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Predicting gastric cancer response to anti-HER2 therapy or
anti-HER2 combined immunotherapy based on multi-
modal data
Zifan Chen1, Yang Chen2, Yu Sun3, Lei Tang4, Li Zhang1,5, Yajie Hu3, Meng He4, Zhiwei Li6,7, Siyuan Cheng8, Jiajia Yuan2,
Zhenghang Wang2, Yakun Wang2, Jie Zhao9, Jifang Gong2, Liying Zhao6,7, Baoshan Cao8, Guoxin Li6,7, Xiaotian Zhang2✉,
Bin Dong5,10,11✉ and Lin Shen 2✉

The sole use of single modality data often fails to capture the complex heterogeneity among patients, including the variability in
resistance to anti-HER2 therapy and outcomes of combined treatment regimens, for the treatment of HER2-positive gastric cancer
(GC). This modality deficit has not been fully considered in many studies. Furthermore, the application of artificial intelligence in
predicting the treatment response, particularly in complex diseases such as GC, is still in its infancy. Therefore, this study aimed to
use a comprehensive analytic approach to accurately predict treatment responses to anti-HER2 therapy or anti-HER2 combined
immunotherapy in patients with HER2-positive GC. We collected multi-modal data, comprising radiology, pathology, and clinical
information from a cohort of 429 patients: 310 treated with anti-HER2 therapy and 119 treated with a combination of anti-HER2 and
anti-PD-1/PD-L1 inhibitors immunotherapy. We introduced a deep learning model, called the Multi-Modal model (MuMo), that
integrates these data to make precise treatment response predictions. MuMo achieved an area under the curve score of 0.821 for
anti-HER2 therapy and 0.914 for combined immunotherapy. Moreover, patients classified as low-risk by MuMo exhibited
significantly prolonged progression-free survival and overall survival (log-rank test, P < 0.05). These findings not only highlight the
significance of multi-modal data analysis in enhancing treatment evaluation and personalized medicine for HER2-positive gastric
cancer, but also the potential and clinical value of our model.
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INTRODUCTION
Gastric cancer (GC) is the fifth most prevalent cancer globally, and
the second most common cancer in China.1 Approximately
15–30% of advanced gastric or gastroesophageal junction
adenocarcinomas exhibit amplification or overexpression of the
human epidermal growth factor receptor 2 (ERBB2/HER2).2 The
heterogeneity of this biomarker poses substantial challenges for
effective treatment, with responses varying widely among
patients. The trastuzumab for GC trial revealed that less than half
patients with HER2-positive responded to a combination of
trastuzumab and chemotherapy,3 indicating significant intra-
patient and inter-tumor variability. Further complicating the
treatment landscape, the KEYNOTE-811 study’s interim findings4

showed that although adding pembrolizumab to standard
therapy substantially increases objective response rates as a
first-line therapy, this does not equate to a uniform enhancement
in overall survival (OS) for all patients. The discrepancies in survival

rates underscore the complexity of the disease and suggest that
conventional monomodal data may be insufficient for under-
standing the diverse presentations of HER2-positive GC, necessi-
tating a comprehensive evaluation using multi-modal data. By
integrating clinical profiles, radiological imaging, and pathological
samples, a more nuanced understanding of tumor behavior is
possible, which is imperative for refining treatment decisions.
Therefore, an integrated multi-modal approach is essential: to fully
characterize the heterogeneity of HER2-positive GC and devise
personalized and effective treatment strategies.
The potential of artificial intelligence (AI) as an innovative tool

for developing multimodal models is high,5–9 and its strength lies
in its ability to analyze different data types and integrate them at
the feature level.10–16 However, the application of AI in predicting
treatment response is still in its infancy,17 particularly for
predicting treatment response in complex diseases such as
GC,18,19 a task that is far more difficult than diagnosis.20 Diagnostic

Received: 21 February 2024 Revised: 4 July 2024 Accepted: 17 July 2024

1Center for Data Science, Peking University, Beijing, China; 2Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry
of Education), Peking University Cancer Hospital and Institute, Beijing, China; 3Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of
Education), Peking University Cancer Hospital and Institute, Beijing, China; 4Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of
Education), Peking University Cancer Hospital and Institute, Beijing, China; 5National Biomedical Imaging Center, Peking University, Beijing, China; 6Department of General
Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; 7Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou,
China; 8Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China; 9National Engineering Laboratory for Big Data Analysis and
Applications, Peking University, Beijing, China; 10Beijing International Center for Mathematical Research (BICMR), Peking University, Beijing, China and 11Center for Machine
Learning Research, Peking University, Beijing, China
Correspondence: Xiaotian Zhang (zhangxiaotianmed@163.com) or Bin Dong (dongbin@math.pku.edu.cn) or Lin Shen (shenlin@bjmu.edu.cn)
These authors contributed equally: Zifan Chen, Yang Chen, Yu Sun, Lei Tang, Li Zhang.

www.nature.com/sigtransSignal Transduction and Targeted Therapy

© The Author(s) 2024

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-024-01932-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-024-01932-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-024-01932-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41392-024-01932-y&domain=pdf
http://orcid.org/0000-0003-1134-2922
http://orcid.org/0000-0003-1134-2922
http://orcid.org/0000-0003-1134-2922
http://orcid.org/0000-0003-1134-2922
http://orcid.org/0000-0003-1134-2922
mailto:zhangxiaotianmed@163.com
mailto:dongbin@math.pku.edu.cn
mailto:shenlin@bjmu.edu.cn
www.nature.com/sigtrans


models typically rely on large datasets, including normal and
abnormal samples.20,21 However, predicting treatment response
requires more refined datasets that are specific to a particular
disease stage and that reflect the subtle effects of different
treatment regimens over time.22,23 Additionally, the incomplete-
ness of treatment datasets poses technical challenges in the AI
model construction and learning process.24,25 In realistic anti-HER2
therapy or anti-HER2 combined immunotherapy scenarios, the
patient’s imaging history may only be partially available. This
modality deficit has not been fully considered in many studies,26,27

while it may seriously affect the learning ability of the model and
its utility in clinical decision-making.
To address the challenges, this study aimed to use a

comprehensive analytical approach to accurately predict the
treatment response in patients with GC receiving anti-HER2
therapy or anti-HER2 combined immunotherapy. We assembled
a comprehensive multi-center dataset of 429 patients. This
valuable dataset integrates diverse modalities of information from
the baseline treatment phase, including radiological computerized
tomography (CT) scans, pathological whole-slide images, radi-
ological and pathological reports, and general patient information.
Our study focused on two distinct cohorts of patients treated at
the Peking Cancer Hospital: the anti-HER2 (those receiving anti-
HER2 therapy and chemotherapy) and anti-HER2 combined
immunotherapy (those receiving anti-HER2 therapy combined
with anti-PD-1/PD-L1 immune checkpoint inhibitors [ICI] and
chemotherapy) cohorts. We further supplemented these cohorts
with additional patients from external medical facilities. With this
rich dataset, we developed a unified, transformer-based deep
learning model called the Multi-Modal model (MuMo), which
effectively incorporates multi-modal inputs to predict the treat-
ment response. MuMo represents a major advancement in
leveraging diverse data types, even in cases of missing modalities,
to improve prediction accuracy. Experimental results demonstrate
MuMo’s ability to extract complementary insights from multi-
modal data and provide more accurate treatment response
predictions.

RESULTS
Multi-modal dataset and cohort characteristics in HER2-positive
GC study
Our study commenced with collecting an extensive multi-modal
dataset encompassing radiology, pathology, and patient informa-
tion, from a large group of 17,787 patients with GC during the
baseline treatment phase at multiple centers. This dataset
included data from Peking University Cancer (PKCancer) Hospital,
Nanfang Hospital, and Peking University Third Hospital. Rigorous
selection criteria were applied to refine the cohort (Fig. 1). These
criteria include excluding patients with negative or unknown HER2
status, those not undergoing anti-HER2 therapy, and those lacking
multi-modal data. This process resulted in a cohort of 429 patients
with HER2-positive GC, between January 2007 and January 2023
(Table 1) (with additional information in Supplementary Tables S1,
S2). As shown in Fig. 2, of the 429 patients, 390 were from Peking
University Cancer Hospital. Among them, 271 underwent anti-
HER2 therapy, forming an anti-HER2 cohort. The remaining 119
patients, forming an anti-HER2 combined immunotherapy cohort,
received a combination of anti-HER2 therapy with either anti-PD-1
inhibitors (85 patients) or anti-PD-L1 inhibitors (34 patients).
Additionally, we included an external cohort of 39 patients from
Nanfang Hospital and Peking University Third Hospital. Most
patients in these cohorts were diagnosed with stage IV GC, with a
prevalence of 98.52% in the anti-HER2 cohort, 97.48% in the anti-
HER2 combined immunotherapy cohort, and 97.44% in the
external cohort. The median age of the patients in the three
cohorts was 63 (interquartile range [IQR]: 55–69), 65 (IQR: 58–72),
and 60 years (IQR: 55–68), respectively. The percentage of men

was 83.03% in the anti-HER2 cohort, 79.83% in the anti-HER2
combined immunotherapy cohort, and 76.92% in the external
cohort. Regarding tumor location, the majority were non-
gastroesophageal junction (non-GEJ) tumors, accounting for
69.74%, 70.59%, and 79.49% of patients in each cohort,
respectively. Additionally, most patients in all cohorts had either
moderately differentiated (47.60%, 47.06%, and 35.90%, respec-
tively) or poorly differentiated (48.71%, 52.10%, and 58.97%,
respectively) carcinomas.
Our amassed multi-modal dataset offers rich and comprehen-

sive patient data. This included demographic details (that is, age
and sex), tumor characteristics (that is, tumor location, degree of
differentiation, and Lauren classification), and treatment specifics
(that is, lines of treatment received and time elapsed before
initiating treatment). These details are visually represented in
Fig. 3b, c and Supplementary Fig. S1. Moreover, each patient’s
dataset included data from at least one modality of both
pathology and radiology. However, complete data from both
modalities (radiology and pathology) was available for less than
half of the patients (Fig. 3a). To address this variability in data
availability, learnable embeddings were introduced as place-
holders for missing modalities. This technology helps to infer
missing information, enhancing the robustness of our multi-modal
model (detailed methodology in the methods section). Further-
more, structured clinical reports from both radiological and
pathological assessments provided additional crucial clinical
insights, aiding in a more comprehensive understanding of each
patient’s condition (Fig. 2b, c and Supplementary Fig. S1).
Specifically, radiological reports included detailed information on
post-operative status (whether the patient had undergone
gastrectomy), the count and locations of metastatic lymph nodes,
occurrences of liver or lung metastases, peritoneal metastasis, and
diversity in metastatic lymph node types. In contrast, pathological
reports encompassed data on the proportion of tumors, tumor-
infiltrating lymphocytes (TILs), and variability in HER2 expression
within the tumor.

MuMo’s predictive performance in the anti-HER2 cohort
The proposed MuMo demonstrated promising efficacy in predict-
ing treatment responses in the anti-HER2 cohort, achieving an
area under the curve (AUC) score of 0.821 (95% Confidence
Interval [CI]: 0.692–0.949; Fig. 4a and Supplementary Table S3).
Additionally, MuMo exhibited an impressive number needed to
treat a value of 1.83 (95% CI: 1.28–4.24; refer to Supplementary
Table S4), indicating a high efficiency in predicting treatment
response. MuMo’s predictive performance surpassed that of the
six individual clinicians in a similar test and even matched the
combined score of consultation among these clinicians (Supple-
mentary Figs. S2a, b). To evaluate the generalizability of MuMo, we
applied it to an external cohort that functioned as an independent
test set. MuMo showed a strong discriminative ability in
distinguishing non-responders from responders, as indicated by
an AUC score of 0.884 (95% CI: 0.745–1.000; Fig. 4b). This
performance highlights the effectiveness of MuMo in multi-center
data cases. Additionally, we have showcased the flexible
extensibility of the MuMo framework by utilizing two public
datasets: TCGA-STAD for gastric adenocarcinoma and TCGA-BRCA
for invasive breast carcinoma, detailed in Supplementary Figs. S3,
S4 and Supplementary Text S1. This extensibility is further
illustrated through its application to potential molecular pathol-
ogy data, as documented in Supplementary Fig. S5 and
Supplementary Text S2. Using the Youden index, a statistical
measure derived from the receiver operating characteristic (ROC)
curves, we stratified each cohort into high- and low-risk groups
based on MuMo’s predictive scores (see Supplementary Text S3
for details). The low-risk group exhibited significantly longer
progression-free survival (PFS) (log-rank test, P= 0.0019 in the
validation set and P= 0.0024 in the test set; Fig. 4d, e) and
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increased OS (log-rank test, P= 0.0067 in the validation set;
Fig. 4g) than the high-risk group. Notably, in the independent test
set, a marked difference in median OS was observed between the
two groups (6 months for the high-risk group vs. 17 months for
the low-risk group; Fig. 4h).

MuMo’s adaptability in predicting responses in the anti-HER2
combined immunotherapy cohort
To further evaluate the adaptability of MuMo in diverse treatment
cohorts, we analyzed its predictive efficacy in the anti-HER2
combined immunotherapy cohort. In this cohort, MuMo demon-
strated remarkable performance with an AUC of 0.914 (95% CI:
0.803–1.000; Fig. 4c, Supplementary Table S3 and Supplementary
Fig. S2c), indicating high accuracy in response predictions.
Moreover, MuMo proficiently differentiated between high- and

low-risk groups in terms of PFS (log-rank test, P= 0.0079; Fig. 4f)
and OS (log-rank test, P= 0.0042; Fig. 4i), which are essential for
patient prognosis and treatment planning. This impressive
performance highlights the critical role of MuMo in adapting to
a relatively novel treatment regimen, such as anti-HER2 combined
immunotherapy, where clinician experience and historical data
may be limited. The capability of advanced deep learning models,
such as MuMo, to extract meaningful insights from various cohorts
demonstrates their potential for broad applications in emerging
treatment scenarios.

MuMo’s consistent stability in treatment response prediction
To ascertain the reliability and consistency of MuMo in predicting
treatment responses, we conducted a confirmatory experiment
using 2000 bootstrap replicates, a statistical method to estimate

Fig. 1 Multi-modal data collection and filtering flowchart for patients with HER2-positive GC from multi-center study. The cohort, comprising
17,787 patients with GC, was derived from a consecutive series of patients diagnosed with stomach adenocarcinoma at Peking University
Cancer (PKCancer) Hospital (10,740 patients), Nanfang Hospital (6773 patients), and Peking University Third Hospital (274 patients) between
January 2007 and January 2023. The selection process involved exclusions based on HER2 negativity or unknown status, absence of anti-HER2
therapy, and lack of comprehensive multimodal data, including necessary pathological and radiological information collected within a
defined period around treatment initiation. The final multi-modal analysis cohort was segmented into 390 patients from the PKCancer
Hospital and 39 patients from external hospitals
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the sampling distribution, for both the anti-HER2 and anti-HER2
combined immunotherapy cohorts. We calculated the AUC scores
for each replicate, and these scores were visually represented
using box plots, which effectively illustrated the distribution and
variability of the scores. The results demonstrated that MuMo
exhibited a small performance variability, which is a key indicator
of its consistent stability and reliability in predicting treatment
responses (Fig. 4j). Furthermore, MuMo displayed significantly
lower performance variability than both individual clinicians and
their collective decision-making processes in group consultations
(Levene’s test, P < 0.05; Supplementary Fig. S6). Additionally, we
demonstrated MuMo’s stable predictive performance (AUC 0.800
to 0.833; Supplementary Fig. S7) across five sets of randomly
varied doctor annotations (Supplementary Table S5). These
outcomes highlight MuMo’s capability to provide dependable
and stable predictions in treatment response scenarios.

Ablation studies of multi-modal information fusion in MuMo
The proposed MuMo offers a comprehensive perspective of
patients with GC undergoing anti-HER2 therapy, largely because
of its specially designed fusion modules for multi-modal

information fusion. To assess the contribution of the MuMo fusion
modules to multi-modal information, we conducted three ablation
studies.
In our first experiment, we analyzed patients with both

radiological and pathological data (Fig. 4k and Supplementary
Table S6). Our results showed that integrating radiological and
pathological data improved the predictive AUC score of the model
to 0.750, which was superior to the AUC scores achieved by
models relying solely on radiological (0.639) or pathological
(0.703) data. The pathology-only model performed notably better
than the radiology-only model, which can be attributed to the
comprehensive visual insights provided by pathological analysis.
As the clinical gold standard for diagnosis, pathology offers an
effective portrayal of the tumor immune microenvironment, which
is a crucial determinant of treatment response.28

Second, we evaluated the effectiveness of MuMo’s specialized
inter-modal fusion module, which includes modal-agnostic feature
alignment, to integrate disparate information sources (more
details in the methods section). The fusion module showed
enhanced performance compared with simple combinations of
features derived from radiological and pathological data (Fig. 4l
and Supplementary Table S7), such as element-wise multiplication
(0.577), summation (0.682), and concatenation (0.731). This
underscores MuMo’s ability to effectively consolidate inter-
modal information. Moreover, when we assessed a MuMo variant
that lacked modal-agnostic feature alignment in the latent space,
its performance decreased (AUC scores: 0.772) compared to the
full MuMo (0.821), demonstrating the advantage of feature
alignment across different modalities in a unified embedding
space, as supported by the relevant literature.10,11

Finally, we found that incorporating clinical reports led to a
promising increase in the AUC score (0.703–0.769; Fig. 4m and
Supplementary Table S8). Furthermore, including detailed patient
information improved the performance of model (increasing the
AUC scores: 0.769–0.821). These findings suggest that compre-
hensive data from clinical reports and patient-specific information
significantly enhanced MuMo’s predictive capabilities.

MuMo’s interpretability with clinical insights
We validated the alignment between MuMo predictions and
established clinical knowledge, focusing on two key perspectives:
image-focused regions for visual qualitative analysis and clinical
information weights for quantitative analysis. In the pathological
whole-slide images, we used regional important scores that
quantified the model’s focus on specific areas to highlight where
the model concentrated its predictions. Notably, these focus areas
correlated intuitively with HER2 (3+) expression regions, char-
acterized by a high tumor-to-stroma ratio (over 50%), well-
differentiated tumor glands, abundant tumor-associated immune
cell infiltration, and significant desmoplastic stroma surrounding
tumor cells, suggesting that MuMo effectively deduces vital tumor
information for predictions (Fig. 5a and Supplementary Fig. S8). In
radiological CT scans, we found that MuMo was primarily
concentrated in regions harboring lesions, as identified through
gradient-weighted class activation mapping (Grad-CAM),29 align-
ing with key areas of clinical concern in cancer diagnosis and
treatment (Fig. 5b and Supplementary Fig. S9).
Subsequently, we evaluated the risk scores predicted by MuMo

across various clinical information subgroups, including patient
information, radiologically structured clinical reports, and patholo-
gically structured clinical reports (Fig. 5c–l and Supplementary Fig.
S10). We observed that in the anti-HER2 cohort, sex, degree of
differentiation, Lauren type, and peritoneal metastasis were
identified as key decision variables by the MuMo predicted risk
scores. Among these, male patients were predicted to have higher
risk scores compared to female patients (Mann–Whitney U test,
P= 0.041; Fig. 5c). For patients with poorly differentiated tumors
(Fig. 5d), MuMo assessed their risk probability as significantly higher

Table 1. Baseline characteristics of anti-HER2, anti-HER2 combined
immunotherapy and external hospital cohorts

Characteristic Anti-HER2
cohort
(n= 271)

Anti-HER2 combined
immunotherapy cohort
(n= 119)

External
cohort
(n= 39)

Age

Median, IQR 63, 55–69 65, 58–72 60, 55–68

Sex

Male 225 (83.03%) 95 (79.83%) 30 (76.92%)

Female 46 (16.97%) 24 (20.17%) 9 (23.08%)

Tumor site

GEJ 82 (30.26%) 35 (29.41%) 8 (20.51%)

Non-GEJ 189 (69.74%) 84 (70.59%) 31 (79.49%)

Degree of differentiation

Poorly 132 (48.71%) 62 (52.10%) 23 (58.97%)

Moderately 129 (47.60%) 56 (47.06%) 14 (35.90%)

Well 10 (3.69%) 1 (0.84%) 2 (5.13%)

Lauren type

Intestinal 17 (63.84%) 82 (68.91%) 6 (15.79%)

Diffused 34 (12.55%) 12 (10.08%) 1 (2.63%)

Mixed 43 (15.87%) 16 (13.45%) 1 (2.63%)

N/A 21 (7.75%) 9 (7.56%) 31 (79.49%)

PD-L1 expression

Positive 44 (16.24%) 43 (36.13%) 8 (20.51%)

Negative 60 (22.14%) 25 (21.01%) 8 (20.51%)

N/A 167 (61.62%) 51 (42.86%) 23 (58.97%)

MMR status

pMMR 137 (50.55%) 104 (87.39%) 18 (46.15%)

dMMR 2 (0.74%) 1 (0.84%) 0 (0.00%)

N/A 132 (48.71%) 14 (11.76%) 21 (53.85%)

EBV status

Positive 3 (1.11%) 1 (0.84%) 0 (0.00%)

Negative 119 (43.91%) 89 (74.79%) 9 (23.08%)

N/A 149 (54.98%) 29 (24.37%) 30 (76.92%)

TNM stages

III 4 (1.48%) 3 (2.52%) 1 (2.56%)

IV 267 (98.52%) 116 (97.48%) 38 (97.44%)
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compared to those with moderately differentiated tumors
(P < 0.0001) and well-differentiated tumors (P= 0.0003). For Lauren
classification (Fig. 5e), MuMo assessed that the diffuse type had the
highest risk probabilities, being significantly higher compared to
the intestinal type (P < 0.0001) and the mixed type (P= 0.0038).
Conversely, the intestinal type had relatively lower risk, with the
mixed type falling between the two in GC. Additionally, MuMo
recognized patients with peritoneal metastasis as having signifi-
cantly poorer responses than those without peritoneal metastasis
(P < 0.0001; Fig. 5f). Furthermore, an increase in TILs was also seen
to slightly reduce the predicted risk scores (Pearson correlation
coefficient r=−0.092), indicating MuMo’s awareness of the
relationship between the abundance and activity of TILs and
patient outcomes. In the anti-HER2 combined immunotherapy
cohort, the presence of peritoneal metastasis also remained a
significant decision variable for predicting high risk scores by
MuMo (P= 0.027; Fig. 5i); additionally, MuMo identified patients
undergoing second-line treatment as having poorer responses
compared to those undergoing first-line treatment; similarly, MuMo
also recognized a negative correlation (r=−0.211; Fig. 5l) between
the abundance and activity of TILs and predicted risk probabilities,
suggesting that a higher abundance of TILs is associated with
better treatment responses. These analyses demonstrate that
MuMo can extract appropriate knowledge from clinical reports
and patient information to make accurately treatment response
predictions, and its recognition of these significant decision
variables aligns with current clinical findings,30,31 confirming
MuMo’s reliability and clinical relevance (Fig. 6).

DISCUSSION
This study demonstrated the accuracy and utility of multi-modal
data analysis in predicting the response to anti-HER2 therapy in
patients with HER2-positive GC. Our dataset, which is the largest
available as confirmed by a thorough literature search, covers
various types of medical information, including patient demo-
graphics, radiological CT scans containing multiple lesions,
pathologic whole-slide images with different HER2 expression
levels (0–3+), and structured clinical reports. Our proposed MuMo
excels in predicting the response to both anti-HER2 therapy and
anti-HER2 combined with immunotherapy in patients with HER2-
positive GC. Importantly, the external validation of the predictive
capabilities of MuMo in an independent cohort from other
medical centers underscores its potential applicability in diverse
clinical settings.
The advantage of MuMo lies in its efficient integration

capabilities with multi-modal data, compared to the widely studied
unimodal models.18,22,32–34 It utilizes a comprehensive and rich
patient profile to improve the accuracy of treatment response
predictions. Recent studies have started to investigate the use of
multi-modal data in treatment response prediction for various
cancers, including clear cell renal cell carcinoma,35 non-small cell
lung cancer,17,36,37 and hepatocellular carcinoma.38 However, there
is a notable scarcity of response prediction research on patients
with HER2-positive GC and their response to anti-HER2 therapy.
Moreover, current approaches mainly rely on simple integration
methods, such as concatenation,39 aligning and then averaging,40

or multivariate machine learning analysis,35,38,41 which do not take

Fig. 2 Workflow of the Multi-Modal Model (MuMo) for predicting treatment response to patients with anti-HER2 GC. a Feature extraction
process: Pathological WSIs and radiological CT scans were processed to extract deep and omics features, which were correlated with clinical
reports provided by pathologists or radiologists. b Multi-modal information fusion process: MuMo employs intra-modal fusion modules to
integrate image features and clinical reports from pathology and radiology to obtain enhanced features. These features were then
amalgamated using an inter-modal fusion module, and the patient information was incorporated using a separate patient information fusion
module. Subsequently, a predictor was used to predict the risk scores. MuMo can handle missing modalities by employing learnable modality
features as placeholders. c Overview of experimental pipeline: Data were sourced from Beijing Cancer Hospital (PKCancer) and external
hospitals. The patients were divided into anti-HER2 and anti-HER2 combined immunotherapy, as well as external cohorts. The anti-HER2
cohort was randomly divided into a training set to train the model and a validation set to tune its parameters. The final model with frozen
parameters was used to analyze the results. Additionally, an external cohort was used as an independent test set to test the robustness of the
model. In the anti-HER2 combined immunotherapy cohort, a similar analytical process was employed
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into account the potential uniqueness and overlap of information
across different modalities in medical field. In contrast, MuMo
dynamically decouples modal-agnostic and modal-specific features,
facilitating a more rational process of multi-modal fusion by aligning
modal-agnostic features. Additionally, MuMo uniquely employs a
learnable feature approach to address the issue of missing
modalities in real-world scenarios, enabling accurate treatment
response predictions for patients with partially incomplete data.
Furthermore, to realistically validate MuMo’s application in clinical
practice, our study includes extensive comparisons between MuMo’s
predictions and the evaluations made by six clinicians. This
demonstrates the potential of MuMo to assist in clinical decision-
making, highlighting its practical utility in supporting physicians.
Regarding clinical applications, the module design and stan-

dardized architecture of our model allow easy scaling to
accommodate more lesions, modalities, and time points. For
instance, by including more lesions in the CT images, the intra-
modal fusion module in the feature extraction process can be
readily expanded. The model dynamic structure can adapt to

increasingly complex treatment response prediction tasks, such as
incorporating patient information from multiple time points.
Therefore, the standardized framework allowed us to form a
novel continual-learning paradigm that incorporated the model
into the entire medical imaging and reporting workflow. Once the
new information (images or text) is generated, our model can be
trained without waiting for the complete collection of patient
information. This is particularly important for providing persona-
lized treatment, as the model can immediately consider the latest
diagnostic information, treatment response, and changes in
patient status to enable more accurate treatment predictions
and improve patient management. For patients undergoing
treatment, such modality-wise analysis can quickly identify
whether they are unlikely to respond positively to the current
treatment regimen, facilitating the prompt adjustment of ther-
apeutic plans. For patients requiring chronic disease management,
such meticulous optimization can also capture subtle health
changes, providing physicians with real-time feedback on
potential complications or signs of disease recurrence.

Fig. 3 Data characteristics of anti-HER2 and anti-HER2 combined immunotherapy cohorts. a Distribution of proportions for pathological and
radiological image data across different sets. b Distribution of clinical information, encompassing patient information, radiological clinical
reports, and pathological clinical reports. Stacked bars and violin plots were used for discrete and continuous data, respectively. c Heatmap
illustrating the distribution of clinical information at the individual level, with each row representing one piece of clinical information and each
column representing one individual. Some clinical information items with multiple labels, such as the location of the metastatic lymph nodes,
HER2 expression heterogeneity, and tumor locations, are presented in Supplementary Fig. S1
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Another major potential of the MuMo is its ability to integrate
more modalities in the future, which is key to realizing
personalized treatment strategies. Our model consolidated diverse
data sources, including radiological CT, pathological images, and
clinical reports, and can incorporate even more modalities in the
future, such as cancer biomarkers, gene expression, and lifestyle
and health history information. Adding such data may significantly
improve the model’s accuracy in predicting treatment response
while also helping physicians formulate more targeted treatment

plans. For instance, by integrating gene expression data, we can
gain deeper insight into patient’s pharmacogenomics, thereby
optimizing drug selection and dosage adjustments.
The flexibility of the MuMo makes it an ideal platform for

interdisciplinary collaboration, facilitating knowledge fusion
between bioinformaticians, clinicians, and data scientists.
Through such collaborations, MuMo can continuously assim-
ilate the latest research discoveries and clinical feedback to
iteratively update and refine its algorithms. Additionally, the

Fig. 4 Performance of the Multi-Modal Model (MuMo). a–c Receiver operating characteristic (ROC) curves display MuMo’s performance in
predicting treatment responses, distinguishing between non-responders and responders. These curves pertain to the validation and test sets
of the anti-HER2 cohort and the validation set of the anti-HER2 combined immunotherapy cohort. d–f Kaplan–Meier (KM) curves depict
Progression-Free Survival (PFS) based on MuMo predictions. These curves were derived from the validation and test sets of the anti-HER2
cohort and the validation set of the anti-HER2 combined immunotherapy cohort. In the Kaplan–Meier analysis, patients were categorized into
high-risk (red line) and low-risk (blue line) groups using the Youden index. The log-rank (Mantel-Cox) test was used to determine statistical
significance, with a two-sided P-value of < 0.05 set as significant. g–i Kaplan–Meier (KM) curves show Overall Survival (OS) based on MuMo
predictions for the validation and test sets of the anti-HER2 cohort and the validation set of the anti-HER2 combined immunotherapy cohort.
j Stability analysis of MuMo in treatment response prediction. Ablation studies evaluating the integration of radiological and pathological data
(k), the impact of various integration modes (l), and the inclusion of clinical information within MuMo (m). Error bars represent the 95%
confidence intervals (CI) for the AUC scores
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MuMo framework is highly extensible and can be rapidly
expanded to other cancer types and diagnostic markers. By
undergoing targeted retraining with specific cohorts, MuMo can
swiftly adapt to different cancers such as breast cancer or to
other clinically relevant immunohistochemical (IHC) markers
like ER, PR, and EGFR. This adaptability not only enhances the
model’s utility across various oncological applications but also
supports a more comprehensive approach to personalized
medicine. Furthermore, we hope to explore the use of data
collected from wearable devices and remote monitoring tools,
such as patient activity levels and physiological responses,

which can provide the model with comprehensive health
information for more accurate personalized treatment.
Although our preliminary findings using the MuMo are

promising, we must acknowledge its limitations. First, although
our dataset was collected from multiple medical centers and
focused primarily on patients with HER2-positive GC, expansion is
possible. Secondly, despite performing accurate treatment
response predictions, the model still relies on human input for
certain sub-tasks, such as requiring experts to annotate bounding
boxes around lesions in radiological images and delineate regions
with different HER2 expression levels in pathological slides.

Fig. 5 Interpretability analysis of the Multi-Modal Model (MuMo). a Visualization of the importance scores of ‘bags’ on pathological whole-
slide images. Darker red regions signify a higher contribution to the response prediction, whereas darker blue regions suggest a diminished
influence. The second row shows the four most important bags on the slide image. b Visualization of attention maps on radiological lesion
images using the Grad-CAM algorithm. Darker red regions signify heightened attention from MuMo, whereas darker blue regions denote
reduced attention. The red bounding box emphasizes MuMo’s predominant focus on lymph node and liver tumors in this responder.
c–g Evaluation of predicted risk scores across various clinical information subgroups in the anti-HER2 cohort. h–l Evaluation of predicted risk
scores across various clinical information subgroups in the anti-HER2 combined immunotherapy cohort
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In future studies, we plan to incorporate automation techniques,
including the deployment of large language models and AI
agents, to further reduce the need for human input and move
closer to fully autonomous end-to-end treatment response
prediction systems.
Summarily, MuMo represents a promising strategy for lever-

aging AI capabilities to improve response-predictive accuracy in
patients with GC receiving anti-HER2 or anti-HER2 combined
immunotherapy. By employing a comprehensive, multi-modal
dataset, we are making significant strides toward realizing
personalized treatment strategies. The model is an impressive
testament to the potential integration of diverse modalities and
AI, highlighting an exciting direction for future oncology research.

MATERIALS AND METHODS
Data collection
Our study included patients recruited between January 2007 and
January 2023, who were divided into three distinct cohorts: the
anti-HER2 cohort, comprising patients who received anti-HER2
therapy; the anti-HER2 combined immunotherapy cohort, com-
prising patients treated with anti-HER2 and anti-PD-1/PD-L1 ICI;
and an external cohort, comprising patients from external
hospitals who received anti-HER2 therapy. The study received
approval from the Ethics Committees of Peking University Cancer
Hospital, Nanfang Hospital, and Peking University Third Hospital
(approval numbers 2020KT08, NFEC2017171, and D2021077,
respectively). Informed consent was obtained from all participants
or their legally authorized representatives. We asked pathologists
and radiologists to annotate the medical images and provide
structured clinical reports to ensure comprehensive data collec-
tion. Epstein-Barr Virus status was ascertained using in situ
hybridization, employing probes targeting Epstein-Barr encoded
RNA. Mismatch Repair status, a key factor in determining cancer
behavior and treatment response, was assessed using IHC analysis
to examine the expression levels of DNA mismatch repair proteins,
specifically MLH1, MSH2, MSH6, and PMS2, following previously
described methods.42

Survival and response metrics
OS is defined as the time from diagnosis until either the death of
the patient or the end of the follow-up period, whichever occurred
first. PFS refers to the time from the start of treatment to disease
progression, recurrence, or death, whichever occurred first.
Responders were defined as patients who achieved the response
evaluation criteria in solid tumors (RECIST) designation of
complete response (CR), partial response (PR), or stable disease

(SD) with PFS exceeding the median PFS reported in KEYNOTE-
8114 (8 months for the anti-HER2 cohort and 10 months for the
anti-HER2 combined immunotherapy cohort). Non-responders
included those with a RECIST designation of progressive disease
(PD) or SD but did not exceed the median PFS reported in
KEYNOTE-811. To maintain the integrity of our data and prevent
data distortion, patients lost to follow-up (also referred to as
censored cases) before reaching the median PFS threshold were
excluded from the response prediction analysis. However, they
were considered in the survival analysis to provide a more
complete overview of patient outcomes.

Identifying tumor regions in pathological slides
Hematoxylin-Eosin (H&E) and IHC slides are prepared from con-
secutive tissue sections, typically cut at a thickness of 4 micrometers.
This method ensures that the tissue morphology is essentially
congruent between the H&E and IHC slides, facilitating precise
mapping of HER2 status (as detailed in Supplementary Text S4) onto
the H&E images. Based on these carefully aligned slides, experienced
pathologists employed an Automated Slide Analysis Platform (ASAP
version 1.9, https://computationalpathologygroup.github.io/ASAP/) to
identify tumor regions within pathological whole-slide H&E images
(Supplementary Text S5). These regions exhibited varying expression
levels of HER2, including regions with HER2= 0, HER2= 1+, HER2=
2+, and HER2= 3+, effectively illustrating the heterogeneity of HER2
expression within the tumor (Supplementary Fig. S11 and Supple-
mentary Table S9). This process requires the pathologist to
meticulously outline the contours of each region, effectively marking
the boundaries in a point-by-point manner while avoiding necrotic
areas and normal glands. Concurrently, the pathologist summarized
the information in H&E images to write structure pathological clinical
report. During the entire process, a senior pathologist reviewed and
affirmed all these results to ensure their precision and adherence to
standard guidelines. Based on these annotation results, we
standardized the bag-level pathological images through the Reinhard
algorithm and white balance processing to unify the color
distribution differences across different slides and centers (Supple-
mentary Figs. S12, S13 and Supplementary Text S6).

Identifying tumor regions in radiological CT scans
For the radiological data, three radiologists employed the ITK-
SNAP software (version 3.6.0, http://www.itksnap.org) to identify
and annotate primary (GC) and metastatic lesions (liver, lymph
nodes, spleen, bone, and soft tissue) within the 3D CT scans. The
metastatic lesions were chosen according to the RECIST v1.1
criteria,43 where radiologists selected a maximum of two target
lesions per organ and a total of no more than five target lesions.

Fig. 6 Comprehensive overview of the multi-modal data analysis on HER2-positive patient with GC. This figure illustrates the step-by-step
workflow of our research approach, from data collection through to the analysis techniques used. Key results are highlighted, demonstrating
the highly prediction accuracy of treatment response of MuMo in HER2-positive patient with GC

Predicting gastric cancer response to anti-HER2 therapy or anti-HER2. . .
Chen et al.

9

Signal Transduction and Targeted Therapy           (2024) 9:222 

https://computationalpathologygroup.github.io/ASAP/
http://www.itksnap.org


Then the radiologists used minimal bounding boxes to encompass
the entire lesion as fully as possible. Simultaneously, the
radiologists critically assessed the radiological data and wrote a
structured radiological clinical report. A senior radiologist
reviewed and validated all results throughout this process,
ensuring their precision and adherence to standard guidelines.
Based on these annotations, we initially computed dynamic
windows for various lesion types and centers (Supplementary Fig.
S14 and Supplementary Table S10), using them to normalize the
corresponding radiological lesion images (Supplementary Fig. S15
and Supplementary Text S6).

Overall framework of MuMo
We developed a MuMo, a transformer-based model designed to
predict treatment responses to anti-HER2 therapy and anti-HER2
combined immunotherapy (Fig. 2a, b). MuMo begins by extracting
diverse features (Fig. 2a), including deep image features, omics
features, and clinical reports, from different modalities such as
pathological whole-slide images and radiological CT scans, using
specialized feature extractors (details in subsequent subsections,
Supplementary Fig. S16, and Supplementary Text S7). “Deep
features” are image features derived from radiological lesion
images and pathological word-level images using a deep learning
model MnasNet44 (detailed in Supplementary Text S7.1). This
method effectively identifies complex patterns that are challen-
ging to distinguish manually. “Omics features” consist of a wide
range of radiomics features extracted by PyRadiomics library,45

including first-order statistics, shape, texture, and higher-order
statistical features, providing a comprehensive quantitative
analysis of image data. MuMo then utilizes multi-modal fusion
modules (Fig. 2b), including intra-modal fusion, inter-modal fusion,
and patient information fusion, to effectively integrate information
from different modalities, ensuring a comprehensive and precise
analysis for response prediction (details in subsequent subsec-
tions, Supplementary Fig. S17, and Supplementary Text S8).
Specifically, MuMo employs an intra-modal fusion module, that
integrates features within the same modality, such as pathological
image features, pathological omics features, and pathological
clinical reports, to create a comprehensive set of modality-specific
data. MuMo uses an inter-modal fusion module that amalgamates
multi-modal features from different modalities into a unified
feature. Importantly, this module is tailored to address instances of
missing modalities by incorporating learnable modality-specific
features, thereby ensuring the robustness of the model even with
incomplete datasets. Finally, to enhance the precision of the
response predictions, the model considers patient-level clinical
information through the patient information fusion module and
makes response predictions through a multi-layer perceptron with
a softmax activation function.

Feature extraction in MuMo
In our study, we employed three distinct methodologies to extract
diverse features, including deep features, omics features, and
clinical reports, from available radiological and pathological data
(Fig. 2a, Supplementary Fig. S16, and Supplementary Text S7).
In pathology, drawing insights from the prior study46 on high-

resolution pathological WSIs, we partitioned WSIs into larger
segments known as “bags” within the annotated region-of-interest
(ROI) areas for more focused analysis. These “bags” were further
subdivided into smaller patches, referred to as “words” (Supplemen-
tary Fig. S18). Employing MnasNet, a recent lightweight convolu-
tional neural network, enabled efficient conversion of these “words”
into word-level deep features. From these, we extracted patient-level
deep features using a bottom-up process (Supplementary Fig. S16a).
Additionally, we generated pathological omics features from these
“bags” using the PyRadiomics library. Pathological image features
combine patient-level deep features with pathological omics
features. Furthermore, the pathological clinical reports provided by

pathologists were mapped into embeddings using a predefined
parameterless encoder (Supplementary Table S11).
In radiology, we began by preprocessing the CT scans to

construct focused ROI radiological images following the radiolo-
gists’ annotations (Supplementary Fig. S19). Subsequently, we
employed MnasNet to extract deep features from the ROI
radiological images. Additionally, we segmented the ROI radi-
ological images using a pre-trained lesion segmentor (Supple-
mentary Fig. S20) and utilized the PyRadiomics library to derive
the radiological omics features. We combined these two types of
features to form radiological image features. Mirroring this
approach in pathology, we converted the radiological clinical
reports provide by radiologists into embeddings using a
predefined parameterless encoder (Supplementary Table S12).

Multi-modal information fusion in MuMo
We developed intra-modal, inter-modal, and patient information
fusion modules, each specifically designed to synthesize and integrate
different types of data for enhanced treatment response prediction
(Fig. 2b, Supplementary Fig. S17, and Supplementary Text S8).
The intra-modal fusion module begins by processing image

features and structured clinical reports (Supplementary Fig. S17a). In
this module, image features, comprising deep and omics features,
are transformed into functional features, including query (Q), key
(K), and value (V), through fully connected layers. Subsequently, a
cross-attention layer47 then merges the information from V and Q,
according to the mutual interaction between Q and K. Simulta-
neously, clinical reports are transformed into embeddings using the
parameterless encoder (Supplementary Tables S11–S13), forming
another key (K') and value (V'). A similar cross-attention layer then
merges the information from V' and Q. Finally, these two
aggregated features are integrated with the original deep features
via element-wise summation, producing an intra-modal fused
feature. The outputs from this module for the pathological and
radiological data are denoted as Fpath and Frad, respectively.
Second, the inter-modal fusion module takes the aggregated

features Fpath and Frad and integrates them, operating under three
clinical scenarios:

I. All modality data are available (left part of Supplementary
Fig. S17b): In cases where both radiological and pathological
data are available for a patient, the corresponding features
Fpath and Frad first pass through a fully connected layer.
These are then divided into modal-specific (Fpath_s and Frad_s)
and modal-agnostic (Fpath_a and Frad_a) features using
dedicated functional layers. Subsequently, an alignment
algorithm for modal-agnostic features aligns these features
from different modalities via contrastive learning48 (see
details in Supplementary Text S9.3). An element-wise mean
operation computes the averaged modal-agnostic feature.
The two modal-specific features and the averaged modal-
agnostic feature are then concatenated to form an inter-
modal fused feature.

II. Missing radiological data (middle part of Supplementary Fig.
S17b): In this scenario, the radiological aggregated feature
Frad is absent. As a substitute, a learnable radiological feature
F0rad , with the same dimensions as Frad, is used as a
placeholder. The processing of pathological features Fpath
remains the same as that in scenario I. Only one modal-
agnostic feature from the pathological data is generated,
serving as the averaged modal-agnostic feature. The
pathological modal-specific, averaged modal-agnostic, and
learnable pathological features are concatenated to gen-
erate the inter-modal fused feature.

III. Missing pathological data (right part of Supplementary Fig.
S17b): This scenario mirrors scenario II but with the use of a
learnable pathological feature F0path as a placeholder. The
radiological modal-specific and averaged modal-agnostic
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features are concatenated with a learnable pathological
feature to form the inter-modal fused feature.

The output feature of the inter-modal fusion, denoted as Finter,
served as the input for the patient information fusion module
(Supplementary Fig. S17c). Finter is first mapped onto a query (Q00)
via a fully connected layer. Patient information is initially encoded
into embeddings using a parameterless encoder (Supplementary
Table S13) and subsequently transformed into a key (K'') and value
(V'') through fully connected layers. A cross-attention layer
integrates patient information from Finter, culminating in patient-
level features for response prediction.

Experimental design
For the anti-HER2 cohort with 271 patients, collected from Peking
University Cancer Hospital (PKCancer), we randomly split the cohort
into a training set of 215 patients for deep learning model training
and a validation set of 56 patients for hyperparameter optimization.
The specifics of the training configurations are elaborated on in
Supplementary Text S6 and S9. Upon completion of the training
phase, we averaged the weights of the top seven best-performing
models to create our final trained model. This model was
subsequently used to further analyze the results (Fig. 2c). To test
the generalizability of our model, we compiled an independent test
set of 39 individuals from external hospitals, all of whom had
received anti-HER2 therapy. The experimental setup for the anti-
HER2 combined immunotherapy cohort, also sourced from the
Peking University Cancer Hospital, mirrored that of the anti-HER2
cohort. This cohort was partitioned into a training set of 89 patients
and a validation set of 30 patients. Analysis of the results was
performed for this validation set.

Statistics and reproducibility
Sample sizes were determined based on the availability of suitable
patient data that met the inclusion criteria. No statistical method
was used to determine the sample size. To our knowledge, our
collected dataset is the most comprehensive to date, covering
multiple modalities for patients with GC receiving anti-HER2
therapy or anti-HER2 combined immunotherapy. The different
distributions of data characteristics between responders and non-
responders were evaluated using the two-sided Mann–Whitney U
test for two continuous variables (number of metastatic lymph
nodes, tumor proportion, and tumor-infiltrating lymphocytes) and
the chi-square test for the remaining categorical variables. Survival
functions were estimated using the Kaplan–Meier method, and
survival distributions across groups were compared using the log-
rank (Mantel-Cox) test. We used Levene’s test to assess consistent
stability in treatment response prediction. The discriminative
performance of the model was evaluated using the ROC-AUC. For
statistical analyses, we used R (version 4.1.3) for survival functions,
distributions, and stability assessments and Python (version 3.7.10)
for model evaluation. We established a P-value threshold of < 0.05
to denote statistical significance in this study.
To ensure reproducibility, we have detailed our methodology in

the Supplementary Materials, which covers feature extraction,
fusion module operations, loss function definitions, experimental
specifics, and evaluation metrics (Supplementary Figs. S16–S20,
Supplementary Tables S10–S15, and Supplementary Texts
S1–S3 and S6–S9). We also meticulously detailed our data
management protocols, including data collection, annotation,
and processing (Supplementary Figs. S1–S15 and Supplementary
Tables S1–S9 and Supplementary Texts S4–S5). These procedures
adhered to good clinical practice and data privacy regulations.
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