholar 

  15. Zhou, W. -h. et al. Selective Head Cooling with Mild Systemic Hypothermia after Neonatal Hypoxic-Ischemic Encephalopathy: A Multicenter Randomized Controlled Trial in China. J. Pediatr. 157, 367–372.e3 (2010).

    Article  PubMed  Google Scholar 

  16. Jacobs, S. E. Whole-Body Hypothermia for Term and Near-Term Newborns With Hypoxic-Ischemic Encephalopathy. Arch. Pediatr. Adolesc. Med. 165, 692 (2011).

    Article  PubMed  Google Scholar 

  17. Azzopardi, D. V. et al. Moderate Hypothermia to Treat Perinatal Asphyxial Encephalopathy. N. Engl. J. Med. 361, 1349–1358 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Bach, A. M. et al. Early Magnetic Resonance Imaging Predicts 30-Month Outcomes after Therapeutic Hypothermia for Neonatal Encephalopathy. J. Pediatr. 238, 94–101.e1 (2021).

    Article  PubMed  Google Scholar 

  19. Azzopardi, D. et al. Effects of Hypothermia for Perinatal Asphyxia on Childhood Outcomes. N. Engl. J. Med. 371, 140–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Cheong, J. L. Y. et al. Prognostic Utility of Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy. Arch. Pediatr. Adolesc. Med.166, 634–640 (2012).

  21. Shankaran, S. et al. Brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy. Arch. Dis. Child Fetal Neonatal Ed. 97, F398–F404 (2012).

    PubMed  Google Scholar 

  22. Rutherford, M. et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol. 9, 39–45 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu, Y. W. et al. High-Dose Erythropoietin and Hypothermia for Hypoxic-Ischemic Encephalopathy: A Phase II Trial. Pediatrics. 137, e20160191 (2016).

  24. Wu, Y. W. et al. Trial of Erythropoietin for Hypoxic–Ischemic Encephalopathy in Newborns. N. Engl. J. Med. 387, 148–159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wintermark, P. et al. Feasibility and Safety of Sildenafil to Repair Brain Injury Secondary to Birth Asphyxia (SANE-01): A Randomized, Double-blind, Placebo-controlled Phase Ib Clinical Trial. J. Pediatr. 266, 113879 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Cardinali, D. P. An Assessment of Melatonin’s Therapeutic Value in the Hypoxic-Ischemic Encephalopathy of the Newborn. Front. Synaptic Neurosci. 11, 34 (2019).

  27. Barks, J. D. E. et al. Repurposing azithromycin for neonatal neuroprotection. Pediatr. Res. 86, 444–451 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shankaran, S. et al. Childhood Outcomes after Hypothermia for Neonatal Encephalopathy. N. Engl. J. Med. 366, 2085–2092 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, W. et al. Prognostic Value of Clinical Tests in Neonates With Hypoxic-Ischemic Encephalopathy Treated With Therapeutic Hypothermia: A Systematic Review and Meta-Analysis. Front. Neurol. 11, 133 (2020).

  30. Shankaran, S. et al. Acute Perinatal Sentinel Events, Neonatal Brain Injury Pattern, and Outcome of Infants Undergoing a Trial of Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy. J. Pediatrics 180, 275–278.e2 (2017).

    Article  Google Scholar 

  31. Lambing, H. et al. Using Neonatal Magnetic Resonance Imaging to Predict Gross Motor Disability at Four Years in Term-Born Children With Neonatal Encephalopathy. Pediatr. Neurol. 144, 50–55 (2023).

    Article  PubMed  Google Scholar 

  32. Gadde, J. A. et al. Imaging of Hypoxic-Ischemic Injury (in the Era of Cooling). Clin. Perinatol. 49, 735–749 (2022).

    Article  PubMed  Google Scholar 

  33. Barkovich, A. J. et al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am. J. Neuroradiol. 19, 143–149 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Weeke, L. C. et al. A Novel Magnetic Resonance Imaging Score Predicts Neurodevelopmental Outcome After Perinatal Asphyxia and Therapeutic Hypothermia. J. Pediatrics 192, 33–40.e2 (2018).

    Article  Google Scholar 

  35. Shankaran, S. et al. Neonatal Magnetic Resonance Imaging Pattern of Brain Injury as a Biomarker of Childhood Outcomes following a Trial of Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy. J. Pediatrics 167, 987–993.e3 (2015).

    Article  Google Scholar 

  36. Christensen, R., de Vries, L. S. & Cizmeci, M. N. Neuroimaging to guide neuroprognostication in the neonatal intensive care unit. Curr. Opin. Pediatr. 36, 190–197 (2024).

    Article  PubMed  Google Scholar 

  37. Parmentier, C. E. J., De Vries, L. S. & Groenendaal, F. Magnetic Resonance Imaging in (Near-)Term Infants with Hypoxic-Ischemic Encephalopathy. Diagnostics 12, 645 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Martinez-Biarge, M. et al. Feeding and communication impairments in infants with central grey matter lesions following perinatal hypoxic-ischaemic injury. Eur. J. Paediatr. Neurol. 16, 688–696 (2012).

    Article  PubMed  Google Scholar 

  39. Rutherford, M. A. et al. Abnormal Magnetic Resonance Signal in the Internal Capsule Predicts Poor Neurodevelopmental Outcome in Infants With Hypoxic-Ischemic Encephalopathy. Pediatrics 102, 323–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Martinez-Biarge, M. et al. Predicting motor outcome and death in term hypoxic-ischemic encephalopathy. Neurology 76, 2055–2061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinman, K. J. et al. Neonatal Watershed Brain Injury on Magnetic Resonance Imaging Correlates With Verbal IQ at 4 Years. Pediatrics 123, 1025–1030 (2009).

    Article  PubMed  Google Scholar 

  42. Lee, B. L. et al. Long-term cognitive outcomes in term newborns with watershed injury caused by neonatal encephalopathy. Pediatr. Res. 92, 505–512 (2022).

    Article  PubMed  Google Scholar 

  43. Van Steenis, A. et al. Individualized Neuroprognostication in Neonates With Hypoxic-Ischemic Encephalopathy Treated With Hypothermia. Neurol. Clin. Pr. 15, e200370 (2025).

    Article  Google Scholar 

  44. Jung, D. E. et al. Early Anatomical Injury Patterns Predict Epilepsy in Head Cooled Neonates With Hypoxic-Ischemic Encephalopathy. Pediatr. Neurol. 53, 135–140 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tharmapoopathy, P. et al. In clinical practice, cerebral MRI in newborns is highly predictive of neurodevelopmental outcome after therapeutic hypothermia. Eur. J. Paediatr. Neurol. 25, 127–133 (2020).

    Article  PubMed  Google Scholar 

  46. Wu, Y. W. et al. How well does neonatal neuroimaging correlate with neurodevelopmental outcomes in infants with hypoxic-ischemic encephalopathy?. Pediatr. Res. 94, 1018–1025 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rasmussen, L. A., Bell, E. & Racine, E. A Qualitative Study of Physician Perspectives on Prognostication in Neonatal Hypoxic Ischemic Encephalopathy. J. Child Neurol. 31, 1312–1319 (2016).

    Article  PubMed  Google Scholar 

  48. van Schie, P. E. et al. Long-term motor and behavioral outcome after perinatal hypoxic-ischemic encephalopathy. Eur. J. Paediatr. Neurol. 19, 354–359 (2015).

    Article  PubMed  Google Scholar 

  49. Spencer, A. P. C. et al. Disrupted brain connectivity in children treated with therapeutic hypothermia for neonatal encephalopathy. NeuroImage: Clin. 30, 102582 (2021).

    Article  PubMed  Google Scholar 

  50. Garvey, A. A. et al. Differences between early and late MRI in infants with neonatal encephalopathy following therapeutic hypothermia. Pediatr. Res. 94, 1011–1017 (2023).

    Article  PubMed  Google Scholar 

  51. Wisnowski, J. L. et al. Neuroimaging in the term newborn with neonatal encephalopathy. Semin Fetal Neonatal Med. 26, 101304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rollins, N. et al. Predictive Value of Neonatal MRI Showing No or Minor Degrees of Brain Injury After Hypothermia. Pediatr. Neurol. 50, 447–451 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Marlow, N. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch. Dis. Child. - Fetal Neonatal Ed. 90, F380–F387 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Natarajan, G., Pappas, A. & Shankaran, S. Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE). Semin. Perinatol. 40, 549–555 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Robertson, C. M. T. & Finer, N. N. Long-Term Follow-Up of Term Neonates with Perinatal Asphyxia. Clin. Perinatol. 20, 483–499 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Lindström, K. et al. Teenage outcome after being born at term with moderate neonatal encephalopathy. Pediatr. Neurol. 35, 268–274 (2006).

    Article  PubMed  Google Scholar 

  57. Van Handel, M. et al. Behavioral Outcome in Children with a History of Neonatal Encephalopathy following Perinatal Asphyxia. J. Pediatr. Psychol. 35, 286–295 (2010).

    Article  PubMed  Google Scholar 

  58. Hayes, B. C. et al. Neurodevelopmental outcome in survivors of hypoxic ischemic encephalopathy without cerebral palsy. Eur. J. Pediatr. 177, 19–32 (2018).

    Article  PubMed  Google Scholar 

  59. Badawi, N. et al. Autism following a history of newborn encephalopathy: more than a coincidence?.Developmental Med. Child Neurol.48, 85–89 (2006).

    Article  Google Scholar 

  60. Pappas, A. et al. Cognitive Outcomes After Neonatal Encephalopathy. Pediatrics 135, e624–e634 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pappas, A. & Korzeniewski, S. J. Long-Term Cognitive Outcomes of Birth Asphyxia and the Contribution of Identified Perinatal Asphyxia to Cerebral Palsy. Clin. Perinatol. 43, 559–572 (2016).

    Article  PubMed  Google Scholar 

  62. de Vries, L. S. & Cowan, F. M. Evolving understanding of hypoxic-ischemic encephalopathy in the term infant. Semin Pediatr. Neurol. 16, 216–225 (2009).

    Article  PubMed  Google Scholar 

  63. Gonzalez, F. F. & Miller, S. P. Does perinatal asphyxia impair cognitive function without cerebral palsy?. Arch. Dis. Child. - Fetal Neonatal Ed. 91, F454–F459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dzikienė, R. et al. Long-Term Outcomes of Perinatal Hypoxia and Asphyxia at an Early School Age. Medicina 57, 988 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee-Kelland, R. et al. School-age outcomes of children without cerebral palsy cooled for neonatal hypoxic–ischaemic encephalopathy in 2008–2010. Arch. Dis. Child. - Fetal Neonatal Ed. 105, 8–13 (2020).

    Article  PubMed  Google Scholar 

  66. Halpin, S. et al. Long-term neuropsychological and behavioral outcome of mild and moderate hypoxic ischemic encephalopathy. Early Hum. Dev. 165, 105541 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Mulkey, S. B. Helping kids through early developmental screening. Pediatr. Res. 97, 1449–1450 (2025).

  68. Duggan, C. et al. ASQ-3 and BSID-III’s concurrent validity and predictive ability of cognitive outcome at 5 years. Pediatr. Res. 94, 1465–1471 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Robertsson Grossmann, K. et al. Outcome at early school age and adolescence after hypothermia-treated hypoxic–ischaemic encephalopathy: an observational, population-based study. Arch. Dis. Child. - Fetal Neonatal Ed. 108, 295–301 (2023).

    Article  PubMed  Google Scholar 

  70. Schreglmann, M. et al. Systematic review: long-term cognitive and behavioural outcomes of neonatal hypoxic–ischaemic encephalopathy in children without cerebral palsy. Acta Paediatrica 109, 20–30 (2020).

    Article  PubMed  Google Scholar 

  71. Edmonds, C. J. et al. Children with neonatal Hypoxic Ischaemic Encephalopathy (HIE) treated with therapeutic hypothermia are not as school ready as their peers. Acta Paediatrica 110, 2756–2765 (2021).

    Article  PubMed  Google Scholar 

  72. Brossard-Racine, M. et al. Long-term consequences of neonatal encephalopathy in the hypothermia era: protocol for a follow-up cohort study at 9 years of age. BMJ Open 13, e073063 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Erdi-Krausz, G. et al. Neonatal hypoxic-ischaemic encephalopathy: Motor impairment beyond cerebral palsy. Eur. J. Paediatr. Neurol. 35, 74–81 (2021).

    Article  PubMed  Google Scholar 

  74. Cainelli, E. et al. Evoked potentials predict psychomotor development in neonates with normal MRI after hypothermia for hypoxic-ischemic encephalopathy. Clin. Neurophysiol. 129, 1300–1306 (2018).

    Article  PubMed  Google Scholar 

  75. Jary, S. et al. Motor performance and cognitive correlates in children cooled for neonatal encephalopathy without cerebral palsy at school age. Acta Paediatrica 108, 1773–1780 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Lust, J. M. et al. The subtypes of developmental coordination disorder. Dev. Med Child Neurol. 64, 1366–1374 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Eriksson Westblad, M. et al. Long-term motor development after hypothermia-treated hypoxic-ischaemic encephalopathy. Eur. J. Paediatr. Neurol. 47, 110–117 (2023).

    Article  PubMed  Google Scholar 

  78. Arpi, E. & Ferrari, F. Preterm birth and behaviour problems in infants and preschool-age children: a review of the recent literature. Developmental Med. Child Neurol. 55, 788–796 (2013).

    Article  Google Scholar 

  79. Álvarez-García, M. et al. Mood disorders in children following neonatal hypoxic-ischemic encephalopathy. PLOS ONE 17, e0263055 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mitchell, A. J. et al. Prevalence and predictors of post-stroke mood disorders: A meta-analysis and meta-regression of depression, anxiety and adjustment disorder. Gen. Hospital Psychiatry 47, 48–60 (2017).

    Article  Google Scholar 

  81. Danguecan, A. et al. Towards a biopsychosocial understanding of neurodevelopmental outcomes in children with hypoxic-ischemic encephalopathy: A mixed-methods study. Clin. Neuropsychologist 35, 925–947 (2021).

    Article  Google Scholar 

  82. Zareen, Z. et al. An observational study of sleep in childhood post-neonatal encephalopathy. Acta Paediatrica 110, 2352–2356 (2021).

    Article  PubMed  Google Scholar 

  83. Cainelli, E. et al. Social skills and psychopathology are associated with autonomic function in children: a cross-sectional observational study. Neural Regen. Res 17, 920–928 (2022).

    Article  PubMed  Google Scholar 

  84. Cainelli, E. et al. Long-Term Outcomes after Neonatal Hypoxic-Ischemic Encephalopathy in the Era of Therapeutic Hypothermia: A Longitudinal, Prospective, Multicenter Case-Control Study in Children without Overt Brain Damage. Children 8, 1076 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Campbell, H. et al. Hypothermia for perinatal asphyxia: trial-based quality of life at 6–7 years. Arch. Dis. Child. 103, 654–659 (2018).

    Article  PubMed  Google Scholar 

  86. Love, C. et al. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med. 22, 393 (2024).

  87. Botelho, R. M., Silva, A. L. M. & Borbely, A. U. The Autism Spectrum Disorder and Its Possible Origins in Pregnancy. Int. J. Environ. Res. Public Health 21, 244 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gardener, H., Spiegelman, D. & Buka, S. L. Perinatal and Neonatal Risk Factors for Autism: A Comprehensive Meta-analysis. Pediatrics 128, 344–355 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Edmonds, C. J. et al. Minor neurological signs and behavioural function at age 2 years in neonatal hypoxic ischaemic encephalopathy (HIE). Eur. J. Paediatr. Neurol. 27, 78–85 (2020).

    Article  PubMed  Google Scholar 

  90. Kromm, G. H. et al. Socioemotional and Psychological Outcomes of Hypoxic-Ischemic Encephalopathy: A Systematic Review. Pediatrics. 153, e2023063399 (2024).

  91. Chin, E. M. et al. Preschool Language Outcomes following Perinatal Hypoxic-Ischemic Encephalopathy in the Age of Therapeutic Hypothermia. Dev Neurosci. Jun 5, 1–11 (2019).

  92. Robb, T. J. et al. Communication skills in children aged 6–8 years, without cerebral palsy cooled for neonatal hypoxic-ischemic encephalopathy. Sci. Rep. 12, 17757 (2022).

  93. Shapiro, K. A. et al. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy. Neuroimage Clin. 15, 572–580 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zheng, Q. et al. Cerebral Pulsed Arterial Spin Labeling Perfusion Weighted Imaging Predicts Language and Motor Outcomes in Neonatal Hypoxic-Ischemic Encephalopathy. Front. Pediatr. 8, 576489 (2020).

  95. Lemmon, M. E. et al. Parent Experience of Neonatal Encephalopathy. J. Child Neurol. 32, 286–292 (2017).

    Article  PubMed  Google Scholar 

  96. Craig, A. K. et al. Communicating with Parents About Therapeutic Hypothermia and Hypoxic Ischemic Encephalopathy. Integrating a Palliat. Care Approach into Pract. Clin. Perinatol. 51, 711–724 (2024).

    Google Scholar 

  97. Cascio, A. et al. Discussing brain magnetic resonance imaging results for neonates with hypoxic-ischemic encephalopathy treated with hypothermia: A challenge for clinicians and parents. eNeurologicalSci 29, 100424 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Natarajan, N. & Pardo, A. C. Challenges in neurologic prognostication after neonatal brain injury. Semin Perinatol. 41, 117–123 (2017).

    Article  PubMed  Google Scholar 

  99. Mohammad, K. et al. Variations in care of neonates during therapeutic hypothermia: call for care practice bundle implementation. Pediatr. Res. 94, 321–330 (2023).

    Article  PubMed  Google Scholar 

  100. González, L. et al. The role of parental social class, education and unemployment on child cognitive development. Gac. Sanit. 34, 51–60 (2020).

    Article  PubMed  Google Scholar 

  101. Benavente-Fernández, I. et al. Association of socioeconomic status and brain injury with neurodevelopmental outcomes of very preterm children. JAMA Netw. open 2, e192914–e192914 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Varga, Z. et al. Higher parental education was associated with good cognitive outcomes in infants with hypoxic-ischaemic encephalopathy. Acta Paediatrica 113, 417–425 (2024).

    Article  CAS  PubMed  Google Scholar 

  103. Craig, A. K. et al. Parental perceptions of neonatal therapeutic hypothermia; emotional and healing experiences. J. Matern Fetal Neonatal Med. 33, 2889–2896 (2020).

    Article  PubMed  Google Scholar 

  104. Hall, S. L., Phillips, R. & Hynan, M. T. Transforming NICU care to provide comprehensive family support. Newborn Infant Nurs. Rev. 16, 69–73 (2016).

    Article  Google Scholar 

  105. Sagaser, A. et al. Parent Experience of Hypoxic-Ischemic Encephalopathy and Hypothermia: A Call for Trauma Informed Care. Am. J. Perinatol. 41, 586–593 (2024).

    Article  PubMed  Google Scholar 

  106. Field, N. K. et al. Life After Neonatal Seizures: Characterizing the Longitudinal Parent Experience. Pediatr. Neurol. 161, 76–83 (2024).

    Article  PubMed  Google Scholar 

  107. El-Dib, M. et al. Should therapeutic hypothermia be offered to babies with mild neonatal encephalopathy in the first 6 h after birth?. Pediatr. Res. 85, 442–448 (2019).

    Article  PubMed  Google Scholar 

  108. Robertson, C. & Finer, N. Term infants with hypoxic-ischemic encephalopathy: outcome at 3.5 years. Developmental Med. Child Neurol. 27, 473–484 (1985).

    Article  CAS  Google Scholar 

  109. Li, Y. et al. Mild hypoxic-ischemic encephalopathy (HIE): timing and pattern of MRI brain injury. Pediatr. Res. 92, 1731–1736 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chalak, L. F. et al. Prospective research in infants with mild encephalopathy identified in the first six hours of life: neurodevelopmental outcomes at 18–22 months. Pediatr. Res. 84, 861–868 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Murray, D. M. et al. Early EEG grade and outcome at 5 years after mild neonatal hypoxic ischemic encephalopathy. Pediatrics 138, e20160659 (2016).

  112. Törn, A. E. et al. Outcomes in children after mild neonatal hypoxic ischaemic encephalopathy: A population-based cohort study. BJOG: Int. J. Obstet. Gynaecol. 130, 1602–1609 (2023).

    Article  Google Scholar 

  113. Chalak, L. F. et al. Mild HIE and therapeutic hypothermia: gaps in knowledge with under-powered trials. Pediatr. Res. 97, 1792–1794 (2025).

  114. Hamrick, S. E. G. et al. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: The role of cystic periventricular leukomalacia. J. Pediatrics 145, 593–599 (2004).

    Article  Google Scholar 

  115. McGowan, E. C. & Vohr, B. R. Neurodevelopmental Follow-up of Preterm Infants: What Is New?. Pediatr. Clin. North Am. 66, 509–523 (2019).

    Article  PubMed  Google Scholar 

  116. Cheong, J. L. Y. et al. Temporal Trends in Neurodevelopmental Outcomes to 2 Years After Extremely Preterm Birth. JAMA Pediatr. 175, 1035–1042 (2021).

    Article  PubMed  Google Scholar 

  117. Bell, E. F. et al. Mortality, In-Hospital Morbidity, Care Practices, and 2-Year Outcomes for Extremely Preterm Infants in the US, 2013-2018. Jama 327, 248–263 (2022).

    Article  PubMed  Google Scholar 

  118. Johnson, S. & Marlow, N. Preterm birth and childhood psychiatric disorders. Pediatr. Res. 69, 11–18 (2011).

    Article  Google Scholar 

  119. Mathewson, K. J. et al. Mental health of extremely low birth weight survivors: A systematic review and meta-analysis. Psychological Bull. 143, 347 (2017).

    Article  Google Scholar 

  120. Panceri, C. et al. Developmental coordination disorder in preterm children: A systematic review and meta-analysis. Eur. J. Neurosci. 60, 4128–4147 (2024).

  121. Ene, D. et al. Associations of socioeconomic deprivation and preterm birth with speech, language, and communication concerns among children aged 27 to 30 months. JAMA Netw. open 2, e1911027–e1911027 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Mulkey receives support for research from the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health (grant number R01HD102445 [to SBM]). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah B. Mulkey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christoffel, K., Mulkey, S.B. Shifting outlooks after neonatal encephalopathy in the era of therapeutic hypothermia. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04156-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04156-0

Search

Quick links