Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

The utility of CNV analysis in identifying the molecular etiology of pediatric epilepsy patients

Abstract

Background

Copy number variations (CNVs) are considered to be associated with various neurocognitive disorders, particularly severe pediatric conditions such as intellectual disability and epilepsy. In this study, our aim is to determine the distribution and pathogenicity of CNVs in pediatric epilepsy patients, thereby expanding the spectrum of related syndromes or gene phenotypes, explore potential new epilepsy genes within CNVs.

Methods

We collected clinical data from 425 pediatric epilepsy patients and performed WES, including both pathogenic variant analysis and CNV analysis. Variants were classified per ACMG guidelines. Analyzed the phenotypic characteristics associated with genetic diagnostic results and performed further research and analysis on diagnostic CNVs.

Results

Among the 425 pediatric epilepsy patients, diagnostic SNVs/indels were detected in 104 cases (24.5%). CNV testing revealed 49 cases with diagnostic CNVs (11.5%). For patients with epilepsy phenotypes unexplained by CNVs, two potential epilepsy genes were suggested through analysis.

Conclusion

CNV analysis significantly improves the genetic diagnostic yield in pediatric epilepsy patients, achieving a rate of 11.5%. Patients with developmental delay or cardiopathy are more likely to harbor diagnostic CNVs. In-depth analysis of diagnostic CNVs can identify the genetic etiology in epilepsy patients, guide follow-up strategies, and facilitate the discovery of promising candidate epilepsy genes.

Impact

  • CNV analysis can enhance the molecular diagnostic capability of epilepsy.

  • Patients with developmental delay or cardiac disease are more likely to have diagnostic CNVs.

  • In-depth analysis of CNVs can help uncover potential candidate epilepsy genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic associations and prognostic factors in pediatric epilepsy patients.
Fig. 2: Summary of CNV analysis for pediatric epilepsy patients.
Fig. 3: The clinical characteristics of pediatric epilepsy patients with diagnostic CNVs.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Fisher, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–82 (2014).

    Article  PubMed  Google Scholar 

  2. Symonds, J. D. et al. Early childhood epilepsies: epidemiology, classification, aetiology, and socio-economic determinants. Brain 144, 2879–2891 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wirrell, E. et al. Predictors and course of medically intractable epilepsy in young children presenting before 36 months of age: a retrospective, population-based study. Epilepsia 53, 1563–9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Poke, G. et al. Epidemiology of developmental and epileptic encephalopathy and of intellectual disability and epilepsy in children. Neurology 100, e1363–e1375 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stodberg, T. et al. Outcome at age 7 of epilepsy presenting in the first 2 years of life. A population-based study. Epilepsia 63, 2096–2107 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Balestrini, S. et al. The aetiologies of epilepsy. Epileptic Disord. 23, 1–16 (2021).

    Article  PubMed  Google Scholar 

  7. Symonds, J. D. & McTague, A. Epilepsy and developmental disorders: next generation sequencing in the clinic. Eur. J. Paediatr. Neurol. 24, 15–23 (2020).

    Article  PubMed  Google Scholar 

  8. Variane, G. et al. Remote monitoring for seizures during therapeutic hypothermia in neonates with hypoxic-ischemic encephalopathy. JAMA Netw. Open 6, e2343429 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yuan, H. et al. CNV profiles of Chinese pediatric patients with developmental disorders. Genet. Med. 23, 669–678 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Mullen, S. A. et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology 81, 1507–14 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao, M. et al. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinform. 14, S1 (2013).

    Article  Google Scholar 

  12. Zhai, Y. et al. Incorporation of exome-based CNV analysis makes trio-WES a more powerful tool for clinical diagnosis in neurodevelopmental disorders: a retrospective study. Hum. Mutat. 42, 990–1004 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Fisher, R. S. et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 58, 531–542 (2017).

    Article  PubMed  Google Scholar 

  14. Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020).

    Article  PubMed  Google Scholar 

  15. Afzali, B. et al. BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat. Immunol. 18, 813–823 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Woerden, G. M. et al. The MAP3K7 gene: further delineation of clinical characteristics and genotype/phenotype correlations. Hum. Mutat. 43, 1377–1395 (2022).

    Article  PubMed  Google Scholar 

  17. Le Goff, C. et al. Heterozygous mutations in MAP3K7, encoding TGF-beta-activated kinase 1, cause cardiospondylocarpofacial syndrome. Am. J. Hum. Genet. 99, 407–13 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Edwards, J. J. et al. Systems analysis implicates WAVE2 complex in the pathogenesis of developmental left-sided obstructive heart defects. JACC Basic Transl. Sci. 5, 376–386 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Traylor, R. N. et al. Microdeletion of 6q16.1 encompassing EPHA7 in a child with mild neurological abnormalities and dysmorphic features: case report. Mol. Cytogenet. 2, 17 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Levy, J. et al. EPHA7 haploinsufficiency is associated with a neurodevelopmental disorder. Clin. Genet. 100, 396–404 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Rudd, M. F. et al. Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia. Blood 108, 638–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Shulskaya, M. V. et al. Whole-exome sequencing in searching for new variants associated with the development of Parkinson’s disease. Front. Aging Neurosci. 10, 136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Turner, T. N. et al. Sex-based analysis of de novo variants in neurodevelopmental disorders. Am. J. Hum. Genet. 105, 1274–1285 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Au, K. S. et al. Human myelomeningocele risk and ultra-rare deleterious variants in genes associated with cilium, WNT-signaling, ECM, cytoskeleton and cell migration. Sci. Rep. 11, 3639 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 54, 1320–1331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, B. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 43, 864–8 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ganesh, S. et al. Exome sequencing in families with severe mental illness identifies novel and rare variants in genes implicated in Mendelian neuropsychiatric syndromes. Psychiatry Clin. Neurosci. 73, 11–19 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Buonaiuto, S. et al. Prioritization of putatively detrimental variants in euploid miscarriages. Sci. Rep. 12, 1997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Villacis, R. et al. Rare germline alterations in cancer-related genes associated with the risk of multiple primary tumor development. J. Mol. Med. 95, 523–533 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Servetti, M. et al. Neurodevelopmental disorders in patients with complex phenotypes and potential complex genetic basis involving non-coding genes, and double CNVs. Front. Genet. 12, 732002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernandez, A. et al. A novel microduplication in INPP5A segregates with schizophrenia spectrum disorder in the family of a patient with both childhood onset schizophrenia and autism spectrum disorder. Am. J. Med. Genet. A 185, 1841–1847 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Dong, X. et al. Clinical exome sequencing as the first-tier test for diagnosing developmental disorders covering both CNV and SNV: a Chinese cohort. J. Med. Genet. 57, 558–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, S. H. et al. Common genes and recurrent causative variants in 957 Asian patients with pediatric epilepsy. Epilepsia 65, 766–778 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Rochtus, A. et al. Genetic diagnoses in epilepsy: the impact of dynamic exome analysis in a pediatric cohort. Epilepsia 61, 249–258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zeng, Y. et al. High positive predictive value of CNVs detected by clinical exome sequencing in suspected genetic diseases. J. Transl. Med. 22, 644 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rajagopalan, R. et al. A highly sensitive and specific workflow for detecting rare copy-number variants from exome sequencing data. Genome Med. 12, 14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Backenroth, D. et al. CANOES: detecting rare copy number variants from whole exome sequencing data. Nucleic Acids Res. 42, e97 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rein, B. & Yan, Z. 16p11.2 Copy number variations and neurodevelopmental disorders. Trends Neurosci. 43, 886–901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Su, J. et al. de novo interstitial deletions at the 11q23.3-q24.2 region. Mol. Cytogenet. 9, 39 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grossfeld, P. D. et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am. J. Med Genet A 129A, 51–61 (2004).

    Article  PubMed  Google Scholar 

  42. Ferrario, A. et al. Expanding genotype/phenotype correlation in 2p11.2-p12 microdeletion syndrome. Genes 14, 2222 (2023).

  43. Weaver, K. N. et al. Acrofacial dysostosis, Cincinnati type, a mandibulofacial dysostosis syndrome with limb anomalies, is caused by POLR1A dysfunction. Am. J. Hum. Genet. 96, 765–74 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smallwood, K. et al. POLR1A variants underlie phenotypic heterogeneity in craniofacial, neural, and cardiac anomalies. Am. J. Hum. Genet. 110, 809–825 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Panwala, T. F. et al. Childhood-onset hereditary spastic paraplegia (HSP): a case series and review of literature. Pediatr. Neurol. 130, 7–13 (2022).

    Article  PubMed  Google Scholar 

  46. Coppola, A. et al. Diagnostic implications of genetic copy number variation in epilepsy plus. Epilepsia 60, 689–706 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gale, N. W. et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17, 9–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Beuter, S. et al. Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. Sci. Rep. 6, 29710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Communi, D., Lecocq, R. & Erneux, C. Arginine 343 and 350 are two active residues involved in substrate binding by human type I D-myo-inositol 1,4,5,-trisphosphate 5-phosphatase. J. Biol. Chem. 271, 11676–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Berridge, M. J. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev. 96, 1261–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Timms, A. E. et al. Support for the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiplex families. JAMA Psychiatry 70, 582–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, A. W., Sachs, A. J. & Nystuen, A. M. Deletion of Inpp5a causes ataxia and cerebellar degeneration in mice. Neurogenetics 16, 277–85 (2015).

    Article  PubMed  Google Scholar 

  53. Liu, Q. et al. Cerebellum-enriched protein INPP5A contributes to selective neuropathology in mouse model of spinocerebellar ataxias type 17. Nat. Commun. 11, 1101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the kind cooperation and agreement of patients and their parents.

Funding

This work was supported by the Public Health and Technology Project of Tianjin (TJWJ2024QN078), the Program of Tianjin Science and Technology Plan (23JCQNJC01610) and the Program of Tianjin Science and Technology Plan (23JCQNJC01600).

Author information

Authors and Affiliations

Authors

Contributions

Z.S.Y.: writing-original draft, sequencing data analysis. W.X.T.: writing-review & editing, funding acquisition. M.J.: clinical data collection and writing. L.J.C.:clinical data collection. D.Y.:clinical data collection. L.D.: project administration, funding acquisition. S.J.B.: methodology, project administration, funding acquisition. C.C.Q.: supervision, project administration, funding acquisition.

Corresponding authors

Correspondence to Dong Li, Jianbo Shu or Chunquan Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent statement

Informed consent for genetic analyses was obtained for all individuals, and genetic studies were performed as approved by the Ethics and Human Commit.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, X., Meng, J. et al. The utility of CNV analysis in identifying the molecular etiology of pediatric epilepsy patients. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04427-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04427-w

Search

Quick links