Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Role of functional echocardiography in neonatal shock: a systematic review and meta-analysis

Abstract

Background

Point of care functional echocardiography is an emerging tool in neonatology to assess hemodynamic dysfunction and its timely management.

Methods

Following PRISMA guidelines, we searched PubMed, EMBASE, CINAHL, Medline, and Web of Sciences databases till December 2024. We selected 2680 text articles of which 21 studies qualified for full-text review and finally, eight studies were included in the systematic review.

Results

Meta-analysis using REM (Random effects model) showed no significant difference in the primary outcome of Inferior Vena Cava Collapsibility Index (IVC-CI) between shock versus controls [SMD = −0.99 (95% CI: −2.89, 0.91), P = 0.31, I2 = 96%. Meta-analysis showed significantly lower values of Shortening Fraction(SF) [SMD = −0.84 (95% CI: −1.61, −0.07), P = 0.031, I2 = 92%, REM], Left Ventricle Velocity Time Integral(LVVTI) [SMD = 0.22 (95% CI: 0.01, 0.42), P = 0.04, I2 = 27%, FEM], Right Ventricle Velocity Time Integral(RVVTI) [SMD = −0.55 (95% CI: −0.77, −0.33), P < 0.00001, I2 = 0%, FEM], and Ejection fraction(EF) [SMD = −1.82 (95% CI: −3.09, –0.55), P = 0.005, I2 = 89%]. The difference between the remaining outcomes was not statistically significant between the two groups.

Conclusions

This review reinforces the clinical utility of echocardiographic parameters in diagnosing and monitoring neonatal shock and underscores the need for conducting multicentre, prospective studies to validate dynamic changes in echocardiographic parameters before and after treatment of shock.

Impact

  • Our study highlights role of functional echocardiography as an adjunct to clinical and biochemical markers of shock in neonates providing more comprehensive understanding of cardiac function.

  • No significant difference in the Inferior Vena Cava Collapsibility Index values was seen in neonates with shock. However, Shortening Fraction, Left Ventricle Velocity Time Integral, Right Ventricle Velocity Time Integral, and Ejection Fraction were significantly decreased in this group.

  • Impact of this study lies in its potential to increase researchers’ awareness of need to conduct multicentre, prospective studies to validate dynamic changes in echocardiographic parameters before and after treatment of shock.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flow diagram of study selection
Fig. 2: Meta-analysis of data for IVC collapsibility index in neonates with shock versus controls (FEM and REM).
Fig. 3: Meta-analysis of data for secondary outcomes in neonates with shock versus controls.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Kleinman, C. S. & Seri, I. Hemodynamics and cardiology: neonatology questions and controversies E-book (Elsevier Health Sciences, 2012).

  2. Gupta, S. & Donn, S. M. Assessment of neonatal perfusion. Semin. Fetal Neonatal Med. 25, 101144 (2020).

    Article  PubMed  Google Scholar 

  3. Osborn, D., Evans, N. & Kluckow, M. Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch. Dis. Child. Fetal Neonatal Ed. 89, F168–F173 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Boode, W. P. Individualized hemodynamic management in newborns. Front. Pediatr. 8, 580470 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gupta, S. & Donn, S. M. In Seminars in fetal and neonatal medicine, 101144 (Elsevier, 2020).

  6. de Boode, W. P. et al. The role of neonatologist performed echocardiography in the assessment and management of neonatal shock. Pediatr. Res 84, 57–67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Singh, Y. et al. Expert consensus statement ‘Neonatologist-Performed Echocardiography (Nope)’-training and accreditation in Uk. Eur. J. Pediatr. 175, 281–287 (2016).

    Article  PubMed  Google Scholar 

  8. McNamara, P. J. & Sehgal, A. Towards rational management of the patent ductus arteriosus: the need for disease staging. Arch. Dis. Child. Fetal Neonatal Ed. 92, F424–F427 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sehgal, A. & McNamara, P. J. In Seminars in fetal and neonatal medicine, 278–284 (Elsevier, 2018).

  10. Vrancken, S. L., Van Heijst, A. F. & De Boode, W. P. Neonatal hemodynamics: from developmental physiology to comprehensive monitoring. Front. Pediatr. 6, 87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Boode, W. P. Advanced hemodynamic monitoring in the neonatal intensive care unit. Clin. Perinatol. 47, 423–434 (2020).

    Article  PubMed  Google Scholar 

  12. McNamara, P. J. et al. Guidelines and recommendations for targeted neonatal echocardiography and cardiac point-of-care ultrasound in the neonatal intensive care unit: an update from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 37, 171–215 (2024).

    Article  PubMed  Google Scholar 

  13. de Boode, W. P. et al. Recommendations for neonatologist performed echocardiography in Europe: consensus statement endorsed by European Society for Paediatric Research (Espr) and European Society for Neonatology (Esn). Pediatr. Res 80, 465–471 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mertens, L. et al. Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training: writing group of the American Society of Echocardiography (ASE) in collaboration with the European Association of Echocardiography (EAE) and the Association for European Pediatric Cardiologists (AEPC). Eur. J. Echocardiogr. 12, 715–736 (2011).

    Article  PubMed  Google Scholar 

  15. Tissot, C. & Singh, Y. Neonatal functional echocardiography. Curr. Opin. Pediatr. 32, 235–244 (2020).

    Article  PubMed  Google Scholar 

  16. Page, M. J. et al. The Prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brooke, B., Schwartz, T. & Pawlik, T. Moose reporting guidelines for meta-analyses of observational studies. JAMA Surg. 156, 787–788 (2021).

    Article  PubMed  Google Scholar 

  18. Singh, Y. Echocardiographic evaluation of hemodynamics in neonates and children. Front. Pediatr. 5, 201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 29, 277–314 (2016).

    Article  PubMed  Google Scholar 

  20. Lester, S. J. et al. Unlocking the mysteries of diastolic function: deciphering the Rosetta stone 10 years later. J. Am. Coll. Cardiol. 51, 679–689 (2008).

    Article  PubMed  Google Scholar 

  21. Tibby, S. M., Hatherill, M., Marsh, M. J. & Murdoch, I. A. Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch. Dis. Child 77, 516–518 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Egan, J. R. et al. Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med. 31, 568–573 (2005).

    Article  PubMed  Google Scholar 

  23. Mertens, L. et al. Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Writing Group of the American Society of Echocardiography (ASE) in Collaboration with the European Association of Echocardiography (EAE) and the Association for European Pediatric Cardiologists (AEPC). J. Am. Soc. Echocardiogr. 24, 1057–1078 (2011).

    Article  PubMed  Google Scholar 

  24. Lopez, L. et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the pediatric measurements writing group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J. Am. Soc. Echocardiogr. 23, 465–495 (2010). quiz 576-467.

    Article  PubMed  Google Scholar 

  25. Klugman, D. & Berger, J. T. Echocardiography as a hemodynamic monitor in critically Ill children. Pediatr. Crit. Care Med. 12, S50–S54 (2011).

    Article  PubMed  Google Scholar 

  26. Tsai-Goodman, B., Martin, R. P., Marlow, N. & Skinner, J. R. The repeatability of echocardiographic determination of right ventricular output in the newborn. Cardiol. Young. 11, 188–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Evans, N. & Kluckow, M. Early determinants of right and left ventricular output in ventilated preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 74, F88–F94 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tei, C. et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function–a study in normals and dilated cardiomyopathy. J. Cardiol. 26, 357–366 (1995).

    CAS  PubMed  Google Scholar 

  29. Ficial, B. et al. Echocardiographic quantification of Superior Vena Cava (SVC) flow in neonates: pilot study of modified technique. Diagnostics 12, 2083 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Higgins, J. P. et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343, d5928 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gunjan, K., Modi, M., Thakur, A., Soni, A. & Saluja, S. Echocardiographic characteristics in neonates with septic shock. Eur. J. Pediatr. 183, 1849–1855 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Saini, S. S., Sundaram, V., Kumar, P. & Rohit, M. K. Functional echocardiographic preload markers in neonatal septic shock. J. Matern. Fetal Neonatal. Med. 35, 6815–6822 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Pawale, D. et al. Echocardiographic assessment of hemodynamic changes in preterm neonates with shock: a prospective pragmatic cohort study. Eur. J. Pediatr. 179, 1893–1899 (2020).

    Article  PubMed  Google Scholar 

  34. Saini, S. S., Kumar, P. & Kumar, R. M. Hemodynamic changes in preterm neonates with septic shock: a prospective observational study*. Pediatr. Crit. Care Med. 15, 443–450 (2014).

    Article  PubMed  Google Scholar 

  35. Gill, A. B. & Weindling, A. M. Echocardiographic assessment of cardiac function in shocked very low birthweight infants. Arch. Dis. Child 68, 17–21 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shokr, A. A.-E. S., Tomerak, R. H., Agha, H. M., ElKaffas, R. M. H. & Ali, S. B. I. Echocardiography-directed management of hemodynamically unstable neonates in tertiary care hospitals. Egypt. Pediatr. Assoc. Gaz. 71, 10 (2023).

    Article  Google Scholar 

  37. Simma, B. et al. Changes in left ventricular function in shocked newborns. Intensive Care Med. 23, 982–986 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Bandyopadhyay, T., Saili, A., Yadav, D. K. & Kumar, A. Correlation of functional echocardiography and clinical parameters in term neonates with shock. J. Neonatal. Perinat. Med. 13, 167–173 (2020).

    Article  CAS  Google Scholar 

  39. Pugnaloni, F. et al. Assessment of hemodynamic dysfunction in septic newborns by functional echocardiography: a systematic review. Pediatr. Res. 95, 1422–1431 (2024).

    Article  PubMed  Google Scholar 

  40. Mahmoud, R. O., Moawad, K. M. H. E., Mansi, Y. A. & Hashem, R. H. IVC collapsibility indices in assessment of volume overload in neonatal cardiac patients. Egypt. J. Radiol. Nucl. Med. 55, 142 (2024).

    Article  Google Scholar 

  41. Osborn, D. A. Role of echocardiography in management of shock. J. Neonatol. 22, 212–222 (2008).

    Article  Google Scholar 

  42. El-Khuffash, A., Herbozo, C., Jain, A., Lapointe, A. & McNamara, P. J. Targeted neonatal echocardiography (Tnecho) service in a Canadian neonatal intensive care unit: a 4-year experience. J. Perinatol. 33, 687–690 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Sehgal, A. & McNamara, P. J. The ductus arteriosus: a refined approach! Semin. Perinatol. 36, 105–113 (2012).

    Article  PubMed  Google Scholar 

  44. Kluckow, M., Jeffery, M., Gill, A. & Evans, N. A randomised placebo-controlled trial of early treatment of the patent ductus arteriosus. Arch. Dis. Child Fetal Neonatal Ed. 99, F99–f104 (2014).

    Article  PubMed  Google Scholar 

  45. Azhibekov, T., Noori, S., Soleymani, S. & Seri, I. Transitional cardiovascular physiology and comprehensive hemodynamic monitoring in the neonate: relevance to research and clinical care. Semin. Fetal Neonatal. Med. 19, 45–53 (2014).

    Article  PubMed  Google Scholar 

  46. El-Khuffash, A. & McNamara, P. J. Hemodynamic assessment and monitoring of premature infants. Clin. Perinatol. 44, 377–393 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None No financial assistance was taken for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

N.G and A.H contributed to the study conception and design. Material preparation, data collection, and analysis were performed by N.G, A.H., S.M. and S.S. The first draft of the manuscript was written by N.G. and revised by A.H., S.M. and S.S. A.H. critically revised the manuscript for important intellectual content. All authors reviewed and approved the final version of the article.

Corresponding author

Correspondence to Nikita Goyal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent statement

Patient consent was not required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, N., Ananthan, A., Subhadarsini, S. et al. Role of functional echocardiography in neonatal shock: a systematic review and meta-analysis. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04298-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04298-1

Search

Quick links