Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Key genes and histopathological alterations in hepatic fibrogenesis after segmental cholestasis in weaned rats

Abstract

Background

The selective bile duct ligation (sBDL) model has been proposed to study fibrosis progression in segmental cholestasis, replicating histopathological features of biliary obstruction in both liver parenchyma with biliary obstruction (BO) and without biliary obstruction (WBO). However, the molecular mechanisms driving fibrogenesis in WBO parenchyma remain unclear. This study aimed to characterize gene expression and histological alterations in fibrogenesis using the sBDL model.

Methods

Liver samples were collected at 1, 4, and 8 weeks post-surgery from both BO and WBO parenchyma, undergoing histological, immunohistochemical, biochemical, and molecular analyses.

Results

Differentially expressed genes (DEGs) were associated to inflammatory response, extracellular matrix production, angiogenesis, and negative regulation of peptidase activity. Histologically, ductular proliferation, inflammatory infiltration, and collagen deposition were observed in both BO and WBO parenchyma, with more pronounced inflammation and hepatocellular degeneration in BO. BO parenchyma showed more pathways related to disease progression. In contrast, pathways related to cellular senescence and the PI3K-Akt signaling, suggesting suppression of apoptosis and cell proliferation.

Conclusion

The sBDL model mirrors key aspects of human biliary fibrosis, offering novel molecular insights into fibrogenesis in segmental cholestasis and serving as a valuable tool for developing diagnostic and therapeutic strategies.

Impact

  • This study demonstrates that hepatic fibrogenesis extends beyond regions directly affected by biliary obstruction, involving non-obstructed liver parenchyma. Using the selective bile duct ligation (sBDL) model, we identified key molecular pathways associated with fibrogenesis in segmental cholestasis. Our findings provides new insights into the mechanisms of cholestatic fibrosis and highlighting the sBDL model as a valuable preclinical tool. These results may inform the development of novel therapeutic strategies for treating biliary fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Post-surgical clinical evaluation.
Fig. 2: Representative photomicrographs of histological and immunohistochemical analyses in sham, BO, and WBO groups.
Fig. 3: Graphical representation of the analyses of histological and biochemical assessments of liver injury and fibrosis.
Fig. 4: Representative photomicrographs of Ki-67 immunohistochemistry for cell proliferation quantification (brown) and cleaved caspase-3 immunohistochemistry for apoptosis analysis (brown).
Fig. 5: Gene Expression Analysis.
Fig. 6: Validation of RT-PCR array experiments by quantitative real-time PCR (qRT-PCR) for selected genes.
Fig. 7: Pearson correlation analysis of genes, GO BP terms, and KEGG pathways with phenotypic changes observed in histopathological features.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. The datasets used during the current study are available from the corresponding author on reasonable request.

References

  1. Haafiz, A. B. Liver fibrosis in biliary atresia. Expert Rev. Gastroenterol. Hepatol. 4, 335–343 (2010).

    Article  PubMed  Google Scholar 

  2. Yeo, D., Perini, M. V., Muralidharan, V. & Christophi, C. Focal intrahepatic strictures: a review of diagnosis and management. HPB 14, 425–434 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kumagi, T. & Heathcote, E. J. Primary biliary cirrhosis. Orphanet J. Rare Dis. 3, 1 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lazaridis, K. N. & LaRusso, N. F. The Cholangiopathies. Mayo Clin. Proc. 90, 791–800 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Kriegermeier, A. & Green, R. Pediatric cholestatic liver disease: Review of bile acid metabolism and discussion of current and emerging therapies. Front. Med. 7, 149 (2020).

  6. Tam, P. K. H., Yiu, R. S., Lendahl, U. & Andersson, E. R. Cholangiopathies—towards a molecular understanding. EBioMedicine 35, 381–393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qian, Y., Ben, Liu, C. L., Lo, C. M. & Fan, S. T. Risk factors for biliary complications after liver transplantation. Arch. Surg. 139, 1101 (2004).

    Article  PubMed  Google Scholar 

  8. Boeva, I., Karagyozov, P. I. & Tishkov, I. Post-liver transplant biliary complications: current knowledge and therapeutic advances. World J. Hepatol. 13, 66–79 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shneider, B. L. et al. Total serum bilirubin within 3 months of hepatoportoenterostomy predicts short-term outcomes in biliary atresia. J. Pediatr. 170, 211–217.e2 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Andrade, W. et al. Current management of biliary atresia based on 35 years of experience at a single center. Clinics 73, e289 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gibelli, N. E. M., Tannuri, U., De Mello, E. S. & Rodrigues, C. J. Bile duct ligation in neonatal rats: is it a valid experimental model for biliary atresia studies?. Pediatr. Transplant. 13, 81–87 (2009).

    Article  PubMed  Google Scholar 

  12. de Castro Andrade, W. et al. Effects of the administration of pentoxifylline and prednisolone on the evolution of portal fibrogenesis secondary to biliary obstruction in growing animals: immunohistochemical analysis of the expression of TGF- β and VEGF. Clinics 67, 1455–1461 (2012).

    Article  PubMed Central  Google Scholar 

  13. Tannuri, A. C. A. et al. Effects of selective bile duct ligation on liver parenchyma in young animals: histologic and molecular evaluations. J. Pediatr. Surg. 47, 513–522 (2012).

    Article  PubMed  Google Scholar 

  14. Bergman, I. & Loxley, R. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal. Chem. 35, 1961–1965 (1963).

    Article  CAS  Google Scholar 

  15. Namimatsu, S. Reversing the effects of formalin fixation with citraconic anhydride and heat: a universal antigen retrieval method. J. Histochem. Cytochem. 53, 3–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Alelú-Paz, R. et al. A new antigen retrieval technique for human brain tissue. PLoS ONE 3, e3378 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leong, A. S.-Y. & Haffajee, Z. Citraconic anhydride: a new antigen retrieval solution. Pathology 42, 77–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prado, I. B., dos Santos, M. H. H., Lopasso, F. P., Iriya, K. & Laudanna, A. A. Cholestasis in a murine experimental model: lesions include hepatocyte ischemic necrosis. Rev. Hosp. Clin. Fac. Med. Sao Paulo 58, 27–32 (2003).

    Article  PubMed  Google Scholar 

  20. Bebiashvili, I. S. et al. Features of ductular reaction in rats with extrahepatic cholestasis. Bull. Exp. Biol. Med. 172, 770–774 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Ljubuncic, P. Evidence of a systemic phenomenon for oxidative stress in cholestatic liver disease. Gut 47, 710–716 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allen, K., Jaeschke, H. & Copple, B. L. Bile acids induce inflammatory genes in hepatocytes. Am. J. Pathol. 178, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hackett, E. S., Twedt, D. C., Gustafson, D. L. & Schultheiss, P. C. Hepatic disease of horses in the Western United States. J. Equine Vet. Sci. 45, 32–38 (2016).

    Article  Google Scholar 

  24. Manco, R. et al. Reactive cholangiocytes differentiate into proliferative hepatocytes with efficient DNA repair in mice with chronic liver injury. J. Hepatol. 70, 1180–1191 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Yoo, K.-S., Lim, W. T. & Choi, H. S. Biology of cholangiocytes: from bench to bedside. Gut Liver 10, 687–698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai, X., Tacke, F., Guillot, A. & Liu, H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front. Immunol. 14, 1192840 (2023).

  27. Maroni, L. et al. Functional and structural features of cholangiocytes in health and disease. Cell. Mol. Gastroenterol. Hepatol. 1, 368–380 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gonçalves, J. O., Tannuri, A. C. A., Coelho, M. C. M., Bendit, I. & Tannuri, U. Dynamic expression of desmin, α-SMA and TGF-β1 during hepatic fibrogenesis induced by selective bile duct ligation in young rats. Braz. J. Med. Biol. Res. 47, 850–857 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Heinrich, S. et al. Partial bile duct ligation in mice: a novel model of acute cholestasis. Surgery 149, 445–451 (2011).

    Article  PubMed  Google Scholar 

  30. Chen, T. et al. Impact of partial bile duct ligation with or without repeated magnetic resonance imaging examinations in mice. Sci. Rep. 12, 21014 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, J. et al. Characterizing fibrosis and inflammation in a partial bile duct ligation mouse model by multiparametric magnetic resonance imaging. J. Magn. Reson. Imaging 55, 1864–1874 (2022).

    Article  PubMed  Google Scholar 

  32. Santos-Laso, A. et al. New advances in the molecular mechanisms driving biliary fibrosis and emerging molecular targets. Curr. Drug Targets 18, 908–920 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Pinto, C., Giordano, D. M., Maroni, L. & Marzioni, M. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1270–1278 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Banales, J. M. et al. Cholangiocyte pathobiology. Nat. Rev. Gastroenterol. Hepatol. 16, 269–281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gigliozzi, A. et al. Nerve growth factor modulates the proliferative capacity of the intrahepatic biliary epithelium in experimental cholestasis. Gastroenterology 127, 1198–1209 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Glaser, S. S., Gaudio, E., Miller, T., Alvaro, D. & Alpini, G. Cholangiocyte proliferation and liver fibrosis. Expert Rev. Mol. Med. 11, e7 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mariotti, V., Fiorotto, R., Cadamuro, M., Fabris, L. & Strazzabosco, M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep. 3, 100251 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Clark, C. E. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 67, 9518–9527 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Cifone, M. G., Ulisse, S. & Santoni, A. Natural killer cells and nitric oxide. Int. Immunopharmacol. 1, 1513–1524 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: Development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).

  41. Ommati, M. M. et al. Mitigation of cholestasis-associated hepatic and renal injury by edaravone treatment: evaluation of its effects on oxidative stress and mitochondrial function. Liver Res. 5, 181–193 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Copple, B., Jaeschke, H. & Klaassen, C. Oxidative stress and the pathogenesis of cholestasis. Semin. Liver Dis. 30, 195–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Ni, Y. et al. Potential role of bile duct collaterals in the recovery of the biliary obstruction: experimental study in rats using microcholangiography, histology, serology and magnetic resonance imaging. Hepatology 20, 1557–1566 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Richter, B. et al. Selective biliary occlusion in rodents: description of a new technique. Innov. Surg. Sci. 7, 13–22 (2022).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by São Paulo Research Foundation—FAPESP, (Project Number: 2015/00977-0).

Author information

Authors and Affiliations

Authors

Contributions

J.O. Gonçalves and A.C.A. Tannuri designed the study. J.O. Gonçalves, C.A.M. Mafra, W.R. Teodoro, Cogliati B, and Serafini S conducted the experiments and collected the data; B Cogliati performed the histopathological evaluation; J.O. Gonçalves, I. de Castro, S.Y. Bando, and C.A. Moreira-Filho analyzed and interpreted the data; J.O. Gonçalves, C.A.M. Mafra, and A.C.A. Tannuri wrote the manuscript; all authors approved the final draft of the manuscript; the acquisition of funding was completed by U. Tannuri and A.C.A. Tannuri.

Corresponding author

Correspondence to Josiane O. Gonçalves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, J.O., Mafra, C.A.M., Castro, I.d. et al. Key genes and histopathological alterations in hepatic fibrogenesis after segmental cholestasis in weaned rats. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04272-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04272-x

Search

Quick links