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Deleterious variants in LTBP4 are associated with severe
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BACKGROUND: Sepsis is a leading global health burden in children, and its unavoidable heterogeneity has hindered providing
therapies beyond antibiotics and supportive care. Recently, we identified four computable phenotypes showing distinct cytokine
profiles, clinical outcomes, and therapeutic response characteristics (PedSep-A, B, C, and D) in a multicenter pediatric sepsis cohort.
METHODS: In the cohort data, we collected whole-exome sequencing data and identified rare variants associated with PedSep-D
phenotype by conducting a gene-based analysis in an aggregated fashion.
RESULTS: As a result, one whole-exome significant gene (LTBP4) and two suggestive significant genes (PLA2G4E, CCDC157) showed
association with PedSep-D, the phenotype characterized by the most severe outcomes and highest inflammation. The associated
variants in LTBP4 were enriched for predicted deleterious effects based on established functional prediction metrics. All three
associated genes are implicated in inflammation and immune cell activation based on existing gene function and expression data.
Although the circulating cytokine profiles were overlapping between the rare variant carriers, we also identified gene-specific
cytokine changes.
CONCLUSION: Altogether, our study provides valuable insights into the genetic architecture of a pediatric sepsis phenotype with
the highest inflammation level and the most severe outcomes, highlighting potential candidate genes and pathways for further
biomarker and therapeutic studies.

Pediatric Research; https://doi.org/10.1038/s41390-025-04420-3

IMPACT:

● Pediatric sepsis exhibits substantial heterogeneity, with genetic variation contributing to this variability. Rare variants in LTBP4
are significantly associated with the most severe pediatric sepsis phenotype (PedSep-D), while variants in PLA2G4E and
CCDC157 show associations with this phenotype in suggestive significance.

● Expands on the concept of sepsis phenotypes (PedSep-A, B, C, D) by incorporating genetic insights, moving beyond clinical and
cytokine profiles to uncover molecular drivers.

● Opens new avenues for mechanistic studies to understand the genetic underpinnings of severe inflammation and immune
activation in sepsis.

INTRODUCTION
Pediatric sepsis is a life-threatening condition associated with
organ failure in children due to a dysregulated host immune
response to infection. It is a recognized global public health
problem that affects 20.3 million children and causes 2.9 million
deaths in those under five years old every year.1 Despite global
efforts to improve clinical outcomes for pediatric sepsis, its

phenotypic heterogeneity remains a significant barrier to ther-
apeutic advancement.2 Several recent studies have advanced
efforts to characterize pediatric sepsis phenotypes using data-
driven approaches, including genome-wide expression profiling,3,4

dynamic modeling of organ dysfunction trajectories,5 and
supervised classification of inflammation-based subtypes.6 While
these contributions are important, key limitations remain. Studies,
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such as Wong et al.3 and Sweeney et al.4 primarily rely on
transcriptomic data, which, although informative at the molecular
level, may lack direct applicability at the bedside. While Sanchez-
Pinto et al.5 utilized subscores of the pediatric Sequential Organ
Failure Assessment (pSOFA) score to define multiple organ
dysfunction syndrome (MODS) phenotypes, these phenotypes
may not fully reflect the broader complexity and heterogeneity of
pediatric sepsis, particularly features not directly manifested as
organ failure. Although Carcillo et al.6 included a broader range of
clinical features, their supervised approach introduces the
potential for bias due to dependence on predefined categories
or outcomes. In contrast, our approach aims to address these
limitations by leveraging a broader and more granular set of
clinical data in an unsupervised framework that emphasizes both
statistical robustness and bedside applicability. Recently, by
applying machine learning approaches to 25 first-day bedside
clinical variables of 404 pediatric sepsis patients with organ
dysfunction enrolled as part of a multicenter cohort, PHENOtyping
sepsis-induced Multiple organ failure Study (PHENOMS), between
2015 to 2017, we derived four computable phenotypes PedSep-A,
B, C, and D with differences in infection source, cytokine profiles,
organ failure, outcomes, and treatment responses.7

Several studies suggested that host genetic factors contribute
to the heterogeneity of pediatric sepsis. While early family studies8

and targeted candidate gene analyses9–11 have supported this
notion, discovery efforts have been limited to discover novel
functional sepsis-related genes. Alternatively, researchers have
conducted several genome-wide association studies (GWAS) on
adult and pediatric populations to identify common variants
underlying sepsis susceptibility and outcomes.12–14 However,
although common variants have been used to understand the
genetic basis of clinical outcomes (e.g., survival from sepsis or
hospital admissions), they are limited in elucidating the genetic
architecture for computable pediatric sepsis phenotypes with
poor outcomes. Since common variants usually have small effects
on complex traits, their systematic study requires a prohibitively
large sample size and their small effects are of limited clinical
benefit in a large fraction of the population, which is not feasible
to study in pediatric sepsis.15,16 Additionally, to the best of our
knowledge, studies investigating rare variants (low penetrance,
low allele frequency (AF)) in pediatric critical illness are limited,17

with no prior rare variant analyses specifically focusing on sepsis
subtypes. This gap underscores the need for more targeted

genomic investigations to identify genetic contributors to
pediatric sepsis severity and heterogeneity. These findings
underscore the need for more comprehensive and functionally
focused genomic studies, especially in understudied pediatric
populations. Without involving further functional validation, the
large fraction of findings in non-coding regions challenges the
interpretation of the sepsis GWAS results.
To address these limitations, we performed a gene-based

exome-wide rare variant analysis using data from the PHENOMS
study of severe pediatric sepsis. Using whole-exome sequencing
data from 319 children (Fig. 1) with sepsis and organ dysfunction
in the PHENOMS study, we focused our analysis on the highest-
risk phenotype, PedSep-D, with the aim of identifying biologically
impactful variants and informing future therapeutic strategies.
Altogether, we present the first rare variant burden test in the
computable phenotype with the worst outcomes in pediatric
sepsis.

METHODS AND MATERIALS
Consent statement
The study was approved by the Institutional Review Board at University of
Utah Central IRB # 70976.

Cohort and phenotyping
The phenotyping data and blood samples were obtained from pediatric
sepsis patients of a multicenter cohort, PHENOMS.6 The cohort enrolled
pediatric patients from 2015 to 2017 with written informed consent from
at least one of the guardians. Children were qualified for enrollment if they
met all four criteria: (1) at the ages of 44 weeks to 18 years old; (2) were
suspected of infection meeting two or more SIRS (systemic inflammatory
response) criteria;18 (3) presented one or more organ failures; and (4) had
an indwelling arterial or central venous catheter. Patients without a
commitment to aggressive care or lack of blood samples were further
excluded from the enrollment.
The data-driven phenotyping approach and results were described in

previous work.7 Briefly, four phenotypes named PedSep-A, B, C, and D
were identified by applying consensus k-means clustering on 25 day-one
bedside variables. As WES data was available for only a subset of the
complete cohort, we confirmed the phenotyping analysis using this subset
of patients with available genetic data to ensure that phenotype
assignment was robust in this reduced sample size. In the following
genetic analysis, we performed a case-control study between children in
the computable phenotype subgroup with the highest severity of illness

Enrolled (N = 410)

Collect blood sample

WES consent

WES succeed

Quality control

No blood sample (N = 9)

No WES consent (N = 20)

Parent Study Cohort (N = 401)

WES consent (N = 381)

WES complete (N = 332)

Qualified for analysis (N = 319)

PedSep-A (N = 116) PedSep-B (N = 86) PedSep-C (N = 77) PedSep-D (N = 40)

WES failure (N = 49)

IBD (N = 4)
No phenotype (N = 9)

Fig. 1 CONSORT (Consolidated Standards of Reporting Trials) diagram for the study.

Y. Qin et al.

2

Pediatric Research



and mortality (PedSep-D) and the others (PedSepA,B, and C) to identify the
genetic factors exclusively associated with increased sepsis severity
susceptibility.

DNA extraction and genotyping
Out of 404 pediatric patients enrolled in the cohort, a total of 381 parents
of the children provided WES consent, and 2mL of whole blood was
collected for DNA extraction using standard methods. Whole-exome
sequencing was successfully completed on 332 patients from 2018 to 2020
by the University of Pittsburgh Genomics Research Core performed on the
Ion Torrent platform. Libraries were constructed by the Ampliseq Exome
RDY (Thermo Fisher Scientific) with 100 × target coverage. FASTQ files
were aligned to Homo sapiens reference sequence GRCh37/hg19 to
generate VCF files. Variant calling was performed by GATK (Genome
Analysis Toolkit).19

Quality control
Two levels of quality control were conducted on 332 samples with
completed whole-exome sequencing data, patient-level, and variant-level.
At the patient level, we excluded nine individuals without phenotype
information. Four pairs of individuals were identified as relatives based on
IBD (identity by descent). In each IBD pair, the individual with the higher
missingness was removed from the analysis. In terms of variant-level
quality control, we filtered sites with SOR (Strand Odds Ratio) > 3, MQ (root
mean square Mapping Quality) < 40, QD (variant confidence normalized by
depth) < 2.0, average GQ (Genotyping confidence) < 20, average DP
(Depth) < 10, missingness > 0.05, HWE (Hardy-Weinberg equilibrium p) <
1e-06, and those located in sex chromosomes. No imputation of missing
genotypes was performed due to concerns for potentially low imputation
quality of rare variants in datasets with small sample sizes. Quality control
was performed by software bcftools (v1.9),20 VCFtools (v0.1.16),21 and
PLINK (v1.9).22 Then variant function was annotated by ANNOVAR.23

Principal Component (PC) derivation
To account for potential population stratification and other confounders in
the statistical model, we derived 10 principal components (PCs) based on
common SNPs following linkage disequilibrium (LD) pruning. LD pruning
was performed using PLINK (version 1.07) with the argument “–indep-
pairwise 50 5 0.2”. This procedure involves considering a sliding window of
50 SNPs, calculating LD between each pair of SNPs within this window, and
removing one SNP from any pair exhibiting an LD greater than 0.2. After
pruning within a window, the window is shifted forward by 5 SNPs, and
the pruning process is repeated until the entire dataset is processed.

Gene-based analysis
Variants that passed quality control were included if they were in hg19
annotated exon regions and had a MAF (minor AF) lower than 1%. Genes
with less than three qualified variants were excluded from the analysis. The
final number of genes tested was 3846. Therefore, the p-value threshold
for declaring whole-exome level significance was 0.05/3846= 1.3e-05.
Then, we aggregately examined the relationships between the rare

variants and the binary indicator of phenotype membership by gene-
based association test SKAT (Sequence Kernel Association Test).24 SKAT is a
widely-employed method to test the association between a group of
variants and the trait, which increases the power to detect rare variant
associations by pooling rare variants across a given region of interest, such
as chromosome region or gene. In running the SKAT test, a single null
model was fitted containing only the covariates to be adjusted (i.e., age,
sex, and the first four ancestry PCs constructed from common LD-pruned
SNPs). Then the effect of SNPs from each gene was tested by variance-
component score tests in a mixed model, and their statistics were
aggregated with weights through a kernel matrix to form a gene-level
statistic. Compared to other gene-based tests, such as the Burden Test and
SKAT-O, one advantage of applying SKAT in our analysis is that it makes
few assumptions about rare-variant effects and retains statistical power
when variants within a gene have different directions and magnitude of
effects.25 This property aligns with the study design that contrasts one
phenotype with others and allows us to better account for potential
heterogeneity in phenotypes.
Genes showing whole-exome level significance and suggestive sig-

nificance were further investigated to query the gene function (Gene-
Cards),26 common variant evidence from previous GWAS analysis (GWAS
Catalog),27 gene enrichment in GO biological process (FUMA, Enrichr),28,29

and gene expression level in the GTEx database.30 Rare variants that
contributed to gene significance were annotated with four different types
of score (CADD,31 GERP,32 SIFT,33 Polyphen234) to indicate the effect of
each variant.

Comparison of cytokine profiles between rare variant carriers
and non-carriers
To further investigate the effect of variations on inflammation, levels of the
33 pre-collected biomarkers of the rare variant carriers were further
visualized and compared with non-carriers. The cytokine heatmap was
used to present the log ratio of the median biomarker values of the host
response. The red color represents a greater value for the group compared
to the entire cohort, while the blue color represents a lower value for the
group compared to the entire cohort. Hierarchical clustering was used to
visualize the similarity of cytokine patterns between rare variant carriers.
Additionally, we calculated p-values from a pairwise t-test comparing
cytokine values of rare variant carriers and non-carriers.

Mediation Analysis
To further explore potential biological mechanisms, we conducted a causal
mediation analysis to evaluate whether biomarkers mediate the relation-
ship between rare variant gene burden and PedSep-D membership.
Mediation analysis requires three conditions to be met: 1) A significant
association between gene burden and PedSep-D membership (which was
established by SKAT results); 2) A significant association between gene
burden and the candidate biomarker; and 3) A significant association
between the biomarker and PedSep-D membership.
When all three conditions were satisfied, we used the mediation

package in R,35 applying 1000 bootstrap iterations, to estimate the indirect
effect (via the biomarker), direct effect, total effect, and proportion
mediated for each gene–biomarker pair.

Sensitivity Analysis
In order to further validate the top genes identified from the gene-based
analysis, we investigated the influence of the ancestry information on the
genes with a sensitivity analysis that was performed as follows. Briefly, we
randomly swap phenotype labels between pairs of individuals with the
same reported ancestry information to keep the ancestry makeup of the
groups the same and run 100,000 iterations of SKAT gene-based analysis to
calculate how many times the test statistic value is greater than the test
statistic value from observed data. Thus, we generated an empirical
p-value for each gene.

Pathway-based analysis
In addition to identifying association signals between individual genes and
the sepsis phenotype of interest, we also sought to identify associations
between genetic variation at the pathway level, using Gene set analysis
Association Using Sparse Signals (GAUSS).36 GAUSS is constructed with
gene-based test results and calculates a gene set level p-value by
identifying a subset of genes (i.e., core genes) to maximize the association
signal. Using the GAUSS method, we aggregated the SKAT test statistics of
individual genes into groups based on GO biological process (GOBP)
pathway annotations and examined the associations between 7482 GOBP
pathways and phenotype of interest. This was performed for the PedSep-D
phenotype (Table 1). We also detected the active genes driving the
pathway-trait associations to facilitate the interpretation of test results.

RESULTS
PedSep-D phenotype has the highest mortality with unique
clinical presentation and immune system profile
Using the 319 pediatric patients from the parent cohort who
passed quality control both in bedside features and whole exome
sequencing (WES) data (Fig. 1), we assigned them to one of four
established phenotypes (PedSep-A, B, C, D) as previously
determined by the consensus k-means clustering of 25 first-day
bedside features.7 Among these 319 patients, the sample sizes of
PedSep-A, B, C, D are 116 (36%), 86 (27%), 77 (24%), and 40 (13%),
respectively (Table 2, Supplemental Tables 1–3). The proportions
of patients in each phenotype are close to our original study, in
which PedSep-A, B, C, D contained 34, 25, 27, and 14 percent of
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the 404 patients, respectively. To estimate the homogeneity of
each phenotype, we projected them on the t-SNE plot of all 25
features and observed good separation between each phenotype
and the other phenotypes (average Euclidean distance=6.4, Fig. 2).
Specifically, the PedSep-D phenotype was distinct from PedSep-A,
B, and C patients (Euclidean distance= 8.9).
Our data, which is sampled from the original PHENOMS cohort,

confirmed distinct clinical (Table 2; Supplemental Tables 1–3) and
biomarker (Supplemental Tables 4–7) profiles across phenotypes.
PedSep-A showed the mildest presentation (Supplemental
Tables 1 and 4) and PedSep-D had the most severe profile with
multi-organ failure and highest mortality (Tables 2–4), where
PedSep-B and -C are in bet-ween (Supplemental Tables 2 and 6).
These patterns recapitulate the importance of analyzing PedSep-D
as the highest-risk group (Supplemental Table 8).

Gene-based test associates LTBP4, PLA2G4E, and CCDC157
with PedSep-D
To detect genetic factors associated with the sepsis phenotypes,
we performed a whole exome-wide rare variant analysis. To
increase power in detecting associations, we aggregated the rare
variant association signals by gene and estimated the significance
in the following steps (see Methods). First, we performed quality
control and selected a total of 3864 genes that had more than
three variants for the association between rare variants and the
phenotype of interest. Then, we ran SKAT on the WES data
separately for each of the four PedSep phenotypes (PedSep-A, B,
C, D) versus any of the other three phenotypes while adjusting for
age, sex, and ancestry based upon the first four PCs constructed
based on common variants. (Fig. 3, Supplemental Figs. S1–3,
Tables 2, 3, Supplemental Table 9).
While our primary analyses centered on PedSep-D, we included

results from the other phenotype comparisons to provide broader
context and to highlight the distinctiveness of PedSep-D-specific
genetic associations. For PedSep-A or C versus the remaining
phenotypes, no significantly associated genes were detected. For

PedSep-B, the PLXNA2 gene presented a suggestive association
(Supplemental Fig. S2). However, the QQ plot (S. Fig. 4B) showed
genomic inflation, suggesting that the potential association of
PLXNA2 has a high risk of being false positive. In contrast, for
PedSep-D, variation in LTBP4 was significantly associated with
phenotype development at the exome-wide level (p-value= 1.069
E-05, 6 [15%] carriers in case group, 2 [0.7%] carriers in control
group), while variations in PLA2G4E (4 [10%] carriers in case group,
2 [0.7%] carriers in control group) and CCDC157 (7 [17.5%] carriers
in case group, 10 [3.6%] carriers in control group) were
suggestively associated with phenotype development. Four, 4,
and 8 rare variants contributed to the significance of LTBP4,
PLA2G4E, and CCDC157, respectively (Table 5). All variants encode
missense variants except one in the LTBP4 gene. However, this
silent variant, rs370696272, replaces a common leucine code (CTG,
0.361) with a less common codon (TTG, 0.134) based on the
CoCoPUT database,37 explaining its high CADD score (17.55). Most
variants in three genes were predicted to be deleterious based on
their CADD score (12 out of 16 with CADD > 10), among which
SNP rs573310430 in LTBP4 had the highest CADD score of 34,
ranked over the top 0.1% in terms of deleteriousness among
variants across the whole genome. This variant creates an
unpaired cysteine in the 14th calcium-binding epidermal growth
factor-like (cbEGF) domain of LTBP4, a domain stabilized by three
pairs of cysteines forming intradomain disulfide bonds particularly
sensitive to removal or addition of cysteine residues.38

We observed well-calibrated test statistics and little evidence of
inflation (Supplemental Fig. S4, lambda= 0.98) for PedSep-D,
suggesting that these associations are true signals. To explore the
AF of variants contributing to significant and suggestive genes, we
compared the AF of all variants across three populations (Black,
White, and Asian) in the gnomAD database (Supplemental Table 9).
No large difference was observed between the AFs across
populations, indicating that the top signals are less likely related
to ancestry distinctions. To further investigate if there is an
ancestry difference driving the top signals, we conducted a

Table 1. GAUSS pathway-based association test results.

Pathway term p-value Core set

N acylphosphatidylethanolamine metabolic process 0.0011 PLA2G4E

Growth hormone secretion 0.003 LTBP4

Positive regulation of endocytic recycling 0.003 PLA2G4E

Regulation of cilium beat frequency 0.01 MKKS, CATSPER1, CCDC39, BBS2,
GAS2L2, DNAH11

Regulation of endocytic recycling 0.013 PLA2G4E

Regulation of cilium beat frequency involved in ciliary motility 0.015 MKKS, CATSPER1, BBS2, GAS2L2

Response to phenylpropanoid 0.015 UGT3A2, EGFR

Negative regulation of cell adhesion molecule production 0.019 NOTCH1, MYOCD, NOTCH4

Histone threonine phosphorylation 0.023 PKN1

Regulation of artery morphogenesis 0.025 NOTCH1

Regulation of lymphoid progenitor cell differentiation 0.026 ZBTB1, NOTCH1

Neuron neuron synaptic transmission 0.029 KIF1B, DLGAP2

Positive regulation of fear response 0.029 PENK

Epoxide metabolic process 0.032 EPHX1

Coronary artery morphogenesis 0.038 NOTCH1, SEC24B, LRP2

Meiotic chromosome condensation 0.039 NCAPD2

Smoothened signaling pathway involved in regulation of cerebellar granule cell precursor
cell proliferation

0.039 GLI2, ZNF423

Kinetochore assembly 0.039 CENPT

Dentinogenesis 0.046 TCIRG1, SLC34A1

Aggressive behavior 0.049 PENK
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Table 2. Demographic and day one clinical characteristics of PedSep-D and Non-PedSep-D patients.

Characteristics PedSep-D Non-PedSep-D p-valuea

No. of Patients, N (%) 40 (12.539) 279 (87.461)

Demographic

Age, years mean (SD) 8 (6) 6 (6) 0.242

Male, N (%) 25 (62.5) 150 (53.8) 0.385

Hispanic, N (%) 3 (7.7) 47 (17.6) 0.278

Previous healthy, N (%) 17 (42.5) 136 (48.7) 0.569

Surgery, N (%) 8 (20.0) 30 (10.8) 0.153

Organ Dysfunction

SIRS criteriab, mean (SD) 3.0 (0.8) 2.9 (0.8) 0.477

OFIc, mean (SD) 3.0 (1.1) 1.6 (0.6) <0.001

Inflammation

CRPH, mg/dL mean (SD) 12.8 (11.6) 11.5 (9.9) 0.744

Low temperature, °C mean (SD) 36.4 (1.0) 36.6 (1.3) 0.190

High temperature, °C mean (SD) 37.9 (1.4) 37.8 (1.2) 0.890

ALC, /mm3 median (IQR) 1.3 (0.7–2.4) 1.3 (0.7–2.2) 0.685

Ferritin, ng/mL mean (IQR) 575.0 (195.6–1628.8) 180.0 (87.4–403.0) <0.001

Pulmonary

Pulmonary OFI, N (%) 25 (62.5) 188 (67.4) 0.665

Intubation, N (%) 22 (55.0) 156 (55.9) 1.000

Cardiovascular or Hemodynamic

Heart rate, bpm mean (SD) 145.5 (38.8) 156.3 (30.6) 0.095

Systolic blood pressure, mmHg mean (SD) 79.1 (22.2) 81.7 (19.3) 0.298

CV OFI, N (%) 30 (75.0) 189 (67.7) 0.457

Renal

Creatinine, mg/dL median (IQR) 1.5 (1.0–3.0) 0.4 (0.3–0.7) <0.001

Renal OFI, N (%) 26 (65.0) 0 (0.0) <0.001

Hepatic

Hepatic OFI, N (%) 12 (30.0) 19 (6.8) <0.001

Hematologic

Hemoglobin, g/dL mean (SD) 9.4 (1.8) 10.0 (1.9) 0.097

Platelets, K/mm3 mean (SD) 84.0 (73.7) 192.9 (112.9) <0.001

Hematologic OFI, N (%) 19 (47.5) 7 (2.5) <0.001

Other

Glasgow Coma Scale scored,e, mean (SD) 7.5 (5.6) 8.5 (5.3) 0.400

CNS OFI, N (%) 9 (22.5) 33 (11.8) 0.106

Comorbid Conditions

Leukemia, N (%) 2 (5.0) 9 (3.2) 0.635

Hemolytic Anemia, N (%) 1 (2.5) 1 (0.4) 0.235

Rheumatic Disease, N (%) 2 (5.0) 5 (1.8) 0.215

IBD, N (%) 2 (5.0) 0 (0) 0.015

Renal Disease, N (%) 2 (5.0) 3 (1.1) 0.120

Chromosome Abnormal, N (%) 9 (22.5) 37 (13.3) 0.189

Metabolic Disease, N (%) 0 (0) 10 (3.6) 0.620

Diabetes, N (%) 1 (2.5) 2 (0.7) 0.332

Cardiovascular Disease, N (%) 7 (17.5) 43 (15.4) 0.915

Trauma, N (%) 0 (0) 4 (1.4) 1.000

Short Gut, N (%) 0 (0) 7 (2.5) 0.602

Liver Disease, N (%) 2 (5.0) 7 (2.5) 0.314

IQR interquartile range, SIRS systemic inflammatory response syndrome, OFI organ failure index, CRPH high-sensitivity cardiac C-Reactive protein, ALC absolute
lymphocyte count, CNS central nervous system.
SI conversion factors: to convert alanine transaminase and aspartate aminotransferase to μkat/L, multiply by 0.0167; bilirubin to μmol/L, multiply by 17.104;
C-reactive protein to nmol/L, multiply by 9.524; creatinine to μmol/L, multiply by 88.4.
aComparisons across all four phenotypes were performed using the Kruskal–Wallis test, the χ2 test, or Fisher’s exact test.
bIndicates SIRS criteria ranging from 0 to 4, including abnormal heart rate, respiratory rate, temperature, and white blood cell count.
cOFI is an integer score reflecting the number of organ failures. Scores are either 0 or 1 for cardiovascular, hepatic, hematologic, respiratory, neurological, and
renal, and summed for a total range of 0 to 6. Cardiovascular, need for cardiovascular agent infusion support; Pulmonary, need for mechanical ventilation
support with the ratio of the arterial partial pressure of oxygen and the fraction of inspired oxygen (PaO2/FiO2) < 300 without this support; Hepatic, total
bilirubin > 1.0 mg/dL and alanine aminotransferase (ALT) > 100 units/L; Renal, serum creatinine > 1.0 mg/dL and oliguria (urine output < 0.5 mL/kg/h);
Hematologic, thrombocytopenia < 100,000/mm3 and prothrombin time INR > 1.5 × normal; Central Nervous System, Glasgow Coma Scale (GCS) Score < 12 in
the absence of sedatives.
dCorresponds to the minimum or maximum value (as appropriate) within six h of hospital presentation
eGCS ranges from 3 to 15.
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sensitivity analysis by randomly swapping the phenotype labels
between pairs of individuals with similar ancestry information to
keep the ancestry makeup of the groups the same while
generating a meaningful empirical p-value. With 100,000 iterations
of permutation for each of the three genes, we observed 0 times
that permutated statistics were larger than the previously
estimated statistic. This indicates the significance of the three
genes is not likely driven by ancestry differences.

LTBP4, PLA2G4E, and CCDC157 underlie distinct cytokine
patterns in patients
To explore the genes’ association with inflammation status,
we grouped patients based on whether they carried rare variants
in one of the three genes of interest, generated a heatmap
showing the normalized levels of 33 cytokines (Fig. 4), and
statistically tested the group-wise differences (Supplemental
Tables 10, 11). Comparison between the rare variants carriers
and non-carriers indicated some similarity shared by carriers
groups. For example, a higher level of IL-6 is significantly related to
both LTBP4 and CCDC157 rare variant carriers (p-value= 0.032 and
0.043, respectively), and higher level of M-CSF is significantly
related to both PLA2G4E and CCDC157 rare variant carriers (p-
value= 0.013 and 0.011 separately). Simultaneously, several

cytokines important in regulating inflammation showed distinct
patterns when comparing carriers to non-carriers with rare
variants in LTBP4, PLA2G4E, and CCDC157 (Supplemental Table 13).
For instance, IL-4 is significantly higher in LTBP4 rare variant
carriers (p-value= 0.025) but is significantly lower in CCDC157 rare
variant carriers (p-value= 0.035). Compared to non-carriers,
PLA2G4E rare variant carriers presented significantly higher
levels of IL-16, and SCF, but significantly lower levels of
CRPH (p-value= 0.034, 0.005, and 0.022, separately), while
LTBP4 and CCDC157 rare variant carrier groups showed no
significant difference with non-carriers for these biomarkers. The
ferritin level is uniquely higher in LTBP4 rare variant carriers (p-
value= 0.023). These results imply that the three genes might be
involved in different pathological mechanisms driving the
phenotype.
Mediation Analysis was further performed to evaluate whether

biomarkers mediate the relationship between rare variant gene
burden and PedSep-D membership. The results (Supplemental
Table 12) highlight three gene–biomarker pairs that showed
significant mediation effects. For example, the effect of LTBP4
burden on PedSep-D membership was partially mediated by
ADAMTS13 levels, with 16% of the total effect explained by this
biomarker. Similarly, IL-16 and IL-8 were significant mediators for
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the remaining phenotypes.

Table 3. SKAT gene-based association test result for PedSep-D.

Gene Chr # carriers in case (%) # carriers in control (%) Odds Ratio P-value

LTBP4 19 6 (15) 2 (0.7) 24.4 1.069e-05

PLA2G4E 15 4 (10) 2 (0.7) 15.4 3.288e-05

CCDC157 22 7 (17.5) 10 (3.6) 5.7 6.192e-05
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PLA2G4E and CCDC157, respectively, with mediation proportions
ranging from 16 to 41%. These findings suggest that biomarkers
may serve as functional intermediates linking rare variant burden
to sepsis subtype PedSep-D and highlight potential targets for
mechanistic validation.
In addition, we accessed tissue-specific gene expression data

from the GTEx database. Given that GTEx compiles transcriptomic
profiles across a wide range of human tissues, we observed that all

three genes are expressed in multiple tissue types (Fig. 5a). LTBP4
is highly expressed in multiple tissues, including the lung, kidney,
stomach, skin, and others. PLA2G4E is specifically expressed in the
skin. CCDC157 is specifically expressed in testis. In terms of cell-
type specific expression of three genes, all of them displayed
expression in immune cells of the cardiovascular and pulmonary
systems, both of which are highly affected by severe sepsis or
septic shock (Fig. 5b).

0
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6

7

Chromosome

−
lo

g 1
0(
p)

1 2 3 4 5 7 8 9 10 12 14 16 18 20

CCDC157
PLA2G4E

LTBP4

Fig. 3 Manhattan plot for PedSep-D (No. of genes= 3846). Red line: whole-exome wide significant –log10(P) value; Blue line: suggested
significant –log10(P) value.

Table 4. Characteristics of rare variant carriers and non-carriers.

characteristic LTBP4 PLA2G4E CCDC157

carriers Non-carriers carriers Non-carriers carriers Non-carriers

No. of Patients 8 311 6 313 17 302

Age, median (IQR), y 8 (5, 12) 5 (1, 12) 1 (1, 2) 5 (1, 12)a 3 (2, 10) 5 (1, 12)

Sex, N (%)

Female 3 (37.5) 141 (45.3) 4 (66.7) 140 (44.7) 7 (41.1) 137 (45.4)

Male 5 (62.5) 170 (54.7) 2 (33.3) 173 (55.3) 10 (58.9) 165 (54.6)

Race, N (%)

White 3 (37.0) 210 (67.5) 5 (83.3) 208 (66.5) 12 (70.6) 201 (66.6)

Black 4 (50.0) 63 (20.3) 1 (16.7) 67 (21.4) 4 (23.5) 63 (20.9)

Asian 0 (0.0) 14 (4.5) 0 (0.0) 14 (4.5) 1 (5.9) 14 (4.6)

Other 1 (13.0) 24 (7.7) 0 (0.0) 24 (7.7) 0 (0.0) 24 (7.9)

Ethnicity, N (%)

Non-Hispanic 6 (75.0) 250 (80.4) 6 (100.0) 250 (79.9) 13 (76.5) 243 (80.5)

Hispanic 2 (25.0) 48 (15.4) 0 (0.0) 50 (16.0) 2 (11.8) 48 (15.9)

Unknown 0 (0.0) 13 (4.2) 0 (0.0) 13 (4.2) 2 (11.8) 11 (3.6)

Previous healthy 5 (62.5) 148 (47.6) 3 (50.0) 150 (47.9) 8 (47.1) 145 (48.0)

Immunocompromised, N (%) 1 (12.5) 58 (18.6) 1 (16.7) 58 (18.5) 3 (17.6) 56 (18.5)

PRISM Score, median (IQR) 8.5 (7.25, 15.75) 8 (3, 15) 18.5 (15.75, 19.00)a 8 (3, 14) 10 (3, 15) 8 (3, 15)

OFI, median (IQR) 2.5 (2, 3)a 2 (1, 2) 2 (1, 3.75) 2 (1, 2) 2 (2, 3)a 2 (1, 2)

Infection, N (%)

Bacterial infection 1 (12.5) 113 (36.3) 1 (16.7) 113 (36.1) 7 (41.1) 107 (35.4)

Viral infection 0 (0.0) 88 (28.3) 2 (33.3) 86 (27.5) 2 (11.8) 86 (28.5)

Fungal infection 0 (0.0) 2 (0.6) 0 (0.0) 2 (0.6) 0 (0.0) 2 (0.7)

No infection 7 (87.5) 108 (34.7) 3 (50.0) 110 (35.1) 8 (47.1) 107 (35.4)

Mortality, N (%) 2 (25.0) 26 (8.4) 1 (16.7) 27 (8.6) 1 (5.9) 27 (8.9)
aThe value in this group is significantly higher than the compared group.
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DISCUSSION
In this study, rare variants in LTBP4 were significantly associated
with the development of the previously reported high-mortality
PedSep-D phenotype, with additional suggestions of associations
with rare variations in PLA2G4E and CCDC157. To our knowledge,
this is the first time a rare variant burden test has been applied to
pediatric sepsis with deep phenotyping.
The top signal found in our study, LTBP4, a member of the latent

transforming growth factor β binding protein family, shares
structural homology with fibrillin and is moderately expressed in
plasma cells and immune cells.39 Mutations in LTBP4 have been
associated with autosomal recessive cutis laxa type 1C,40–42

Duchenne Muscular Dystrophy (DMD),43 fibrosis-related disor-
ders,44 cancer,45 pulmonary disorders, and cardiovascular dis-
orders.46 PedSep-D patients had the most severe kidney
involvement, whereas LTBP4 was found to protect against tubular
interstitial fibrosis by strengthening angiogenesis, downregulating
inflammatory gene expression, and facilitating the maintenance of
mitochondrial structure in tubular epithelial cells.47 Common
variants in LTBP4 have previously been reported in GWASs to be
associated with several traits, including lung function (FEV1/
FVC),48 peak expiratory flow,49 hematocrit and hemoglobin,50

eosinophil counts,51 carotid intima-media thickness,52 and diasto-
lic blood pressure.53 The precise molecular mechanism by which
deleterious LTBP4 alleles may contribute to the PedSep-D
phenotype awaits future functional studies. It remains to be
determined whether known activities of LTBP4, elastic fiber
organization and regulation transforming growth factor β (TGF-
β) signaling54 or as yet undiscovered functions play a role in sepsis
pathogenesis. TGF-β remains an attractive candidate given its

potent anti-inflammatory effects.55 However, our finding that
ADAMTS13 levels mediate part of the LTBP4 effect provide
evidence for previously unknown molecular interactions between
these proteins in sepsis. Because another ADAMTS protease family
member, ADAMTS7 is known to cleave LTBP4,56 LTBP4 may serve
either as a substrate or a competitive inhibitor of ADAMTS13. In
the field of sepsis and trauma, Bergmann et al. have postulated
the role of TGF-β and connected it, as well as other immunosup-
pressive cytokines, with the high mortality rate of patients
discharged from ICU.55

As one of the two genes with suggestive significance, the
PLA2G4E gene encodes a member of the cytosolic phospholipase
A2 group IV family involved in membrane tubule-mediated
transport regulation. It plays an important role in trafficking
through the clathrin-independent endocytic pathway.57 PLA2G4E
was also up-regulated in Alzheimer’s disease APP-PS1 transgenic
mice lacking CD8 T cells compared to the control group.58

Common variants in PLA2G4E have been reported in previous
GWASs to be associated with several sepsis clinical prognostic
factors, such as neutrophil count,59,60 white blood cell count,61

and mean platelet volume.51

As another gene displaying suggestive significance, CCDC157
encodes a protein coiled-coil domain containing 157. Common
variants in CCDC157 have been reported in previous GWASs to be
associated with sepsis risk factors, such as hematocrit,50 pulse
pressure,62 and calcium levels.59 No clear function of immune
dysregulation has been reported for CCDC157 to date.
Although none of the pathways are significantly associated with

PedSep-D phenotype, top-ranked pathways involve important
biological processes related to sepsis development. For example,

Table 5. Single variant association and functional prediction for variants contributing to the gene-level significance.

Gene Variant SNP Informationa Amino acid
changeb

CADD
scorec

GERP
scored

SIFT
scoree

Polyphen2
scoref

LTBP4 rs370696272 19:41105311:C:T Leu27Leu 17.55 1.63 - -

rs573310430 19:41122842:C:T Arg984Cys 34 4.63 0.044 (D) 1.0 (D)

- 19:41132970:C:T Pro1388Leu 25.8 4.58 0.68 (T) 0.998 (D)

rs200607327 19:41133005:G:A Gly1437Arg 27 4.58 0.38 (T) 1.0 (D)

PLA2G4E - 15:42276733:T:G Lys387Gln 23 4.48 0.275 (T) 0.26 (B)

rs764494895 15:42278161:G:A Ala693Val 11.04 0.591 0.25 (T) 0.004 (B)

rs143966595 15:42293394:C:T Val212Ile 23.1 5.34 0.099 (T) 0.05 (B)

rs776016335 15:42298270:T:C Asp148Gly 27.1 5.66 0.002 (D) 1.0 (D)

CCDC157 rs9606721 22:30762035:A:G Thr16Ala 12.47 1.76 0.28 (T) 0.001 (B)

rs540507025 22:30762080:C:T Arg31Cys 23.1 2.89 0.002 (D) 1.0 (D)

rs143249037 22:30766366:G:A Glu158Lys 14.06 1.36 0.282 (T) 0.035 (B)

- 22:30766438:C:A Gln182Lys 8.248 2.89 0.931 (T) 0.009 (B)

rs139609945 22:30766496:C:T Thr201Met 8.755 2.19 0.107 (T) 0.155 (B)

rs1235664314 22:30766672:G:T Asp260Tyr 28.4 5.29 0.008 (D) 1.0 (D)

rs148283823 22:30766868:G:A Arg325Gln 6.266 0.566 0.712 (T) 0.093 (B)

rs202178544 22:30772567:T:C Ser698Pro 0.246 −2.83 0.339 (T) 0.0 (B)
aSNPs are listed as chromosome: position (hg19): reference allele: alternative allele.
bAmino acid substitutions caused by SNPs.
cCADD (Combined Annotation-Dependent Depletion) score measures the predicted variant effect rank, higher value implies a greater damaging effect
throughout the human genome reference assembly. A score of 10 indicates that the SNP is predicted to be in the top 10% most deleterious substitutions in
the human genome, a score 0f 20 indicates that the SNP is predicted to be in the top 1% most deleterious substitutions, a score of 30 indicates that the SNP is
predicted to be in the top 0.1% most deleterious substitutions and so forth.
dGERP (Genomic Evolutionary Rate Profiling) score indicates position-specific estimates of evolutionary constraint. A positive score scale with the level of
constraint, a greater score suggests a greater level of evolutionary constraint. A negative score indicates that a site is probably evolving neutrally.
eSIFT (Sorting Intolerant from tolerant) score ranges from 0 to 1. A value less than 0.05 is classified as damaging (D), whereas a higher score is classified as
tolerated (T).
fPolyphen2 (Polymorphism Phenotyping v2) score ranges from 0 to 1. Value implies probably damaging” (“D”) for scores in [0.957, 1]; “possibly damaging” (“D”)
for scores in [0.453, 0.956]; “benign” (“B”) for scores in [0, 0.452].
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the high rank of N-acylphosphatidylethanolamine metabolic
process supported previous investigations revealing evaluated
fatty acids as candidate biomarkers of sepsis.63 The high rank of
growth hormone (GH) secretion was supported by previous
studies suggesting GH level is higher in septic shock patients
compared to sepsis patients and is also higher in sepsis non-
survivors.64 Other top pathways involve endocytic recycling that
plays a role in infection-host interaction65 and regulation of cilium
beat frequency which is related to respiratory disease and airway
infection.66

There are several limitations in this study. First, the tested
sample size is small, limiting the statistical power to detect
associations. As such, larger independent cohorts are needed for
validation and meta-analysis. Second, the signals from rare
variants may be caused by local ancestry differences, in which
situation the number of alleles derived from distinct ancestral
populations at a given locus is different. Therefore, although we
account for global ancestry by adjusting for top PCs in the
association test and conducting sensitivity analysis, it is crucial to
further perform local ancestry inference and examine the results in

diverse populations separately to validate our findings. Third, we
acknowledge the potential impact of residual LD on our
association findings. Although we implemented LD pruning, it is
challenging to fully resolve LD structure, particularly in regions
with complex haplotypes or in diverse populations where
reference panels may be limited. As such, some observed
associations may reflect correlated signals rather than direct
causal effects. Fourth, while our current analysis focused on
individual variant and gene-level associations, future studies
leveraging polygenic risk scores or burden scores that integrate
both common and rare variants may offer a more continuous and
potentially powerful framework for assessing genetic contribu-
tions to disease severity and subtype classification in sepsis. For
example, Rautanen et al. identified genetic variants associated
with 28-day survival in sepsis, providing a foundation for
polygenic modeling of sepsis outcomes.12 The application of
PRS in this context is an emerging area and will benefit from larger
datasets and phenotype-specific GWAS to enable accurate score
derivation. As a secondary analysis, we examined GTEx-based
tissue-specific expression profiles to provide biological context for
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the potential regulatory function of the identified variants,
particularly in tissues implicated in sepsis pathophysiology.
However, we recognize that GTEx may not fully reflect gene
expression dynamics in children with sepsis. To address this
limitation and strengthen the biological relevance of our findings,
future studies incorporating transcriptomic or proteomic data
from pediatric sepsis patients and age-matched healthy controls
will be essential for validation. Finally, given the nonsignificant
findings from the GAUSS method, interpretation of the pathway
analysis results should be approached with caution, and the
results require further validation in a larger cohort. In summary,
our study identified rare variants that, if found to have functional
effects in future studies, might play a role in pediatric sepsis
outcomes, providing evidence for a genetic contribution to
disease heterogeneity.
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compatible with the regulations under which the data is protected.
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