Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Population Study Article
  • Published:

Vitamin D status during pregnancy and child neurocognitive functioning at 4 Years

Abstract

Background

Hypovitaminosis D is prevalent during pregnancy and may affect fetal brain development, leading to neurocognitive issues. This study investigated the association between vitamin D levels during pregnancy and children’s neurocognitive functioning in 289 mother-child pairs, controlling for confounding variables.

Methods

Prenatal serum 25-hydroxyvitamin D (25(OH)D) concentrations were measured in the first and third trimesters, and offspring underwent a neurocognitive assessment at age 4 using the Wechsler Preschool and Primary Scale of Intelligence—Fourth Edition (WPPSI-IV), subtests of the Developmental Neuropsychological Assessment-II (NEPSY-II), and the Behavior Rating Inventory of Executive Function—Preschool Version (BRIEF-P) completed by parents. Socio-demographic data, obstetric information, lifestyle habits, maternal emotional health, and parental intellectual performance were collected.

Results

The adjusted regression models have shown that insufficient 25(OH)D levels throughout pregnancy were associated with poorer Visual-Motor Precision of the NEPSY-II. In the third trimester, inadequate 25(OH)D levels were associated with poorer executive functioning, as indicated by neuropsychological and behavioural assessments. Specifically, lower scores were observed in Working Memory on the WPPSI-IV, as well as in the metacognitive index and Inhibition on the BRIEF-P.

Conclusion

Maintaining adequate prenatal 25(OH)D levels may promote optimal neurocognitive functioning in early childhood.

Impact

  • Inadequate maternal 25(OH)D concentrations throughout pregnancy are associated with lower Visual-Motor Precision in children, and third-trimester deficiency is linked to poorer executive functioning.

  • This study highlights the importance of maintaining adequate vitamin D levels throughout pregnancy.

  • Findings support the implementation of public health strategies to ensure proper vitamin D intake and the monitoring of maternal serum 25(OH)D levels during pregnancy to promote adequate infant neurodevelopment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

The datasets analysed during the current study are not publicly available due to ethical and legal restrictions, but are available from the corresponding author on reasonable request.

References

  1. Cashman, K. D. Vitamin D deficiency: defining, prevalence, causes, and strategies of addressing. Calcif. Tissue Int. 106, 14–29 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Meija, L. et al. Vitamin D intake and serum levels in pregnant and postpartum women. Nutrients 15, 3493 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Llopis, M. et al. Sociodemographic, lifestyle, and environmental determinants of vitamin D levels in pregnant women in Spain. Environ. Int. 182, 108293 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Saraf, R., Morton, S. M., Camargo, C. A. Jr & Grant, C. C. Global summary of maternal and newborn vitamin D status—a systematic review. Matern. Child Nutr. 12, 647–668. https://doi.org/10.1111/mcn.12210 (2016).

    Article  PubMed  Google Scholar 

  5. Institute of Medicine (US) Committee. Overview of vitamin D. In: Ross, A. C., Taylor, C. L., Yaktine, A. L. & Del Valle, H. B. (eds.) Dietary reference intakes for calcium and vitamin D. Washington, DC: National Academies Press (2011). https://doi.org/10.17226/13050

  6. Chen, B., Chen, Y., Xu, Y. & Cicero, A. Vitamin D deficiency in pregnant women: influenced by multiple risk factors and increases the risks of spontaneous abortion and small-for-gestational age. Medicine 100, e27505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chien, M. C., Huang, C. Y., Wang, J. H., Shih, C. L. & Wu, P. Effects of vitamin D in pregnancy on maternal and offspring health-related outcomes. Umbrella Rev. Syst. Rev. Meta Analyses. Nutr. 14, 35 (2024).

  8. Mansur, J. L., Oliveri, B., Giacoia, E., Fusaro, D. & Costanzo, P. R. Vitamin D: before, during and after pregnancy: effect on neonates and children. Nutrients 14, 1900 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Urrutia-Pereira, M. & Solé, D. V. itaminD. deficiency in pregnancy and its impact on the fetus, the newborn and in childhood. Rev. Paul. Pediatr. 33, 104 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Lisi, G., Ribolsi, M., Siracusano, A. & Niolu, C. Maternal vitamin D and its role in determining fetal origins of mental health. Curr. Pharm. Des. 26, 2497–2509 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Larqué, E., Morales, E., Leis, R. & Blanco-Carnero, J. E. Maternal and foetal health implications of vitamin D status during pregnancy. Ann. Nutr. Metab. 72, 179–192 (2018).

    Article  PubMed  Google Scholar 

  12. Janbek, J., Specht, I. O. & Heitmann, B. L. Associations between vitamin D status in pregnancy and offspring neurodevelopment: a systematic literature review. Nutr. Rev. 77, 330–349 (2019).

    Article  PubMed  Google Scholar 

  13. Morales, E. et al. Circulating 25-hydroxyvitamin D₃ in pregnancy and infant neuropsychological development. Pediatrics 130, e913–e920 (2012).

    Article  PubMed  Google Scholar 

  14. Voltas, N. Effect of vitamin D status during pregnancy on infant neurodevelopment: the ECLIPSES study. Nutrients 12, 3196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Y. et al. Maternal and neonatal blood vitamin D status and neurodevelopment at 24 months of age: a prospective birth cohort study. World J. Pediatr. 19, 883–893 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Cantio, E. et al. Vitamin D status in pregnancy and childhood associates with intelligence quotient at age 7 years: an Odense child cohort study. Aust. N. Z. J. Psychiatry 57, 1062–1072 (2023).

    Article  PubMed  Google Scholar 

  17. Melough, M. et al. Maternal plasma 25-hydroxyvitamin D during gestation is positively associated with neurocognitive development in offspring at age 4–6 years. J. Nutr. 151, 132–139 (2021).

    Article  PubMed  Google Scholar 

  18. Shekhawat, D. S. et al. Prenatal vitamin D levels and infant cognitive, motor, language and social-emotional development at 6 and 9 months of age. Nutr. Neurosci. 28, 263–272 (2025).

    Article  CAS  PubMed  Google Scholar 

  19. Brouwer-Brolsma, E. M., Vrijkotte, T. G. M. & Feskens, E. J. M. Maternal vitamin D concentrations are associated with faster childhood reaction time and response speed, but not with motor fluency and flexibility, at the age of 5–6 years: the Amsterdam Born Children and their Development (ABCD) Study. Br. J. Nutr. 120, 345–352 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Darling, A. L. et al. Association between maternal vitamin D status in pregnancy and neurodevelopmental outcomes in childhood: results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Br. J. Nutr. 117, 1682–1692 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gould, J. F. et al. Association of cord blood vitamin D with child neurodevelopment at 7 years of age. J. Paediatr. Child Health 60, 312–322 (2024).

    Article  PubMed  Google Scholar 

  22. Laird, E. et al. Maternal vitamin D status and the relationship with neonatal anthropometric and childhood neurodevelopmental outcomes: results from the Seychelles Child Development Nutrition Study. Nutrients 9, 1235 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Veena, S. R. et al. Association between maternal vitamin D status during pregnancy and offspring cognitive function during childhood and adolescence. Asia Pac. J. Clin. Nutr. 26, 438 (2017).

    CAS  PubMed  Google Scholar 

  24. Arija, V. et al. Adapting iron dose supplementation in pregnancy for greater effectiveness on mother and child health: protocol of the ECLIPSES randomized clinical trial. BMC Pregnancy Childbirth 14, 1–10 (2014).

    Article  Google Scholar 

  25. Hollingshead, A. B. Four-factor index of social status. Yale J. Sociol. 8, 21–52 (2011).

    Google Scholar 

  26. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C. & Fagerström, K. O. The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. Br. J. Addict. 86, 1119–1127 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Trinidad Rodríguez, I., Fernández Ballart, J., Cucó, G., Biarnés Jordà, E. & Arija Val, V. Validación de un cuestionario de frecuencia de consumo alimentario corto: reproducibilidad y validez. Nutr. Hosp. 23, 242–252 (2008).

    PubMed  Google Scholar 

  28. Trichopoulou, A., Costacou, T., Bamia, C. & Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 348, 2599–2608 (2003).

    Article  PubMed  Google Scholar 

  29. Buela-Casal, G., Guillen-Riquelme, A. & Seisdedos Cubero, N. Cuestionario de ansiedad estado-rasgo: Adaptación española. (TEA Ediciones, 2011).

  30. Spielberger, C. D., Gorsuch, R. L. & Lushene, R. E. Cuestionario de ansiedad estado-rasgo. (TEA Ediciones, 1988).

  31. Goldberg, D. P. et al. The validity of two versions of the GHQ in the WHO study of mental illness in general health care. Psychol. Med. 27, 191–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Wechsler, D. WAIS-IV: Escala de Inteligencia de Wechsler para Adultos—Cuarta edición. Manual técnico y de interpretación. (NCS Pearson, Inc., 2012). [Original work published 2008].

  33. Esteban-Figuerola, P., Jardí, C., Canals, J. & Arija, V. Validation of a short food frequency questionnaire in small children. Nutr. Hosp. 37, 101–113 (2020).

    PubMed  Google Scholar 

  34. Norte Navarro, A. I. & Ortiz Moncada, R. Calidad de la dieta española según el índice de alimentación saludable. Nutr. Hosp. 26, 330–336 (2011).

    CAS  PubMed  Google Scholar 

  35. Sociedad Española de Nutrición Comunitaria. Guía de la alimentación saludable. Madrid (2004).

  36. Wechsler, D. WPPSI-IV: Escala de Inteligencia de Wechsler para la Edad Preescolar y Primaria—Cuarta edición. Manual técnico y de interpretación. (NCS Pearson, Inc., 2014). [Original work published 2012].

  37. Korkman, M., Kirk, U. & Kemp, S. NEPSY: A Developmental Neuropsychological Assessment (2nd ed.). (The Psychological Corporation, 2007).

  38. Korkman, M., Kirk, U. & Kemp, S. NEPSY-II. (NCS Pearson, 2014).

  39. Gioia, G. A., Espy, K. A. & Isquith, P. K. BRIEF-P. Evaluación Conductual de la Función Ejecutiva—Versión Infantil (Bausela, E. & Luque, T., eds). (TEA Ediciones, 2016). Disponible en: https://web.teaediciones.com.

  40. Rubin, D. B. Multiple Imputation for Nonresponse in Surveys. (Wiley, 1987).

  41. Gunton, J. E., Girgis, C. M., Baldock, P. A. & Lips, P. Bone muscle interactions and vitamin D. Bone 80, 89–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Kolk, S. M. & Rakic, P. Development of prefrontal cortex. Neuropsychopharmacology 47, 41–57 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Eyles, D. W., Smith, S., Kinobe, R., Hewison, M. & McGrath, J. J. Distribution of the vitamin D receptor and 1α-hydroxylase in human brain. J. Chem. Neuroanat. 29, 21–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Annweiler, C. et al. Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J. Alzheimers Dis. 37, 147–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Redlich, D., Schommer, L., Krüger, K. & Raab, M. The association between vitamin D and executive functions in healthy young- and middle-aged adults: a scoping review. J. Cogn. Enhanc. 8, 1–11 (2024).

    Google Scholar 

  46. Turner, K. M., Young, J. W., McGrath, J. J., Eyles, D. W. & Burne, T. H. J. Cognitive performance and response inhibition in developmentally vitamin D (DVD)-deficient rats. Behav. Brain Res. 242, 47–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Hawes, J. E. et al. Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav. Brain Res. 286, 192–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Chu, S. H. et al. Circulating levels of maternal vitamin D and risk of ADHD in offspring: results from the Vitamin D Antenatal Asthma Reduction Trial. Int. J. Epidemiol. 51, 910–918 (2022).

    Article  PubMed  Google Scholar 

  49. Tirani, S. A., Balali, A., Askari, G. & Saneei, P. Maternal serum 25-hydroxy vitamin D levels and risk of autism spectrum and attention-deficit hyperactivity disorders in offspring: a systematic review and dose–response meta-analysis. Psychiatry Res. 319, 114977. https://doi.org/10.1016/j.psychres.2022.114977 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Shah, V. P. et al. A systematic review supporting the Endocrine Society clinical practice guidelines on vitamin D. J. Clin. Endocrinol. Metab. 109, 1961–1974 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the entities and participants involved in the ECLIPSES study, the personnel of the Research Group in Nutrition and Mental Health (NUTRISAM), the Sexual and Reproductive Health Care Services (ASSIR) of Tarragona (Spain), the Institut d’Atenció Primària IDIAP Jordi Gol, and the Institut Català de la Salut, Barcelona (Spain). This work was financially supported by the Instituto de Salud Carlos III, Fondo de Investigación Sanitaria, Ministerio de Sanidad y Consumo [grant numbers PI12/02777 and PI17/01574] and co-funded by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the conception and design of the study, acquisition of data, analysis and interpretation of data, drafting the article, and revising it critically for important intellectual content. All authors approved the final version to be published.

Corresponding author

Correspondence to Victoria Arija.

Ethics declarations

Competing interests

The authors declare no competing interests.

Informed consent

Written informed consent was obtained from all participants included in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voltas, N., Cendra-Duarte, E., Canals, J. et al. Vitamin D status during pregnancy and child neurocognitive functioning at 4 Years. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04258-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04258-9

This article is cited by

Search

Quick links