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Cryo-EM structure of activated bile acids receptor TGR5
in complex with stimulatory G protein
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Dear Editor,
Takeda G protein-coupled receptor 5 (TGR5), also known as G

protein-coupled bile acids (BAs) receptor 1 (GPBAR1),1 belongs to
the class A GPCR subfamily. The major TGR5-dependent actions of
BAs include maintaining energy homeostasis, regulating glucose/
lipids metabolism, as well as immunosuppressive properties.2

TGR5 is identified as a potential therapeutic target for protecting
hepatocytes from bile acid overload, preventing atherosclerosis,
and inhibiting macrophage inflammation due to its critical role in
bile acid sensitization. Thus, elucidation of structural character-
istics of TGR5 and its activation mechanism would benefit the
discovery of therapeutic drugs for these metabolic disorders.
TGR5 activity is governed by endogenous unconjugated or

glycine-/taurine-conjugated primary and secondary BAs, semisyn-
thetic derivatives, and some synthetic nonsteroid molecules (Fig.
1a, left panel). Here we report the near-atomic resolution cryo-EM
structure of activated TGR5 in complex with the synthetic
nonsteroid agonist 23H3 and Gs protein (Fig. 1b, Supplementary
Fig. 1a). For cryo-EM structure determination, we engineered
human TGR5 protein (Supplementary Fig. 1b, c). The modified
TGR5 retains comparable nanomolar efficacy to several agonists as
the wild-type receptor (Fig. 1a, right panel). Vitrified complexes
were imaged and processed to yield the map of TGR5-Gs complex
at an overall resolution of 3.9 Å (Fig. 1b, Supplementary Figs. 2–3,
and Table 1). Backbones of transmembrane helices (TMs) are
resolved as well as residues with bulky side-chains. The TGR5
interfaces with Gαs, including α5-helix of Gαs, were also well
defined (Supplementary Fig. 4).
The density representing 23H was observed adjacent to the

extracellular base of TM3, TM5, and TM6 (Fig. 1b and
Supplementary Fig. 5a). Due to the limited quality of density
map, 23H cannot be precisely modeled in the structure. A sketchy
docking was applied to confirm that, the omitted density in the
putative TGR5 orthosteric site can accommodate the entire 23H
(Supplementary Fig. 5b). By structural analysis combining with
intracellular cAMP measurement studies, we extensively screened
and identified clusters of residues in the orthosteric site that are
critical for 23H induced TGR5 activation (Fig. 1c, d, Supplementary
Fig. 5, and Table 2). Within the orthosteric site, TGR5 established
interactions with 23H through residues on TM2, TM3, TM5, and
TM6. L71W2.60 decreased the potency of 23H by two orders of
magnitude, indicating the possible stereo clash between the
bulky side-chain and 23H. P692.58/72A2.61 double mutation also
reduced the potency of 23H by two orders of magnitude,
suggesting that this unique PXXP kink located on the cytosolic
half of TM2 may stabilize 23H bound conformation of the
orthosteric site. N93Q3.33 decreased the potency of 23H by two
orders of magnitude, indicating possible hydrogen bond forma-
tion between N933.33 and 23H. F96A3.36 caused reduced agonist
potency with 23H by two orders of magnitude, which might be

partly contributed by reducing the hydrophobic interaction with
23H. Bulky side-chain residues substitution of L973.37 to Trp and
Phe reduced agonist potency by two orders and one order of
magnitude, respectively, raising the possibility that bulky side-
chains may have the stereo clash with 23H indicative of
hydrophobic interaction with 23H. L166W5.40 and E169W5.43

caused reduced cAMP response, indicating that bulky side-chains
may clash with 23H. Y2406.51 to Ala but not Phe reduced agonist
potency by two orders of magnitude, indicating hydrophobic
interaction between Y2406.51 and 23H. Other residues, which
reduced the potency of 23H by one order of magnitude, are
described in Supplementary Text.
23H has divergent chemical structure comparing to bile acids

yet initiate convergent Gs coupling and signal transduction
through TGR5. To unveil the molecular mechanism of conver-
gence, we examined the potency of agonist LCA to TGR5 mutants
in cAMP assays (Supplementary Fig. 7, and Table 2). Consistently,
L71W2.60, L74W2.63, L166W5.40, E169W5.43, and Y240A6.51 compro-
mised the potency of LCA. Y89A3.29, which have little effect on the
potency of 23H, also decrease the potency of LCA by one order of
magnitude. W752.64, as a “lid”, made the orthosteric binding site
occluded. However, W75A2.64 did not affect potencies of 23H and
LCA. Notably, F96A3.36 compromised the potency of 23H but not
of LCA. These data suggested that 23H and LCA to a great extent
shared the same binding site but had slight differences in
recognition details.
TGR5 possesses the same fold of class A GPCRs. Since TGR5 and

β2AR share an overall 22% sequence identity (Supplementary Fig.
8), structural alignments of active TGR5 with that of inactive (PDB
code: 2RH1) and active (PDB code: 3SN6) β2AR

4 were performed,
respectively (Fig. 1e and Supplementary Fig. 9). In the super-
position of active TGR5 and inactive β2AR, the overall r.m.s.d is
2.9 Å over 145 residues majorly located on the TM region. The N-
terminus of TM6 in TGR5 swing outward about 9 Å (the distance
between Cα of residue K267 in TGR5 and the corresponding
residue R216 in β2AR), resulting in the elevation of intracellular
terminal of TM6 for GαsRas interaction. Two helical turns extension
of TM5 helix, which contributed to the interaction between TGR5
and GαsRas, was observed (Fig. 1e, upper panel). These structural
features are coincident with previous studies in β2AR activation.
Viewing towards the membrane plane from the intracellular side,
the TMs at cytoplasmic half of activated TGR5 and β2AR assume
similar topology (Fig. 1e, lower panel). Thus, both TGR5 and β2AR
form a similar cavity recognizing the C-terminal of the α5-helix of
GαsRas domain.
The structural superposition of TGR5-Gs with β2AR-Gs reveals

that the G protein adopts almost identical conformation
(Supplementary Fig. 10). The main differences of Gαs between
the two complexes are located at β2, β6, α4, and N-terminal of α5
in GαsRas. The main differences of Gβγ are located at some β
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sheets in Gβ. The total buried interface of the TGR5-GαRas, which is
mediated by extensive hydrogen bonds and hydrophobic
interactions, is about 841 Å2. This interface is majorly composed
by TM3/5/6, ICL1/3 of the TGR5, and α4/5 helices, β6 strand of
GαRas domain. Most of the residues involved in TGR5 interaction
are in the carboxyl-terminus of α5-helix of GαRas, such as Q384,

H387, Y391, L393, and F394. It is consistent with the observation in
β2AR-Gs interaction (Fig. 1f), suggesting the conserved Gs binding
and activation mechanism.
Sequence analysis revealed that several TGR5 residues involved

in the interaction were identical to that in β2AR, including E1093.49

(the most highly conserved amino acids E/DRY, which are located
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at the cytoplasmic ends of TM3), A1133.53, V1143.54, V1885.62,
A1925.66, and Q1955.69 (Fig. 1f and Supplementary Fig. 7). It is
worth mentioning that D312 in Gβ forms hydrogen bonds with
R44ICL1 of TGR5 (Fig. 1f), which was coincident with Gs-coupled
peptide activated class B GLP-1 receptor5 but not in β2AR. This
suggested that other than stabilizing the N-terminal α helix of Gαs,
Gβ might also involve in receptor binding. Besides, Nb35 binds to
the interface between Gβ and GαsRas to stabilize the complex for
structure determination (Fig. 1a).
In summary, our studies on TGR5-Gs complex structure and

mutagenesis analysis revealed the agonist binding mode of
TGR5 indicating the convergent activation mechanism, in which
the orthosteric binding site could recognize distinct ligands and
accommodate the receptor activation. The slight differences in
detailed recognition of 23H and LCA will also shed light on the
development of therapeutics with improved efficacy and
specificity. We firmly believed that TGR5 is a proper prototype
on the mechanistic understanding of other GPCRs sensing
steroids.
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Fig. 1 Structural and biochemical studies of TGR5-Gs complex. a cAMP response of full-length and truncated TGR5 with compounds 23H,
INT77, CA, LCA, and DLCA. cAMP responses are shown as percentages of the maximum response of each ligand. The data represent means ± S.
E.M. (n= 3–5) and most error bars are within the dimensions of the data points. b Cryo-EM structure of TGR5-Gs complex. TGR5, Gαs, Gβ, Gγ,
Nb35, and 23H are shown in blue, wheat, light blue, light green, grey, and yellow, respectively. c Residues in TGR5 that involve in 23H binding.
Density of 23H is shown in yellow. Residues that might involve in 23H binding are shown in pink. d cAMP responses of mutant TGR5. These
mutational TGR5 reduced agonist potency by two order compared with wild-type. The corresponding pEC50 is shown in supplementary Table
2. cAMP responses are shown as percentages of the maximum response of the WT. The data represent means ± S.E.M. (n= 3–5). WT data were
not shown on panel b (right panel) because all the mutations were tested at the same time. e Comparisons of active TGR5 (blue) with active
(grey) and inactive (wheat) β2AR. f Interface of TGR5 with Gs protein. Residues in TGR5 are shown in blue and residues in Gαs are shown in
wheat. D312 in Gβ is shown in light blue
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