Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impact of transperitoneal anterior, retzius-sparing, extraperitoneal, transvesical and perineal approaches on urinary continence recovery after robot-assisted radical prostatectomy: a systematic review and meta-analysis of comparative studies

Abstract

Background

Urinary incontinence significantly impacts on health-related quality of life of patients undergoing radical prostatectomy. In the last decades, several approaches (extraperitoneal, Retzius-sparing (RS), perineal and, transvesical) for robot-assisted radical prostatectomy (RARP) have proposed with the aim to improve functional outcomes in comparison with transperitoneal, anterior ones.

Methods

We performed a systematic review and meta-analysis of studies published in English language, in the last ten years, comparing the different approaches used to perform RARP. We included only studies reporting urinary continence rates at different follow-up time points. From each eligible study, we extracted the number of analyzed patients; the study design; the continence definition; and, when available, immediate, 1-, 3-, 6-, and 12-mo urinary continence rates. Statistical analyses were performed using RevMan version 5.4 (Cochrane Collaboration, Oxford, United Kingdom, UK). The Odds Ratio (OR) with 95% confidence intervals (CIs) was calculated using the generic inverse variance. A p value of <0.05 was set as significance level when comparing studies.

Results

The meta-analyses of studies comparing anterior, transperitoneal RARP and RS-RARP in terms of immediate (OR = 3.73; 95% CI: 2.17–6.43; p < 0.0001), 1-mo (OR = 4.16; 95% CI: 2.68–6.48; p < 0.00001), 3-mo (OR 4.71; 95% CI: 3.70–6.00; p < 0.0001), 6-mo (OR 4.12; 95% CI: 2.95–5.75; p < 0.00001) and 12-mo (OR = 3.25; 95% CI: 1.76–5.99; p < 0.00001) urinary continence rates showed a statistically significant advantage in favor of RS approach. However, a sub-analysis of Randomized Controlled Trials showed overlapping urinary continence rates between the two approaches at 6-mo (OR = 1.99; 95% CI: 0.90–4.42; p = 0.09) and 12-mo (OR = 1.36; 95% CI: 0.43–4.31; p = 0.60) after surgery. The meta-analysis of studies comparing extraperitoneal and transperitoneal approaches showed that 6-mo urinary continence rates were overlapping between the two approaches (OR = 1.18; 95% CI: 0.85–1.65; p = 0.32). The meta-analysis of studies comparing single-port (SP) and multi-port (MP) RARP showed comparable 6-mo urinary continence rates (OR = 0.93; 95% CI 0.65–1.33; p = 0.69).

Conclusions

Within the limitations of mainly low to moderate quality of evidence, the RS  approach offers significant advantages compared to an anterior, transperitoneal, approach in terms of urinary continence recovery at different follow-up time points in patients who underwent MP-RARP. MP perineal and transvesical approaches need to be further tested and might be of interest in the setting of SP-RARP. Our meta-analysis showed comparable results between SP- and MP-RARP in terms of urinary continence rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flow diagram.
Fig. 2: Forest plot of immediate urinary continence rates after catheter removal in 10 studies comparing RS-RARP versus anterior RARP.
Fig. 3: Forest plot of 1-mo urinary continence rates in 11 studies comparing RS-RARP versus anterior RARP.
Fig. 4: Forest plot of 3-mo urinary continence rates in 15 studies comparing RS-RARP versus anterior RARP.
Fig. 5: Forest plot of 6-mo urinary continence rates in 12 studies comparing RS-RARP versus anterior RARP.
Fig. 6: Forest plot of 12-mo urinary continence rates in 18 studies comparing RS-RARP versus anterior RARP.
Fig. 7: Forest plot of 6-mo urinary continence rates in 3 studies comparing extraperitoneal versus transperitoneal RARP.
Fig. 8: Forest plot of 3-mo urinary continence rates in 6 studies comparing MP versus SP-RARP.

Similar content being viewed by others

References

  1. Moretti TBC, Magna LA, Reis LO. Continence criteria of 193 618 patients after open, laparoscopic, and robot-assisted radical prostatectomy. BJU Int. 2023. https://doi.org/10.1111/bju.16180.

  2. Joseph JV, Rosenbaum R, Madeb RerturkE, Patel H. Robotic extraperitoneal radical prostatectomy: an alternative approach. J Urol. 2006;175:945–50.

    Article  PubMed  CAS  Google Scholar 

  3. Galfano A, Ascione A, Grimaldi S, Petralia G, Strada E, Bocciardi AM. A new anatomic approach for robot-assisted laparoscopic prostatectomy: a feasibility study for completely intrafascial surgery. Eur Urol. 2010;58:457–61. https://doi.org/10.1016/j.eururo.2010.06.008.

    Article  PubMed  Google Scholar 

  4. Kaouk JH, Akca O, Zargar H, Caputo P, Ramirez D, Andrade H, et al. Descriptive technique and initial results for robotic radical perineal prostatectomy. Urology. 2016;94:129–38. https://doi.org/10.1016/j.urology.2016.02.063.

    Article  PubMed  Google Scholar 

  5. Desai MM, Aron M, Berger A, Canes D, Stein R, Haber GP, et al. Transvesical robotic radical prostatectomy. BJU Int. 2008;102:1666–9. https://doi.org/10.1111/j.1464-410X.2008.08004.x.

    Article  PubMed  Google Scholar 

  6. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71 https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jeremy Howick, Iain Chalmers, Paul Glasziou, Trish Greenhalgh, Carl Heneghan, Alessandro Liberati et al. “Explanation of the 2011 Oxford Centre for Evidence-Based Medicine (OCEBM) Levels of Evidence (Background Document)”. Oxford Centre for Evidence-Based Medicine. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/explanation-of-the-2011-ocebm-levels-of-evidence/

  8. Clark HD, Wells GA, Huët C, McAlister FA, Salmi LR, Fergusson D, et al. Assessing the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials. 1999;20:448–52. https://doi.org/10.1016/s0197-2456(99)00026-4. PMID: 10503804.

    Article  PubMed  CAS  Google Scholar 

  9. Wells GA, Shea B, O’Connell D, Peterson J., Welch V, Losos M et al. The Newcastle Ottawa 1 Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta- Analyses. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

  10. Dalela D, Jeong W, Prasad MA, Sood A, Abdollah F, Diaz M, et al. A pragmatic randomized controlled trial examining the impact of the retzius-sparing approach on early urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol. 2017;72:677–85.

    Article  PubMed  Google Scholar 

  11. Menon M, Dalela D, Jamil M, Diaz M, Tallman C, Abdollah F, et al. Functional recovery, oncologic outcomes and postoperative complications after robot- assisted radical prostatectomy: an evidence-based analysis comparing the Retzius sparing and standard approaches. J Urol. 2018;199:1210–7.

    Article  PubMed  Google Scholar 

  12. Asimakopoulos AD, Topazio L, De Angelis M, Agrò EF, Pastore AL, Fuschi A, et al. Retzius-sparing versus standard robot-assisted radical prostatectomy: a prospective randomized comparison on immediate continence rates. Surg Endosc. 2019;33:2187–96.

    Article  PubMed  Google Scholar 

  13. Qiu X, Li Y, Chen M, Xu L, Guo S, Marra G, et al. Retzius-sparing robot-assisted radical prostatectomy improves early recovery of urinary continence: a randomized, controlled, single-blind trial with a 1-year follow-up. BJU Int. 2020;126:633–40. https://doi.org/10.1111/bju.15195.

    Article  PubMed  Google Scholar 

  14. Turkolmez K, Akpinar C, Kubilay E, Suer E. Retzius-Sparing vs Modified Anatomical Structure Preserving and Retzius-Repairing Robotic-Assisted Radical Prostatectomy: A Prospective Randomized Comparison on Functional Outcomes with a 1-Year Follow-Up. J Endourol 2022 https://doi.org/10.1089/end.2022.0073.

  15. Lim SK, Kim KH, Shin TY, Han WK, Chung BH, Hong SJ, et al. Retzius-sparing robot- assisted laparoscopic radical prostatectomy: combining the best of retropubic and perineal approaches. BJU Int. 2014;114:236–44.

    Article  PubMed  Google Scholar 

  16. Sayyid R, Simpson WG, Lu C, Terris MK, Klaassen Z, Madi R. Retzius-sparing robotic-assisted laparoscopic radical prostatectomy: a safe surgical technique with superior continence outcomes. J Endourol. 2017;31:1244–50.

    Article  PubMed  Google Scholar 

  17. Chang LW, Hung SC, Hu JC, Chiu KY. Retzius-sparing robotic-assisted radical prostatectomy associated with less bladder neck descent and better early continence outcome. Anticancer Res. 2018;38:345–51.

    PubMed  Google Scholar 

  18. Lee J, Kim HY, Goh HJ, Heo JE, Almujalhem A, Alqahtani AA, et al. Retzius sparing robot-assisted radical prostatectomy conveys early regain of continence over conventional robot-assisted radical prostatectomy: a propensity score matched analysis of 1,863 patients. J Urol. 2020;203:137–44.

    Article  PubMed  Google Scholar 

  19. Yee CH, Liu AQ, Chiu PKF, Teoh JYC, Hou SSM, Ng CF. A propensity score-matching study on retzius-sparing robotic-assisted radical prostatectomy: evidence of continence advantage on the early learning curve. Asian J Surg. 2022;45:1403–7. https://doi.org/10.1016/j.asjsur.2021.09.013.

    Article  PubMed  Google Scholar 

  20. Kadono Y, Nohara T, Kawaguchi S, Kadomoto S, Iwamoto H, Yaegashi H, et al. Postoperative functional and cancer control evaluation of conventional and Retzius-sparing robot-assisted radical prostatectomy: Comparison of selected cases by propensity score matching. Prostate. 2023;83:773–80. https://doi.org/10.1002/pros.24516.

    Article  PubMed  CAS  Google Scholar 

  21. Kadono Y, Nohara T, Kawaguchi S, Makino T, Naito R, Kadomoto S, et al. Comparison of postoperative urinary continence and incontinence types between conventional and Retzius-sparing robot-assisted radical prostatectomy. Neurourol Urodyn. 2023;42:1411–20. https://doi.org/10.1002/nau.25193.

    Article  PubMed  Google Scholar 

  22. Umari P, Eden C, Cahill D, Rizzo M, Eden D, Sooriakumaran P. Retzius-sparing versus standard robot-assisted radical prostatectomy: a comparative prospective study of nearly 500 patients. J Urol. 2021;205:780–90.

    Article  PubMed  Google Scholar 

  23. Eden CG, Moschonas D, Soares R. Urinary continence four weeks following Retzius-sparing robotic radical prostatectomy: The UK experience. J Clin Urol. 2017;11:15–20.

    Article  Google Scholar 

  24. Liao PC, Hung SC, Hu JC, Chiu KY. Retzius-sparing robotic-assisted radical prostatectomy facilitates early continence regardless of neurovascular bundle sparing. Anticancer Res. 2020;40:4075–80.

    Article  PubMed  Google Scholar 

  25. Anıl H, Karamık K, Yıldız A, Savaş M. Does transition from standard to Retzius-sparing technique in robot-assisted radical prostatectomy affect the functional and oncological outcomes? Arch Ital Urol Androl. 2021;93:399–403. https://doi.org/10.4081/aiua.2021.4.399.

    Article  PubMed  Google Scholar 

  26. Egan J, Marhamati S, Carvalho FLF, Davis M, O’Neill J, Lee H, et al. Retzius-sparing robot-assisted radical prostatectomy leads to durable improvement in urinary function and quality of life versus standard robot-assisted radical prostatectomy without compromise on oncologic ef!cacy: single-surgeon series and step-by- step guide. Eur Urol. 2021;79:839–57.

    Article  PubMed  Google Scholar 

  27. Deng W, Chen R, Jiang X, Zheng P, Zhu K, Zhou X, et al. Independent factors affecting postoperative short-term urinary continence recovery after robot-assisted radical prostatectomy. J Oncol. 2021;2021:9523442 https://doi.org/10.1155/2021/9523442.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ota Y, Hamamoto S, Matsuyama N, Hamakawa T, Iwatsuki S, Etani T, et al. Pelvic anatomical features after Retzius-sparing robot-assisted radical prosta- tectomy intended for early recovery of urinary symptoms. J Endourol. 2021;35:296–304.

    Article  PubMed  Google Scholar 

  29. A. Tahra, U.T. Sen, R. Sobay, A., İnkaya, E.V. Kucuk, U. Boylu. Comparison of Retzius-sparing versus standard robot-assisted radical prostatectomy for prostate cancer. Actas Urol Esp. 2021. https://doi.org/10.1016/j.acuro.2021.01.011

  30. Ficarra V, Rossanese M, Gilante M, Foti M, Macchione L, Mucciardi G, et al. Retzius-sparing vs. standard robot-assisted radical prostatectomy for clinically localised prostate cancer: a comparative study. Prostate Cancer Prostatic Dis. 2023;26:568–74. https://doi.org/10.1038/s41391-022-00625-3.

    Article  PubMed  Google Scholar 

  31. Yılmaz K, Ölçücü MT, Özsoy Ç, Aksaray EE, Kılıç Ş, Ateş M. Comparison of early urinary continence, oncological outcomes, and postoperative complications in retzius-sparing and standard approach robot-assisted radical prostatectomy. J Laparoendosc Adv Surg Tech A. 2023;33:150–4. https://doi.org/10.1089/lap.2022.0409.

    Article  PubMed  Google Scholar 

  32. Oshima M, Washino S, Nakamura Y, Konishi T, Saito K, Miyagawa T. Retzius-sparing robotic prostatectomy is associated with higher positive surgical margin rate in anterior tumors, but not in posterior tumors, compared to conventional anterior robotic prostatectomy. Prostate Int. 2023;11:13–19. https://doi.org/10.1016/j.prnil.2022.07.005.

    Article  PubMed  Google Scholar 

  33. Lambert E, Allaeys C, Berquin C, De Visschere P, Verbeke S, Vanneste B, et al. Is it safe to switch from a standard anterior to retzius-sparing approach in robot-assisted radical prostatectomy? Curr Oncol. 2023;30:3447–60. https://doi.org/10.3390/curroncol30030261.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Anceschi U, Morelli M, Flammia RS, Brassetti A, Dell’Oglio P, Galfano A, et al. Predictors of trainees’ proficiency during the learning curve of robot-assisted radical prostatectomy at high-volume institutions: results from a multicentric series. Cent Eur J Urol. 2023;76:38–43. https://doi.org/10.5173/ceju.2023.260.

    Article  Google Scholar 

  35. Tay LJ, Makin R, Ioannis S, Dokubo Ibi, Patel Keval, Sivathasan Sailantra, et al. Comparative analysis of early post-operative outcomes between retzius-sparing and anterior approach robotic radical prostatectomy for a single surgeon. J Clin Urol. 2023. https://doi.org/10.1177/20514158231156314

    Article  Google Scholar 

  36. Santok GD, Abdel Raheem A, Kim LH, Chang K, Lum TG, Chung BH, et al. Perioperative and short-term outcomes of Retzius-sparing robot-assisted laparoscopic radical prostatectomy stratified by gland size. BJU Int. 2017;119:135–41. https://doi.org/10.1111/bju.13632.

    Article  PubMed  Google Scholar 

  37. Galfano A, Panarello D, Secco S, Di Trapani D, Barbieri M, Napoli G, et al. Does prostate volume have an impact on the functional and oncological results of Retzius-sparing robot-assisted radical prostatectomy? Minerva Urol Nefrol. 2018;70:408–13. https://doi.org/10.23736/S0393-2249.18.03069-2.

    Article  PubMed  Google Scholar 

  38. Qian J, Fu Y, Wu X, Xu L, Zhang M, Zhang Q, et al. Impact of protruded median lobe on perioperative, urinary continence and oncological outcomes of Retzius-sparing robot-assisted radical prostatectomy. Transl Androl Urol. 2021;10:538–47. https://doi.org/10.21037/tau-20-1229.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu D, Yang Z, Qi J, Mundhenk J, Zanker P, Schwentner C, et al. Early urinary continence recovery following retzius-sparing robotic-assistant radical prostatectomy with suprapubic catheter: a short-term follow-up outcome. World J Urol. 2021;39:3251–7. https://doi.org/10.1007/s00345-021-03643-3.

    Article  PubMed  Google Scholar 

  40. Galfano A, Secco S, Dell’Oglio P, Rha K, Eden C, Fransis K, et al. Retzius-sparing robot-assisted radical prostatectomy: early learning curve experience in three continents. BJU Int. 2021;127:412–7. https://doi.org/10.1111/bju.15196.

    Article  PubMed  Google Scholar 

  41. Sayyid RK, Sherwood D, Simpson WG, Terris MK, Klaassen Z, Madi R. Retzius-sparing robotic-assisted laparoscopic radical prostatectomy: racial considerations for 250 consecutive cases. J Robot Surg. 2021;15:221–8. https://doi.org/10.1007/s11701-020-01096-1.

    Article  PubMed  Google Scholar 

  42. Olivero A, Galfano A, Piccinelli M, Secco S, Di Trapani D, Petralia G, et al. Retzius-sparing robotic radical prostatectomy for surgeons in the learning curve: a propensity score-matching analysis. Eur Urol Focus. 2021;7:772–8. https://doi.org/10.1016/j.euf.2020.03.002.

    Article  PubMed  Google Scholar 

  43. Bahouth Z, Laniado M, Fowler R, Charlesworth PJS. Positive surgical margins rate of Retzius-Sparing robot-assisted radical prostatectomy in a contemporary, unselected cohort. J Urol. 2022;207:609–16. https://doi.org/10.1097/JU.0000000000002295.

    Article  PubMed  Google Scholar 

  44. Tappero S, Dell’Oglio P, Longoni M, Buratto C, Palagonia E, Scilipoti P, et al. Challenging cases in high-risk prostate cancer patients treated with Retzius-sparing robot-assisted radical prostatectomy. World J Urol. 2022;40:1993–9. https://doi.org/10.1007/s00345-022-04073-5.

    Article  PubMed  Google Scholar 

  45. Galfano A, Tappero S, Eden C, Dell’oglio P, Fransis K, Guo H, et al. Multicentric experience in Retzius-sparing robot-assisted radical prostatectomy performed by expert surgeons for high-risk prostate cancer. Minerva Urol Nephrol. 2022;74:607–14. https://doi.org/10.23736/S2724-6051.22.04857-1.

    Article  PubMed  Google Scholar 

  46. Dell’Oglio P, Tappero S, Longoni M, Buratto C, Scilipoti P, Secco S, et al. Retzius-sparing robot-assisted radical prostatectomy in high-risk prostate cancer patients: results from a large single-institution series. Eur Urol Open Sci. 2022;38:69–78. https://doi.org/10.1016/j.euros.2022.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fonseca J, Froes G, Moraes-Fontes MF, Rebola J, Lúcio R, Almeida M, et al. Urinary continence recovery after Retzius-sparing robot-assisted radical prostatectomy in relation to surgeon experience. J Robot Surg. 2023;17:2503–11. https://doi.org/10.1007/s11701-023-01687-8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Akand M, Erdogru T, Avci E, Ates M. Transperitoneal versus extraperitoneal robot-assisted laparoscopic radical prostatectomy: a prospective single surgeon randomized comparative study. Int J Urol. 2015;22:916–21. https://doi.org/10.1111/iju.12854.

    Article  PubMed  CAS  Google Scholar 

  49. Guimarães GC, Oliveira RAR, Santana TBM, Favaretto RL, Mourão TC, Rocha MM, et al. Comparative analysis of functional outcomes between two different techniques after 1088 robotic-assisted radical prostatectomies in a high-volume cancer center: a clipless approach. J Endourol. 2019;33:1017–24. https://doi.org/10.1089/end.2019.0361.

    Article  PubMed  Google Scholar 

  50. Yang Y, Liu Z, Guo Y, Li X, Liu L, Wang X, et al. The efficiency and safety of transperitoneal versus extraperitoneal robotic-assisted radical prostatectomy for patients with prostate cancer: a single center experience with 1-year follow-up. Urol J. 2020;17:480–5. https://doi.org/10.22037/uj.v16i7.5475.

    Article  PubMed  Google Scholar 

  51. Fan S, Hao H, Chen S, Wang J, Dai X, Zhang M, et al. Robot-assisted laparoscopic radical prostatectomy using the KangDuo surgical robot system vs the da Vinci Si robotic system. J Endourol. 2023;37:568–74. https://doi.org/10.1089/end.2022.0739. Epub 2023 May 5. PMID: 36924278.

    Article  PubMed  Google Scholar 

  52. Xylinas E, Durand X, Ploussard G, Campeggi A, Allory Y, Vordos D, et al. Evaluation of combined oncologic and functional outcomes after robotic-assisted laparoscopic extraperitoneal radical prostatectomy: trifecta rate of achieving continence, potency and cancer control. Urol Oncol. 2013;31:99–103. https://doi.org/10.1016/j.urolonc.2010.10.012.

    Article  PubMed  Google Scholar 

  53. Cochetti G, Boni A, Barillaro F, Pohja S, Cirocchi R, Mearini E. Full neurovascular sparing extraperitoneal robotic radical prostatectomy: our experience with PERUSIA technique. J Endourol. 2017;31:32–37. https://doi.org/10.1089/end.2016.0477.

    Article  PubMed  Google Scholar 

  54. Scarcia M, Zazzara M, Divenuto L, Cardo G, Portoghese F, Romano M, et al. Extraperitoneal robot-assisted radical prostatectomy: a high-volume surgical center experience. Minerva Urol Nefrol. 2018;70:479–85. https://doi.org/10.23736/S0393-2249.18.03114-4.

    Article  PubMed  Google Scholar 

  55. Paladini A, Cochetti G, Felici G, Russo M, Saqer E, Cari L, et al. Complications of extraperitoneal robot-assisted radical prostatectomy in high-risk prostate cancer: a single high-volume center experience. Front Surg. 2023;10:1157528 https://doi.org/10.3389/fsurg.2023.1157528.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tuğcu V, Akça O, Şimşek A, Yiğitbaşı İ, Şahin S, Yenice MG, et al. Robotic-assisted perineal versus transperitoneal radical prostatectomy: a matched-pair analysis. Turk J Urol. 2019;45:265–72. https://doi.org/10.5152/tud.2019.98254.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tuğcu V, Ekşi M, Sahin S, Çolakoğlu Y, Simsek A, Evren İ, et al. Robot-assisted radical perineal prostatectomy: a review of 95 cases. BJU Int. 2020;125:573–8. https://doi.org/10.1111/bju.15018.

    Article  PubMed  Google Scholar 

  58. Carbonara U, Lippolis G, Rella L, Minafra P, Guglielmi G, Vitarelli A, et al. Intermediate-term oncological and functional outcomes in prostate cancer patients treated with perineal robot-assisted radical prostatectomy: a single center analysis. Asian J Urol. 2023;10:423–30. https://doi.org/10.1016/j.ajur.2023.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Deng W, Zhang C, Jiang H, Li Y, Zhu K, Liu X, et al. Transvesical versus posterior approach to retzius-sparing robot-assisted radical prostatectomy: a retrospective comparison with a 12-month follow-up. Front Oncol. 2021;11:641887 https://doi.org/10.3389/fonc.2021.641887.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhou X, Fu B, Zhang C, Liu W, Guo J, Chen L, et al. Transvesical robot-assisted radical prostatectomy: initial experience and surgical outcomes. BJU Int. 2020;126:300–8. https://doi.org/10.1111/bju.15111.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bravi CA, Balestrazzi E, De Loof M, Rebuffo S, Piramide F, Mottaran A, et al. Robot-assisted radical prostatectomy performed with different robotic platforms: first comparative evidence between Da Vinci and HUGO robot-assisted surgery robots. Eur Urol Focus. 2024;10:107–14. https://doi.org/10.1016/j.euf.2023.08.001.

    Article  PubMed  Google Scholar 

  62. Bravi CA, Paciotti M, Balestrazzi E, Piro A, Piramide F, Peraire M, et al. Outcomes of robot-assisted radical prostatectomy with the Hugo RAS surgical system: initial experience at a high-volume robotic center. Eur Urol Focus. 2023;9:642–4. https://doi.org/10.1016/j.euf.2023.01.008.

    Article  PubMed  Google Scholar 

  63. Moschovas MC, Bhat S, Sandri M, Rogers T, Onol F, Mazzone E, et al. Comparing the approach to radical prostatectomy using the multiport da Vinci Xi and da Vinci SP robots: a propensity score analysis of perioperative outcomes. Eur Urol. 2021;79:393–404. https://doi.org/10.1016/j.eururo.2020.11.042.

    Article  PubMed  Google Scholar 

  64. Noh TI, Kang YJ, Shim JS, Kang SH, Cheon J, Lee JG, et al. Single-port vs multiport robot-assisted radical prostatectomy: a propensity score matching comparative study. J Endourol. 2022;36:661–7. https://doi.org/10.1089/end.2021.0660. PMID: 34861794.

    Article  PubMed  Google Scholar 

  65. Ju GQ, Wang ZJ, Shi JZ, Zhang ZQ, Wu ZJ, Yin L, et al. A comparison of perioperative outcomes between extraperitoneal robotic single-port and multiport radical prostatectomy with the da Vinci Si Surgical System. Asian J Androl. 2021;23:640–7. https://doi.org/10.4103/aja.aja_50_21.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lenfant L, Sawczyn G, Aminsharifi A, Kim S, Wilson CA, Beksac AT, et al. Pure single-site robot-assisted radical prostatectomy using single-port versus multiport robotic radical prostatectomy: a single-institution comparative study. Eur Urol Focus. 2021;7:964–72. https://doi.org/10.1016/j.euf.2020.10.006.

    Article  PubMed  Google Scholar 

  67. Saidian A, Fang AM, Hakim O, Magi‐Galluzzi C, Nix JW, Rais‐Bahrami S. Perioperative outcomes of single vs multi‐port robotic assisted radical prostatectomy: a single institutional experience. J Urol. 2020;204:490–495.

    Article  PubMed  Google Scholar 

  68. Vigneswaran HT, Schwarzman LS, Francavilla S, Abern MR, Crivellaro S. A comparison of perioperative outcomes between single‐port and mul- tiport robot‐assisted laparoscopic prostatectomy. Eur Urol. 2020;77:671–674.

    Article  PubMed  Google Scholar 

  69. Kaouk J, Aminsharifi A, Wilson CA, Sawczyn G, Garisto J, Francavilla S, et al. Extraperitoneal versus transperitoneal single port robotic radical prostatectomy: a comparative analysis of perioperative outcomes. J Urol. 2020;203:1135–40. https://doi.org/10.1097/JU.0000000000000700.

    Article  Google Scholar 

  70. Abou Zeinab M, Beksac AT, Ferguson E, Kaviani A, Kaouk J. Transvesical versus extraperitoneal single-port robotic radical prostatectomy: a matched-pair analysis. World J Urol. 2022;40:2001–8. https://doi.org/10.1007/s00345-022-04056-6.

    Article  PubMed  Google Scholar 

  71. Balasubramanian S, Shiang A, Vetter JM, Henning GM, Figenshau RS, Kim EH. Comparison of three approaches to single-port robot-assisted radical prostatectomy: our institution’s initial experience. J Endourol. 2022;36:1551–8. https://doi.org/10.1089/end.2022.0330.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kaouk J, Beksac AT, Abou Zeinab M, Duncan A, Schwen ZR, Eltemamy M. Single port transvesical robotic radical prostatectomy: initial clinical experience and description of technique. Urology. 2021;155:130–7. https://doi.org/10.1016/j.urology.2021.05.022.

    Article  PubMed  Google Scholar 

  73. Bassett JC, Salibian S, Crivellaro S. Single-Port Retzius-Sparing robot-assisted radical prostatectomy: feasibility and early outcomes. J Endourol. 2022;36:620–5. https://doi.org/10.1089/end.2021.0542.

    Article  PubMed  Google Scholar 

  74. Chang Y, Xu W, Xiao Y, Wang Y, Yan S, Ren S. Super-veil nerve-sparing extraperitoneal pure single-port robotic-assisted radical prostatectomy on da Vinci Si robotic system. World J Urol. 2022;40:1413–8. https://doi.org/10.1007/s00345-022-03976-7.

    Article  PubMed  CAS  Google Scholar 

  75. Noh TI, Tae JH, Shim JS, Kang SH, Cheon J, Lee JG, et al. Initial experience of single-port robot-assisted radical prostatectomy: a single surgeon’s experience with technique description. Prostate Int. 2022;10:85–91. https://doi.org/10.1016/j.prnil.2021.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yu C, Xu L, Ye L, Zheng Q, Hu H, Ni K, et al. Single-port robot-assisted perineal radical prostatectomy with the da Vinci XI system: initial experience and learning curve using the cumulative sum method. World J Surg Oncol. 2023;21:46 https://doi.org/10.1186/s12957-023-02927-9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang H, Ning Z, Jia G, Zhang G, Wang J, Liu H, et al. Modified hood technique for single-port robot-assisted radical prostatectomy contributes to early recovery of continence. Front Surg. 2023;10:1132303 https://doi.org/10.3389/fsurg.2023.1132303.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhou X, Deng W, Li Z, Zhang C, Liu W, Guo J, et al. Initial experience and short-term outcomes of single-port extraperitoneal transvesical robot-assisted radical prostatectomy: a two-center study. Transl Androl Urol. 2023;12:989–1001. https://doi.org/10.21037/tau-23-98.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Soputro NA, Ferguson EL, Ramos-Carpinteyro R, Chavali JS, Geskin A, Kaouk J. Vesicourethral anastomosis in transvesical single-port robotic radical prostatectomy: a technical description and perioperative outcomes. J Endourol. 2023;37:1001–11. https://doi.org/10.1089/end.2023.0269.

    Article  PubMed  Google Scholar 

  80. Ramos-Carpinteyro R, Ferguson E, Soputro N, Chavali JS, Abou Zeinab M, Pedraza A, et al. Predictors of early continence after single-port transvesical robot-assisted radical prostatectomy. Urology. 2024;184:176–81. https://doi.org/10.1016/j.urology.2023.11.010.

    Article  PubMed  Google Scholar 

  81. Ficarra V, Novara G, Rosen RC, Artibani W, Carroll PR, Costello A, et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol. 2012;62:405–17. https://doi.org/10.1016/j.eururo.2012.05.045.

    Article  PubMed  Google Scholar 

  82. Visscher J, Hiwase M, Bonevski B, O’Callaghan M. The association of smoking with urinary and sexual function recovery following radical prostatectomy for localized prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2024;27:222–9. https://doi.org/10.1038/s41391-023-00701-2.

    Article  PubMed  Google Scholar 

  83. Rosenberg JE, Jung JH, Edgerton Z, Lee H, Lee S, Bakker CJ, et al. Retzius-sparing versus standard robotic-assisted laparoscopic prostatectomy for the treatment of clinically localized prostate cancer. Cochrane Database Syst Rev. 2020;8:CD013641 https://doi.org/10.1002/14651858.CD013641.pub2.

    Article  PubMed  Google Scholar 

  84. Liu J, Zhang J, Yang Z, Liu Q, Zhang W, Qing Z, et al. Comparison of Retzius-sparing and conventional robot-assisted laparoscopic radical prostatectomy regarding continence and sexual function: an updated meta-analysis. Prostate Cancer Prostatic Dis. 2022;25:47–54. https://doi.org/10.1038/s41391-021-00459-5.

    Article  PubMed  Google Scholar 

  85. Chung DY, Jung HD, Kim DK, Lee MH, Lee SW, Paick S, et al. Outcomes of Retzius-sparing versus conventional robot-assisted radical prostatectomy: a KSER update series systematic review and meta-analysis. PLoS One. 2022;17:e0268182 https://doi.org/10.1371/journal.pone.0268182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VF had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: VF. Acquisition of data: VF, MR, IR. Analysis and interpretation of data: VF, MR, IR. Drafting of the manuscript: RF. Critical revision of the manuscript for important intellectual content: RF, GG, AM, CT, FC, AG, FA, EDiT. Statistical analysis: VF, IR. Obtaining funding: None. Administrative, technical, or material support: None. Supervision: RF, GG, AM, CT, FC, AG, FA, EDiT. Other: None.

Corresponding author

Correspondence to Vincenzo Ficarra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ficarra, V., Rossanese, M., Ilaria, R. et al. Impact of transperitoneal anterior, retzius-sparing, extraperitoneal, transvesical and perineal approaches on urinary continence recovery after robot-assisted radical prostatectomy: a systematic review and meta-analysis of comparative studies. Prostate Cancer Prostatic Dis 28, 328–341 (2025). https://doi.org/10.1038/s41391-025-00943-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41391-025-00943-2

This article is cited by

Search

Quick links