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Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification,
RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes
convey genetic information independently of DNA base sequences, playing essential roles in organismal development and
homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This
understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in
pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as
DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly
investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs
are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in
physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of
epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical
challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-
oriented therapeutic strategies and their further application in clinical settings.
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INTRODUCTION

From a historical perspective, the term “epigenetics” was first
introduced by Conrad Waddington in 1942 to describe heritable
changes in gene function that do not involve alterations to the
DNA sequence, leading to changes in biological phenotypes.
Following nearly a century of rigorous research, a diverse array of
epigenetic-modifying enzymes has been identified, and the
elucidation of distinct molecular mechanisms has established
epigenetics as a robust discipline.' Presently, epigenetics is
defined as a chromatin state regulatory system comprised of five
principal mechanisms: DNA modifications,®> histone modifica-
tions,” RNA modifications,” chromatin remodeling,’ and the
regulation based on non-coding RNA (ncRNA).® These mechan-
isms independently transmit genetic information from the DNA
sequence, enabling the activation or repression of specific
genome regions in response to physiological or pathological
signals (Fig. 1).

Enzymes that regulate epigenetic modifications are categorized
into “writers,” “erasers,” “readers,” and “remodelers” based on their
functions.””® Writers modify specific bases or amino acids,
whereas erasers remove these modifications, exerting reciprocal

; https://doi.org/10.1038/541392-024-02039-0

effects on gene expression. For instance, DNA methyltransferase
(DNMT) catalyzes the addition of methyl groups to form
5-methylcytosine (m5C) in DNA bases,'® whereas the ten-eleven
translocation (TET) enzymes initiate DNA demethylation, convert-
ing m5C into derivatives, such as 5-hydroxymethylcytosine
(5hmQ), 5-formylcytosine, and 5-carboxycytosine.'' Typically,
genes expressed at higher levels exhibit lower methylation,
whereas genes with lower expression levels tend to be more
heavily methylated.'> Readers are proteins that contain specific
motifs to recognize and bind these modifications, such as the
methyl-CpG-binding domain (MBD) responsible for recognizing
5mC."* These proteins influence chromatin status and recruit or
collaborate with other enzymes to regulate gene expression.'>'*
Remodelers are crucial in chromatin remodeling, moving or
removing nucleosomes at vital regulatory elements like enhancers
and promoters to modify chromatin accessibility.'> Furthermore,
as unique epigenetic regulators distinct from epigenetic-
modifying enzymes, ncRNAs directly bind to various genomic
regions or specific RNA sequences to modulate gene expression.'®
Variations in the given ncRNA may regulate the interactions or
functions of its interactor partners, including proteins, RNAs, DNAs,
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Fig. 1 Epigenetic mechanisms and key examples of widely studied
modifications and their modifying enzymes. a DNA modifications,
histone modifications, RNA modifications, chromatin remodeling,
and the regulation based on non-coding RNA constitute the core
content of epigenetics, being responsible for passing on heritable
variations of genetic information independently of the DNA
sequence. b Epigenetic modifications are reversible progress
catalyzed by functionally complementary modifying enzymes,
which provide targets for disease therapeutics

and lipids, thereby influencing various biological cellular processes
or pathological phenotypes.'”

The discovery of functionally complementary epigenetic-
modifying enzymes has underscored the reversibility of most
known epigenetic modifications. This insight supports the
development of strategies to modulate gene expression via
targeted regulation of these enzymes, providing a strong
theoretical basis for creating novel therapeutic approaches from
an epigenetic perspective. To date, four categories of epigenetics-
targeted drugs have received the Food and Drug Administration
(FDA) approval for clinical use, with numerous clinical trials
ongoing to refine their applications. A timeline of significant
milestones in epigenetic research is depicted in Fig. 2.

Over the past few decades, numerous studies have under-
scored that abnormalities in the expression and function of
epigenetic-regulating enzymes are crucial in the onset and
progression of various diseases. Epigenetics-targeted drugs,
therefore, have emerged as pivotal topics due to their significant
physiological and pathological implications. The development of
drug screening models rooted in epigenetic principles is
anticipated to substantially expand therapeutic options in
clinical settings. Moreover, advancements in epigenetic analysis
and molecular modification techniques have accelerated the
clinical adoption of these targeted drugs. Despite these
developments, there remains a gap in comprehensive reviews
that address epigenetic regulations in physiological and disease
contexts and detail the Ilatest advancements in drug
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development targeting these mechanisms. This review aims to
fill that void by summarizing the current understanding of
epigenetic regulations and clinical trials of targeted drugs,
thereby outlining the future application of these promising
agents. We begin with an overview of epigenetic mechanisms
and their crucial roles in health and disease, followed by an in-
depth discussion on the exploration and application of
marketed epigenetic drugs. We then provide a systematic
account of recent progress in developing potential therapeutic
agents targeting various epigenetic enzymes, highlighting
emerging research trends. Finally, we present the breakthroughs
and challenges in epigenetic drugs, particularly the benefits of
combining them with traditional therapies such as radiotherapy,
chemotherapy, and targeted therapy, to underscore their
potential in translational medicine.

BIOLOGICAL AND PATHOLOGICAL ROLES OF EPIGENETICS
Epigenetic modifications are a fundamental mechanism regulating
gene expression, crucial for various cellular functions. Dysregu-
lated epigenetic regulators, whether overexpressed or under-
active, compromise normal functions and contribute to disease
onset. Thus, epigenetic modifications hold significant potential for
disease treatment and biotechnological applications, driving the
development of targeted therapeutic drugs.

Epigenetics and early embryonic development

Epigenetic landscapes undergo substantial changes to ensure
the coordinated progression of embryogenesis and subsequent
development throughout an individual’s life."® Mutations in
epigenetic-modifying enzymes, whether heterozygous or hemi-
zygous, are commonly associated with congenital conditions,
such as Rubinstein-Taybi syndrome, linked to mutations in the
cyclic adenosine monophosphate-responsive element-binding
protein (CREB)-binding protein (CBP) and its paralog, E1A-
binding protein  (P300),'® immunodeficiency-centromeric
instability-facial anomalies syndrome related to DNMT3B muta-
tions,”® and Kabuki syndrome due to mutations in lysine
methyltransferase 2D (KMT2D).2' DNA methylation reprogram-
ming, a pivotal aspect of epigenetic modification in early
embryonic stages, involves genome-wide removal of epigenetic
marks through extensive DNA demethylation, followed by
remethylation.?? This process, integral to mammalian develop-
ment, has only been fully understood with the advent of whole-
genome bisulfite sequencing, which allows for single-base
resolution analysis of DNA methylation kinetics.?>** Advances
in precise assays for assessing DNA methylation at specific
genetic loci have led to significant insights into these
epigenomic reprogramming processes. This reprogramming
results in global hypomethylation and significant loss of genetic
memory, which is foundational for acquiring pluripotency and
redetermining cell fate.?®> Following fertilization, methylation
patterns evolve progressively, enabling cells to differentiate and
contribute to the development of various biological systems.
The dynamic regulation of DNA methylation, including repro-
gramming, is indispensable for mammalian development and
differentiation. Another vital mechanism, histone modification,
plays a critical role during zygotic genome activation (ZGA),
which involves the transition of the z%/gotic genome from a state
of silence to active transcription.”® Notably, the de novo
establishment of histone 3 lysine 14 acetylation (H3K14ac) and
histone 3 lysine 9 trimethylation (H3K9me3) following fertiliza-
tion is crucial for the timely activation of ZGA genes during
development.?’?® The SWitch/Sucrose NonFermentable (SWI/
SNF) complex also plays a significant role in the precise
activation and repression of tissue-specific transcription factors,
functioning as a chromatin remodeler that orchestrates the
coordinated differentiation of multiple cell lineages during
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The substrate and sequence
specificity of the first epigenetic
enzyme, a eukaryotic DNA
methylase, was identified, providing
key targets for further drug design.
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Hypomethylating agents
targeting DNMT1,
including Azacitidine and
Decitabine, entered
phase | clinical trials.
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With the identification of the first
DNA methylation binding protein in
mammals, epigenetic “reader” has been
considered another class of target for
epigenetic drug development.

The first type of epigenetic drug
inhibiting DNMT1, Azacytidine
and Decitabine (via intravenous
or subcutaneous), was approved by
the FDA for MDS treatment.
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? 2004, 2006 ?

The first clinical trial of
siRNA aiming at regulating
gene expression was performed,
triggering therapeutic
siRNA development.

The drug targeting BRD9,
FHD-609, was the first epigenetic
degrader to enter clinical trials
(terminated due to sponsors'
decision in 2024).

The discovery of RNAi in
C. elegans brought a new
target for the development

of drugs in addition to altering
epigenetic enzymes.

Epigenetic drugs targeting
DNMT, HDAC, IDH, and EZH2
have been approved
for marketing in
different countries.
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Fig. 2 Timeline of major discoveries and advances in epigenetic research. The significant discoveries and advances are depicted in the
illustrator and displayed as primarily “Early foundations” (yellow boxes) on the top, “Improving safety and efficacy” (purple boxes) in the
middle, and “Breakthroughs in the clinical practice” (pink boxes) at the bottom

development.?®3° Additionally, the role of RNA modifications in
embryo development is increasingly recognized and summar-
ized>'*? Recent studies indicate that deficiencies in
methyltransferase-like proteins (METTLs) and their associated
RNA N6-methyladenosine (m6A) levels can induce G1/S cell
cycle arrest in hematopoietic stem and progenitor cells in model
organisms.®® Furthermore, aberrant RNA modification patterns
are integrated into the regulatory networks of other epigenetic
mechanisms, such as histone deubiquitylation and DNA
methylation, playing critical roles in nuclear reprogramming.>*3*
Recently, preliminary evidence of ncRNAs being engaged in
embryo development has been proposed according to the
reported variation among ncRNAs contents during different
stages of early embryonic development in mouse models.>¢~32
As an indicator of developmental competence, ncRNA plays an
irreplaceable role in the continuous stages of pre-implantation
development, embryo implantation, and post-implantation
development.®® Aberrant levels of certain ncRNAs may disturb
the transition of fertilized oocytes to pluripotent blastocysts, and
may even affect the differentiation of epiblast stem cells.*>*'
Notably, ncRNAs may also act as regulatory factors for other
epigenetic mechanisms. For example, during mouse ZGA, the
negative regulation of Dnmt3a/3b expression by microRNA-29b
(miR-29b) helps maintain proper DNA demethylation to estab-
lish the imprinting of genes.*” However, considering that most
of the current understanding has only been validated in animal
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models, much work is still required to explore the role of ncRNAs
during embryonic and fetal development in humans.

Epigenetics and aging

Since the late 1990s and early 21st century, researchers have
observed that epigenetic changes accompany aging based on
data derived from cellular experiments.** Initially, it was unclear
whether these epigenetic alterations were a cause or a
consequence of aging. Recent work by Yang et al** has
successfully dissociated epigenetic dysregulation from genetic
changes, confirming that the collapse of epigenetic modifications
is a potent driver of aging. DNA methylation, a central epigenetic
mechanism, regulates both development and aging. Notably,
global DNA methylation levels in most regeneratively capable
tissues tend to decrease with age*> Beyond global changes,
studies increasingly report high frequencies of age-related
alterations in DNA methylation accumulated in specific cellular
regions. These differentially methylated regions associated with
aging lead to either the upregulation or repression of downstream
genes. For example, age-related hypermethylation within the
promoter regions of tumor suppressor and metabolic genes may
partially explain the increased susceptibility of the elderly to
tumors and various metabolic disorders.*® Conversely, DNMT
inhibitor decitabine can reverse hypermethylation in tumor
suppressors, enhancing their expression and inducing a
senescence-like phenotype in tumor cell lines*” Other
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Fig. 3 Epigenetic mechanisms in cancer. Epigenetic alterations in cancer cells affect various cellular responses, such as cell proliferation,
invasion, apoptosis, and drug resistance. These modifications, which include DNA modification, histone modification, RNA modification,
chromatin remodeling, and non-coding RNAs, significantly affect the pathogenesis and progression of tumors. By targeting these epigenetic
mechanisms, novel therapeutic strategies for combating cancer can be developed. The primary roles of epigenetic mechanisms in
tumorigenesis and their further development are presented in the illustrator

mechanisms, such as histone modifications and chromatin
remodeling, are also strongly linked to aging. A deficiency in
sirtuin 7 (SIRT7) and histone methylation patterns like H3K9me2
and H3K27me3, for example, can activate the cyclic guanosine
monophosphate-adenosine  monophosphate synthase (cGAS)-
stimulator of interferon genes pathway, a well-recognized aging-
associated signaling pathway, thus exacerbating the aging
process.*®*° Moreover, the importance of RNA modifications—
particularly m6A and
m5C—and ncRNA regulation is increasingly studied in aging
research.”*>?

Epigenetics and cancer

Abnormal epigenetic mechanisms play crucial roles at various
stages of tumor development, including initiation, progression,
invasion, migration, and the development of chemotherapy
resistance (Fig. 3). DNA methylation was the first discovered
epigenetic mechanism associated with tumors, initially implicated
in the hypermethylation of specific gene promoter regions, which

SPRINGERNATURE

drives tumor development by silencing gene transcription.>® This
silencing leads to the dysfunction of critical genes such as tumor
suppressor and DNA repair genes, disrupting normal cell
proliferation and differentiation and fostering the malignant
phenotype of tumor cells.>**> Moreover, methylation loss at
specific sites in tumor cell genomes, particularly in oncogene
promoter regions, and extensive demethylation in DNA repeat
sequences, undermines chromosome stability, facilitating tumor
development>®*” Changes in histone modifications are also
prevalent in tumors. The roles of histone methylation and
acetylation in tumor progression have been extensively explored,
with numerous reviews summarizing therapeutic strategies
targeting these histone modifications or their associated
epigenetic-modifying enzymes, underscoring their pathological
significance and therapeutic potential.’®*® Noticeably, bromodo-
main (BD) and extra-terminal (BET) family member proteins,
including BRD2, BRD3, BRD4, and BRDT, serving as interpreters of
histone acetylation modification, have recently been found to
facilitate tumorigenesis when overexpressed.®®®! Upregulated BET
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proteins can function as oncogenic transcriptional factors in tissue
cells, driving a unique transcriptional program and controlling cell
phenotype.®>®® Therefore, potent inhibitors targeting BET proteins
may be considered potential agents for tumor treatment. Research
into metabolic reprogramming and the Warburg effect in tumor
cells has recently highlighted histone lactylation’s function in
pathological processes.®*®> Histone lactylation, induced by
glycolysis, has been studied extensively in various malignancies
such as endometrial cancer, pancreatic ductal adenocarcinoma,
and glioblastoma, where it plays roles in tumor progression and
the suppression of the immune microenvironment.®*~%¢ Addition-
ally, dysregulation in RNA modifications, particularly méA, is linked
to the malignant potential and resistance of tumor cells,%%”°
affecting multiple pathways that ensure tumor cell survival,
including the maintenance of stemness,”' the establishment of
vascular networks,”? and the formation of an immunosuppressive
tumor microenvironment (TME).”®> Thus, targeting aberrant RNA
modifications could effectively disrupt the survival mechanisms of
tumor cells, offering new avenues for cancer treatment.”* Changes
in ncRNA families have also been observed in various tumors, first
noted in chronic lymphocytic leukemia with chromosome 13q14
deletion, characterized by decreased levels of miR-15 and miR-
16> Among these, various ncRNA molecules with antitumor
effects have been identified and are commonly suppressed in
various tumor diseases, representing promising targets for
therapeutic intervention.”® Furthermore, ncRNAs can participate
in the post-translational regulation of other epigenetic-modifying
enzymes, integrating into broader epigenetic networks.”” In
addition to functioning as pathogenic triggers in different tumors,
ncRNAs present in extracellular vesicles in the TME also hold
promise for assessing therapeutic response.”*®° According to
clinical data from well-organized observational studies, unique
plasma exosomal miRNA profiles are associated with predicting
the efficacy of antitumor therapies in various tumor diseases, such
as advanced non-small cell lung cancer,®' colorectal cancer,8%%3
and breast cancer.®*

Epigenetics and metabolic syndrome and related disorders
Metabolic syndrome encompasses a constellation of pathological
conditions characterized by abnormal aggregation of metabolic
components, notably abdominal obesity or overweight, dyslipi-
demia, insulin resistance and/or glucose tolerance abnormalities,
and hypertension.®> These metabolic dysfunctions significantly
elevate the risk of developing diseases such as type 2 diabetes
mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), and
cardiovascular diseases.®® Epigenetic modifications play a crucial
role in nutrient metabolism under physiological conditions and
also bridge the genetic and environmental factors contributing to
metabolic disorders?” For instance, dietary patterns significantly
influence epigenetic markers; studies have shown that a high-fat
diet in mice leads to hypermethylation in the promoter regions of
genes like Rac family small guanosine triphosphate hydrolase
(GTPase) 1, which promotes the progression of diabetic retino-
pathy.2® Dietary-induced epigenetic changes can impact subse-
quent generations, increasing their risk of glucose intolerance and
diabetes.®® Moreover, epigenetic alterations linked to diet are
implicated in developing gout and NAFLD.%%®"

Additionally, the activity of epigenetics-modifying enzymes and
their cofactors, such as TET and a-ketoglutarate (a-KG) from the
tricarboxylic acid cycle (TCA), can be influenced by abnormal
metabolite levels in patients with metabolic diseases, further
disrupting epigenetic regulation and exacerbating disease pro-
gression.”? Epigenetic markers, especiallay DNA methylation land-
scapes, also provide diagnostic tools;”® in T2DM, for example,
differential methylation in genes such as thioredoxin interacting
protein, adenosine triphosphate (ATP)-binding cassette subfamily
G member 1, peroxisome proliferator-activated receptor gamma-
coactivator 1 alpha, and protein tyrosine phosphatase receptor
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type N2, can elucidate pathophysiological mechanisms.”* Under-
standing these epigenetic mechanisms in metabolic diseases is
thus pivotal for developing innovative prevention, diagnosis, and
treatment strategies.

Epigenetics and immune system disease
Epigenetic modifications are integral to the development and
differentiation of immune cells and the regulation of immune
functions. These modifications influence the differentiation of
functional B and T cell subpopulations and maintain the home-
ostasis of innate immune cells by controlling specific gene
expressions.””>™®” Epigenetic dysregulation is closely linked to
immune system diseases, including allergic reactions and auto-
immune diseases, which have been extensively studied.”®® For
instance, allergic bronchial asthma involves reduced TET2 expres-
sion in regulatory T cells, leading to hypermethylation in the
promoter region of forkhead box protein P3 and impaired
immune function in controlling inflammatory responses.'®
Additionally, low expression of METTL3 in monocyte-derived
macrophages in allergy patients exacerbates airway inflammation
through M2 macrophage polarization.”” Histone modification also
plays a critical role in sustaining the therapeutic effects of
glucocorticoids in asthma; oxidative stress in severe asthma cases
leads to reduced histone deacetylase (HDAC) levels in alveolar
macrophages, contributing to glucocorticoid resistance.'®' Con-
sequently, elevating HDAC levels in patients with severe, steroid-
insensitive asthma could be a viable strategy to reduce airway
hyperresponsiveness and restore steroid sensitivity.'®

Epigenetic mechanisms play a significant role in the pathogen-
esis and progression of autoimmune diseases. For instance,
hypomethylation mediated by TET2 within the promoter region
of absent in melanoma 2, a critical component of the inflamma-
some, influences T follicular helper cell-dependent humoral
immune responses in systemic lupus erythematosus (SLE).'®
Additionally, altered patterns of miRNA in serum exosomes and
immune cells have been identified, promising potential as
biomarkers for diagnosis and indicators of disease severity.'%*'%
Histone modifications also play a pivotal role in SLE, where the
administration of HDAC inhibitors has been shown to reduce
cytokine profiles and improve pathogenesis in SLE and other
inflammatory conditions.’®® Moreover, the therapeutic potential of
BET proteins in antibody-mediated diseases (e.g., SLE) has recently
been evaluated. BET inhibitors alter the pro-inflammatory
phenotypes of mononuclear phagocytes and impair the recruit-
ment of dendritic cells in vitro.'” Beyond SLE, epigenetic
mechanisms are implicated in the progression of other auto-
immune diseases such as rheumatoid arthritis,'®® autoimmune
thyroid diseases,'® multiple sclerosis,'’® TIDM,""" and severe
aplastic anemia,'"? highlighting the potential for epigenetics-
modifying drugs in treatment strategies.

Epigenetics and neurodegenerative disease

Epigenetic modifications significantly influence learning, memory,
and cognition, which are essential in maintaining synaptic
plasticity.'">"' Disruptions in epigenetic regulation lead to the
abnormal expression of genes involved in protein aggregation,
neuroinflammation, and neuronal apoptosis, contributing to the
pathogenesis of neurodegenerative diseases such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), and Huntington’s disease
(HD)."" The deposits of extracellular AB plaques and tau
phosphorylation, as well as the loss of plasticity, are basic
pathogenesis of AD. In AD, aberrant histone modification patterns,
particularly histone acetylation, have been observed in hippo-
campal neurons of AD mouse models, potentially driving
cognitive decline and inadequate removal of AB plaques.'’®
Lactylation modifications of histones H4K12 and H3K18 affect the
metabolic activity of various glial cells, influencing the progression
of the AD phenotype.'"”"'® In addition, aberrant DNA-methylation
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patterns in the promoter regions of functional genes are linked to
the accumulation of toxic peptides and the development of
memory deficiency.''®'?° Recent studies also consider RNA
modifications and ncRNAs as potential therapeutic targets and
diagnostic biomarkers for AD.?"'?2 PD is characterized by the
misfolding and aggregation of a-synuclein, leading to the
formation of Lewy bodies. Altered DNA methylation patterns
have been observed in brain and blood samples from individuals
with PD."?*'2* TET2 may play a critical pathogenic role in PD,
where its inactivation has shown a neuroprotective effect on
dopaminergic neurons.'? Histone acetylation dysregulation is
extensively studied in PD, associated with the accumulation of
phosphorylated a-synuclein and mitochondrial respiratory dys-
function.'*®"?” Dysregulation in ncRNAs, particularly long non-
coding RNAs (IncRNAs) and miRNAs affects the mRNA levels of
pathogenic factors post-transcriptionally and is linked with clinical
symptoms such as non-motor symptoms, cognitive deficits, and
inflammation, presenting potential targets for PD treatment.'?® In
HD, epigenetic modification alterations are vital markers of its
pathogenesis. Studies have shown the positive effects of using
DNMT inhibitors, HDAC inhibitors, and extracellular vesicles
loaded with miRNAs in preventing mutant huntingtin-induced
neurotoxicity, emphasizing the potential roles of epigenetic
dysregulations in HD.'?*""3! Recently, the impact of aberrant
m6A RNA methylation on the progression of HD has been
increasingly recognized. Hyper-methylation of m6A in genes
related to HD and synaptic function has been linked to memory
deficits. Conversely, inhibition of the fat mass and obesity
associated protein (FTO) in the hippocampal regions of HD mouse
models has shown promise in reversing cognitive symptoms,
suggesting a potential therapeutic target.'>?

In summary, the dynamic nature of epigenetic modifications
plays a crucial role in maintaining physiological functions and life
cycle processes. During embryonic development, precise epige-
netic regulation is crucial to cell differentiation and ensures proper
tissue specialization by activating or suppressing specific genes.
Furthermore, epigenetic modifications are closely linked to an
individual's adaptation to environmental influences such as
nutritional status, stress, and toxin exposure, which can alter
epigenetic landscapes and impact health and disease risk. On the
other hand, understanding epigenetics offers a new perspective
for disease prevention and treatment. The development and
progression of many diseases, including cancer, metabolic
disorders, immune system diseases, and neurodegenerative
disorders, are closely associated with aberrant epigenetic mod-
ifications. A deeper understanding of epigenetic modulators could
lead to novel therapeutic strategies, laying the groundwork for
drug interventions targeting epigenetic processes.

EPIGENETICS-TARGETED DRUGS APPROVED FOR

CLINICAL USE

Epigenetic modifications and the enzymes involved can either
activate or suppress the expression of specific genes at different
levels (Table 1). Therefore, in contrast to traditional therapies,
drugs targeting epigenetic-modifying enzymes have been devel-
oped with a focus on gene regulation. This unique mechanism
provides epigenetic-targeted drugs with an advantage over other
traditional treatments, especially for the treatment of tumors.
More specifically, epigenetics-targeted drugs specifically target
the abnormal epigenetic hallmarks of cancer cells, restoring their
normal cellular function or enhancing the immune system’s
recognition of tumor cells.'>*'3* Compared to traditional radio-
therapy and chemotherapy, which directly kill cancer cells or
prevent their proliferation, or immunotherapy, which activates or
enhances the patient’s own immune system, the administration of
epigenetic agents achieves maximized damage to tumor cells with
usually fewer side effects.”®>™'*” The application of these novel
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agents helps to reverse the progression of drug resistance caused
by altered epigenetic characteristics in traditional antitumor
therapies.’*®'*° Hence, these features endow epigenetic agents
with importance and possibilities as monotherapy or adjuvants in
combination with other therapeutic methods."*' Currently, some
of these drugs have been approved for marketing, primarily for
cancer treatmentt, and they exhibit exciting clinical potential.
These drugs are categorized into four main types based on their
mechanisms: DNMT inhibitors, HDAC inhibitors, isocitrate dehy-
drogenase (IDH) inhibitors, and enhancer of zeste homolog 2
(EZH2) inhibitors (Table 2).

DNMT inhibitors
Azacitidine and decitabine, known as hypomethylating agents
(HMAs), target DNMT1 and were among the first epigenetics-
targeted drugs approved for clinical use. The US FDA approved
azacitidine in May 2004 and decitabine in June 2006 for treating
myelodysplastic syndrome (MDS).'**'** The clinical success of
these HMAs has led to a focus on optimizing their dosing
schedules and administration methods. Early studies involving
azacitidine and decitabine assessed their therapeutic potential
through continuous and/or frequent intravenous or subcutaneous
injections, establishing standard doses and delivery methods in
clinical settings."**'*® Recent advancements have explored
reduced dosages for patients at lower risk. In recent phase I
clinical trials, azacitidine or decitabine was applied for three or five
consecutive days in a 28-day cycle, exhibiting satisfactory
therapeutic efficacy and tolerable safety.'*'*® Some patients
who received decitabine experienced myelosuppression, and
future efforts are required to take steps to avoid this."*’
Additionally, the development of oral formulations of azaciti-
dine and decitabine, such as oral azacitidine (CC-486), approved in
September 2020 for patients with acute myeloid leukemia (AML)
who are not candidates for intensive curative therapy, has
improved patient convenience and treatment adherence.' In a
well-organized phase Il randomized trial, the median overall
survival and relapse-free survival of patients treated with CC-486
were greatly improved.'”® Importantly, fewer grades 3 or 4
adverse events were observed during CC-486 treatment, allowing
the preservation of overall health-related quality of life.'*® The
doses of CC-486 used in clinical settings are approximately four
times higher than the standard doses administered by intravenous
or subcutaneous routes due to their reduced bioavailability.'*°
Meanwhile, the poor bioavailability of oral decitabine has led to
the development of ASTX727, an oral combination of decitabine
with cedazuridine. This cytidine deaminase enzyme inhibitor
enhances decitabine exposure after oral administration. This
combination has been approved for marketing in treating MDS
and AML in some countries.””"">2 However, in China, the
therapeutic potential of CC-486 and ASTX727 for AML and MDS
is still under evaluation in clinical trials (NCT05413018,
NCT04102020, NCT06091267, NCT02649790). Furthermore, there
has been an increased focus on the synergistic effects of HMA and
traditional antitumor treatments to enhance therapeutic out-
comes and prevent resistance in hematologic malignancies
refractory to monotherapy. This topic is further summarized in
the subsequent section on drug combination applications.
Inspired by the successful application of HMAs in hematologic
malignancies, their therapeutic potential in treating solid tumors
is also being explored. However, as of now, HMAs are not
approved for treating solid tumors. In 2017, Linnekamp et al.'*3
conducted a systematic review to illustrate the clinical and
biological effects of HMAs on solid tumors based on previously
completed clinical trials. The efficacy of azacitidine and decitabine
in solid tumors was less pronounced than in hematological
malignancies, primarily because most study participants had
advanced-stage tumors with short life expectancies.'>> Moreover,
many early-stage studies were small-sized cohorts, lacking
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Table 1. Key examples of epigenetics-modifying enzymes that are considered targets for drug development and their major biological functions
Epigenetic Type  Epigenetics-modifying Biological processes Reference(s)
modification enzyme
DNA methylation Writer DNMT1 Maintains DNA methylation after replication 207
DNMT2 Binds to DNA with very weak methyltransferase activity; involved in RNA 98
methylation
DNMT3A Promotes the genome-wide de novo DNA methylation 909
DNMT3B Promotes the genome-wide de novo DNA methylation o109m
DNMT3L Increases the methyltransferase activity of DNMT3A or DNMT3B o12
Eraser TET1 Active DNA demethylation and binds to DNA via the CXXC zinc finger 913
domain
TET2 Active DNA demethylation and binds to DNA via the interaction with DNA °'*
binding proteins
TET3 Active DNA demethylation and binds to DNA via the CXXC zinc finger 913
domain
Reader MeCP1 Preferentially binds to methylated DNA and represses transcription 916
MeCP2 Binds to a single methyl-CpG pair, not influenced by sequences flanking  °'”
the methyl-CpGs
MBD1 Recruits chromatin-modifying enzymes to both methylated and 918919
unmethylated CpG islands; largely silence transcription
MBD2 A transcriptional repressor or activator depending on the cellular context 9%°
MBD3 Interacts with NURD complex to cause transcriptional repression 921,922
MBD4 Exerts DNA glycosylase activity and functions in DNA repair 923
UHRF1 Negatively regulates transcription via the binds to 5hmC and 5mC on DNA, 36338
as well as H3K9me3, and H3R2meO; recruits DNMT1 to methylate DNA
UHRF2 Allosterically activated by 5hmC and participates in DNA demethylation ~ 9247926
during neuronal commitment
Histone acetylation ~ Writer HAT1 (KAT1) Acetylates H4K12/K5 predominantly; has less activity for H2A 927-929
GCN5 (KAT2A) Acetylates H3 and H4 and its primary sites are H3K14 930
PCAF (KAT2B) Acetylates H3 and H4 predominantly and its primary sites are H3K14; has 3%’
less activity for H2A and HAB
CBP/P300 (KAT3A/KAT3B) Acetylates H2A, H2B, H3, H4 and its primary sites are H3K14/K18/K27 931,932
Eraser HDAC1 Removes acetylated modifications from H1, H2A, H2B type 1/2 and H3 933
HDAC2 Removes acetylated modifications from H1, H2A, H2B type 1/2 and H3 933
HDAC3 Removes acetylated modifications from H2BK12/K15/K16 933
HDAC4 A very weak deacetylase activity on histone o34
HDAC9 A very weak deacetylase activity on histone 933
SIRT1 Removes acetylated modifications from H1K2, H3K9, and H4K16 936,937
SIRT2 Removes acetylated modifications from histones during G2/M transition 38939
and mitosis
SIRT6 Removes acetylated modifications from H3K9 and H3K56 94091
SIRT7 Removes acetylated modifications from H3K18 942
Reader BRD2 Recognizes H4K12ac preferentially 943
BRD4 Recognizes H3K27ac preferentially 944,945
ENL Recognizes H3K9/K18/27ac preferentially 946
AF9 Recognizes H3K9ac preferentially and H3K27/K18ac to a lesser extent 946
YEATS2 Recognizes H3K9ac preferentially; functions as a selective histone 947,948
crotonylation reader
GAS41 Recognizes H3K18/K27ac preferentially; binds to H3K14 949,950
Histone methylation Writer EZH2 Catalyzes mono-, di-, and tri-methylation of H3K27 and H3K9, as well as 951
non-histones substrates
DOTIL Catalyzes mono-, di-, and tri-methylation of H3K79 952
SETDB1 Catalyzes trimethylation of H3K9 953
GLP/G9a Catalyzes mono- or di-methylation of H3K9 and non-histone substrates ~ 9°49%°
SMYD2 Catalyzes both trimethylation of H3K36 and non-histone substrates 956,957
NSD Catalyzes the dimethylation of H3K36 958
PRMT1 The member of type | PRMTs; the dominant enzyme catalyzing asymmetric °°°

dimethylarginine production in proteins and mainly functions as a
transcriptional activator
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Table 1. continued
Epigenetic Type  Epigenetics-modifying Biological processes Reference(s)
modification enzyme
PRMT5 The member of type Il PRMTs; functions as a transcriptional suppressor or 6%
coactivator depending on the cellular context
Eraser LSD1(KDM1A) Removes methylation modifications at H3K4 and H3K9; acts as a 962
coactivator or a corepressor depending on the cellular context
KDM2 Removes methylation modifications at H3K4; H3K9, and H3K36; stimulates %3
and inhibits gene transcription
KDM7 Removes mono- and di-methylated modifications on H3K9 and H3K27 964
KDM3 Removes mono- and di-methylated modifications from lysine H3K9 965
KDM4 Removes methylated modifications from H3K9 and H3K36 965,966
KDM5 Removes di- and tri-methylated modifications ftom H3K4 967
KDM6A An X-linked protein removing methylated modifications from H3K27 968
KDM6B Removes trimethylated modifications from H3K27 969
Reader MBT Recognizes lysine residues on H3 and H4, and helps form monomethylated, °7°
dimethylated, or trimethylated modifications
Chromodomain Recognizes dimethylated lysine residues of H3K9 and H3K27 71,972
Tudor Recognizes methylated lysine and arginine residues on histones H3 and H4 °73
PWWP Recognizes H3K36me2/3; binds to dsDNA in a non-specific manner 974975
PHD Recognizes H3K4me2/3/0, H3K14ac or H3K27me0 to a lesser extent 976
WDR Recognizes lysine and arginine methylation of H3 977
RNA methylation writer  METTL3 Catalyzes m6A methylation o78
METTL14 Binds to METTL3 and enhances the catalytic activity of METTL3 79
Eraser FTO RNA m6A demethylation; regulates RNA splicing 980,981
ALKBH5 RNA m6A demethylation; regulates RNA metabolism and export 982
ALKBH3 Removes the methyl group at the m6A from tRNA; functions an m1A 983

demethylase

984

Reader YTHDF1 Responsible for mRNA translation

YTHDF2 Responsible for mRNA degradation 984,985

IGF2BP Regulates mRNA translation 714
Chromatin Mover SMARCA2 DNA-stimulated ATPase in the SWI/SNF complex 986
remodeling SMARCA4 DNA-stimulated ATPase in the SWI/SNF complex; binds to acetylated 986,987

peptides on H3 and H4

988

Reader Polybromo-1 Recognizes H3K14ac preferentially

BRD7 Recognizes acetylated modifications on histones and non-histones 989,990
substrates
BRD9 Recognizes butyryllysine, and crotonyllysine histone peptide modifications '

AF9 acute lymphocytic leukemia 1 (ALL1)-fused gene from chromosome 9 protein, ALKBH ALKB homolog, ARID AT-rich interactive domain, ATPase adenosine
triphosphate hydrolase, BAF BRG1-associated factor, BRD bromodomain-containing protein, CBP/P300 cyclic adenosine monophosphate-responsive element-
binding protein (CREB)-binding protein/histone acetyltransferase P300, DNMT DNA methyltransferase, DOTIL disruptor of telomeric silencing-1-like, dsDNA
double-stranded DNA, ENL eleven-nineteen leukemia, EZH2 enhancer of zeste homolog 2, FTO fat mass and obesity associated protein, GAS41 glioma
amplified sequence 41, GCN5 general control non-depressible 5, GLP G9a-like protein, HAT histone acetyltransferase, HDAC histone deacetylase, H4K12ac
histone 3 lysine 12 acetylation, H3K9me3 histone 3 lysine 9 trimethylation, IGF2BP insulin-like growth factor 2 mRNA-binding protein, KAT lysine
acetyltransferase, LSD1(KDM1A) lysine-specific demethylase 1, m6A N6-methyladenosine, MBD methyl-CpG binding domain protein, MBT malignant brain
tumor, MeCP methy-CpG-bindig protein, METTL methyltransferase-like, NSD nuclear receptor binding SET domain protein, NuRD nucleosome remodeling and
deacetylase, PBAF polybromo, brahma-related gene 1-associated factor, PCAF P300/CBP associated factor, PHD plant homeodomain, PRMT protein arginine
methyltransferase, PWWP proline-tryptophan-tryptophan-proline, SETDB1 SET domain bifurcated histone lysine methyltransferase 1, SIRT sirtuin, SMARCA2 SWI/
SNF-related, matrix-associated, actin-dependent regulator of chromatin A2, SMYD2 SET and MYND domain containing 2, SWI/SNF Switch/Sucrose
nonfermentable chromatin-modifying complex, TET ten-eleven translocation, UHRF1 ubiquitin-like with PHD and RING finger domains 1, WDR WD40 repeat,
YEATS2 YAF9, eleven-nineteen-leukemia protein (ENL), acute lymphocytic leukemia 1-fused gene from chromosome 9 protein (AF9), TAF14, and SAS5 (YEATS)
domain-containing 2, YTHDC1 YTH domain-containing protein 1, YTHDF1 YTH domain family protein 1, 5hmC 5-hydroxymethylcytosine, 5mC 5-methylcytosine

sufficient evidence to generalize therapeutic effects across HDAC inhibitors

different tumor types. With significant advances in optimizing
HMA formulations and dosages, as well as the increasing number
of combination therapies showing promising effects on solid
tumors in vitro and in vivo, clinical trials of HMAs, particularly the
oral formulations CC-486 and ASTX727, among patients with solid
tumors, are being extensively conducted, and their results are
eagerly anticipated.'>*" "¢

SPRINGERNATURE

Over the past two decades, substantial progress has been made in
developing HDAC inhibitors, with six approved for clinical use.
These include vorinostat (SAHA), romidepsin (FK228), belinostat
(PXD101), and panobinostat (LBH589, although the FDA canceled
it in 2022). These drugs have been approved by various regulatory
bodies, such as the US FDA, the European Medicines Agency, and
the Pharmaceuticals and Medical Devices Agency (PMDA). They
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thrombocytopenia, neutropenia, lymphopenia, and

weight loss

261

Thrombocytopenia, anemia, lymphopenia, leukopenia,

and neutropenia

ATL

Only approved
by the PMDA in

Japan

Not approved

yet

Oral

EZH2/EZH1

Valemetostat

tosilate

AML acute myeloid leukemia, ATL adult T-cell leukemia/lymphoma, CDA cytidine deaminase, CML chronic myelogenous leukemia, CMML chronic myelomonocytic leukemia, CTCL cutaneous T-cell lymphoma,

DLBCL diffuse large B-cell lymphoma, DMD Duchenne muscular dystrophy, DNMT1 DNA methyltransferase 1, EMA European Medicines Agency, EZH2 enhancer of zeste homolog 2, FDA Food and Drug

Administration, FL follicular lymphoma, HDAC histone deacetylase, IDH isocitrate dehydrogenase, MDS myelodysplastic syndrome, NMPA National Medical Products Administration, PMDA Pharmaceuticals and

Medical Devices Agency, PTCL peripheral T-cell lymphoma
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are used to treat conditions such as multiple myeloma (MM),
cutaneous T-cell lymphoma (CTCL), and peripheral T-cell lym-
phoma (PTCL).'*”'*® Additionally, chidamide (tucidinostat) was
approved by PMDA in Japan and National Medical Products
Administration (NMPA) in China for the treatment of PTCL and
advanced breast cancer,”*'®® and more recently, givinostat
(ITF2357) was approved by the FDA in March 2024 as the first
nonsteroidal treatment for Duchenne muscular dystrophy (DMD)
for patients aged six years and older.'®’

Vorinostat was the first pan-inhibitor of HDACs approved by the
FDA in October 2006 for CTCL.'®? Soon after, in July 2011, it was
also approved for clinical therapy by PMDA. In addition to CTCL,
the application of vorinostat to AML, MM, malignant pleural
mesothelioma, newly  diagnosed high-grade  glioma
(NCT01236560), and advanced non-small cell lung cancer
(NCT00473889) therapy has entered phase lIl clinical trials.'®>7'%¢
Disappointingly, though vorinostat exerts effective therapeutic
effects in diverse hematological malignancies, limited efficacy has
been observed in solid tumors.'®® Another thing to note when
using vorinostat as a clinical medication is the potential adverse
events that may occur. While generally mild, adverse events
related to vorinostat can include thrombosis, QT interval
prolongation, and potentially fatal ventricular tachycardia or
torsional tachycardia.'”"'®® These findings have driven the
development of other HDAC inhibitors, with the expectation of
elevated safety and efficacy in vivo.

Romidepsin, another pan-HDAC inhibitor, was approved by the
FDA in November 2009 for CTCL and later for PTCL. It has shown a
higher affinity to class | HDAC proteins.'’® Subsequently, it was
approved for treating patients with PTCL by the FDA and PMDA.
Phase Il randomized controlled trials are performed to evaluate
the therapeutic value of the first-line treatment of PTCL, referring
to the combination of cyclophosphamide, doxorubicin, vincristine,
prednisone (CHOP), and romidepsin plus CHOP in patients with
PTCL, while the addition of romidepsin failed to increase efficacy as
expected.' 72 However, after a six-year follow-up, the application
of romidepsin shows beneficial effects in prolonging median
progression-free survival.'””' In addition, the combination of
romidepsin with other therapeutics, such as oral 5-azacytidine,
tenalisib (an inhibitor of phosphoinositide-3-kinase and salt-
inducible-kinase-3), and lenalidomide (a new generation of
immune modulator) shows promising therapeutic potential in
various types of T-cell lymphoma in the initial stages of clinical
practice, supporting further exploration.'”*"'7¢ Meanwhile, investi-
gations on the therapeutic effects of romidepsin against other
diseases are ongoing, particularly in antiretroviral treatment in
human immunodeficiency virus-1 (HIV-1) infection.'’”'7®

Belinostat was FDA-approved in July 2014 for relapsed or
refractory (R/R) PTCL, showing pan-inhibitory effects on HDAC
proteins.'”® Common adverse effects of belinostat include nausea,
vomiting, diarrhea, dysgeusia, fatigue, and severe hematologic
treatment-related adverse events.'®%'8! Further, dosing considera-
tions are needed for patients with hepatic impairment due to liver
metabolism.'®? Belinostat is being explored for other myeloid
malignancies and solid tumors, including glioblastoma and small-
cell lung cancer.'®37186

Panobinostat, an oral broad-spectrum HDAC inhibitor approved
in January 2015 for R/R MM in combination with dexamethasone
and bortezomib, showed a slight overall survival benefit in phase Il
and Ill trials."®” However, many participants experienced adverse
events like thrombocytopenia, lymphopenia, asthenia, and fati-
gue, which raises concerns about its tolerability."®”~'® In a recent
randomized phase Il clinical trial, it was proposed that adminis-
tering bortezomib via subcutaneous application rather than
intravenous injection could improve the safety and tolerability
of the triplet regimen, including panobinostat.'®® Beyond its
primary indications, panobinostat is being explored for its efficacy
in various other tumor diseases such as lymphoma, primary
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myelofibrosis, glioma, clear cell renal cell carcinoma, and prostate
cancer, both as monotherapy and in combination with other
tumor therapeutics, showing promising efficacy across multiple
malignancies.'”’™'®> However, the safety of panobinostat con-
tinues to be a primary concern and requires further evaluation in
advanced clinical studies.

Chidamide, the first orally administered selective HDAC
inhibitor targeting HDAC1, HDAC2, HDAC3, and HDAC10,'®° is
currently under investigation for a variety solid and hematological
malignancies, autoimmune diseases, and neurodegenerative
diseases.'?®™2%" It offers advantages over pan-inhibitors in the
treatment of tumor diseases and in minimizing severe adverse
effects.’® Recent therapeutic strategies using chidamide in
combination with a second antitumor intervention have shown
promising prospects. For instance, a combination of chidamide
and exemestane has proven effective as a neoadjuvant treatment
for patients with stage II-lll breast cancer that is hormone
receptor-positive and human epidermal growth factor receptor
2-negative.'®®?°2 A recent phase Ill clinical trial reported an
increased occurrence of grades 3-4 hematological adverse events
in the tucidinostat plus exemestane group, while the median
progression-free  survival of these patients was notably
improved.?? Furthermore, synergistic effects have been observed
when chidamide is used in conjunction with immunotherapy,
endocrine therapy, or chemoradiation, offering novel adjuvant
approaches for tumor therapy.?®3—2%¢

Givinostat, developed by Italfarmaco SpA, is a potent inhibitor
of HDAC1 and HDAC3 recently approved for clinical use. In a
pivotal, multicenter, randomized phase Ill clinical trial involving
179 patients with DMD aged at least six years, givinostat
effectively delayed disease progression.’®” The most common
adverse events reported were diarrhea and vomiting.?®” Addi-
tionally, givinostat shows promise as a treatment for polycythemia
vera, particularly in patients unresponsive to hydroxycarbamide
monotherapy.”® In phase I/l clinical trials, givinostat demon-
strated promising efficacy and tolerability in patients with
polycythemia vera.>°>2'° Subsequently, long-term follow-up over
four years has further substantiated the therapeutic benefits and
safety profile of givinostat.?'" Throughout the follow-up period,
the overall response rate consistently exceeded 80% among
patients with PV, while only 10% of these patients experienced
grade 3 treatment-related adverse events, suggesting its potential
for prolonged clinical use.?"

IDH inhibitors
IDH is a key enzyme in the TCA cycle that normally catalyzes the
conversion of isocitrate to a-KG and carbon dioxide. In cells with
mutated IDH, this enzyme instead produces 2-hydroxyglutarate (2-
HG), a metabolite that inhibits a-KG-dependent epigenetic
enzymes and contributes to the aberrant epigenetic landscape
seen in various diseases, particularly tumors.2'#?'* Currently, three
IDH inhibitors are approved for clinical use: enasidenib (AG-221),
ivosidenib (AG-120), and olutasidenib (FT-2102), targeting differ-
ent forms of the enzyme mutation.?'* 2" Additional IDH1/2
inhibitors that are allowed to be investigated in clinical practice
include the dual inhibitor of mutant IDH1/2 vorasidenib (AG-
881),%'® the irreversible mutant IDH1 inhibitor LY3410738
(NCT06181045, NCT06181084), and the pan-mutant-IDH1 inhibitor
BAY1436032.%'%%%°

Enasidenib is an allosteric inhibitor targeting mutated IDH2,
approved by the FDA in August 2017 for the treatment of R/R AML
with IDH2 mutations.?' Based on preliminary animal experiments
and preclinical evidence, enasidinib effectively reduces the 2-HG
levels derived from IDH2 mutations, reversing excessive histone
and DNA methylation landscapes.?**™>>* Subsequently, enasidinib
has entered clinical trials and demonstrated good efficacy in
treating AML and MDS patients, which is further considered a
promising option for elderly AML patients over 60 years old,
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especially those who are not suitable for intensified chemother-
apy.>>2*° Combination therapy with enasidenib and azacitidine
has shown acceptable tolerability and potential to improve
outcomes for patients with IDH-mutated AML.22>%3'232 However,
potential severe adverse effects include hyperbilirubinemia,
thrombocytopenia, pneumonia, and IDH differentiation syndrome,
the latter of which can be life-threatening and requires careful
management.**"%*> Noticeably, IDH differentiation syndrome is
one of the potentially lethal entities that require prompt
recognition and more appropriate management.>*® Enasidenib is
also being explored for other conditions caused by IDH2
mutations, such as D-2-hydroxyglutaric aciduria type II,>*’
chondrosarcoma,®®®  angioimmunoblastic  T-cell lymphoma
(NCT02273739), and malignant sinonasal or skull base tumors
(NCT06176989).

Ivosidenib, targeting mutated IDH1, was first approved by the
FDA in July 2018 for R/R AML.*? In April 2022, with the data from
a completed phase Il clinical trial being made public, the
therapeutic potentials and good safety of the combination of
azacitidine and ivosidinib among patients with AML received
broader attention.?*® Subsequently, the FDA approved this
regimen for elderly patients with newly diagnosed IDH1-
mutated AML in May 2022.%*" Besides AML, ivosidenib is approved
for MDS and cholangiocarcinoma, with ongoing phase Ill studies
in unresectable or metastatic cholangiocarcinoma with IDH1
mutations.?'?*?> The most significant adverse events include
ascites and other severe conditions, necessitating vigilant
monitoring.**? Ivosidenib has also shown promising results in
phase | clinical trials for IDH-mutated advanced glioma, with a
daily dose of 500 mg proving effective in reducing 2-HG levels and
controlling the disease.?**72%6

Olutasidenib, an oral IDH1 inhibitor, was approved by the FDA
in December 2022 for treating R/R AML with specific IDH1
mutations. It has also shown promise as a therapeutic option for
patients with IDH1-mutated AML who are insensitive to veneto-
clax, offering a new avenue for treatment where previous
therapies may have failed.?’” Clinical trials have demonstrated
that olutasidenib, combined with azacitidine, provides compar-
able efficacy and tolerability in AML and MDS patients harboring
mutant IDH1.2*” Treatment-emergent side effects of grade 3-4,
such as febrile neutropenia, anemia, thrombocytopenia, and
neutropenia, occur at a low frequency with olutasidenib mono-
therapy or in combination therapies, suggesting a manageable
safety profile.>*?*® Beyond hematological malignancies, the
therapeutic potential of olutasidenib is also being explored in
other diseases, such as IDH-mutated R/R gliomas. In a multicenter,
open-label, phase Ib/ll clinical trial involving 26 patients,
olutasidenib achieved a disease control rate of 48%. Notable
grade 3-4 adverse events included increases in alanine amino-
transferase and aspartate aminotransferase, indicating the need
for careful liver function monitoring during treatment.>*°

EZH2 inhibitors

Currently, two EZH2 inhibitors, tazemetostat (EPZ-6438) and
valemetostat tosilate (DS-3201, DS-3201B), targeting EZH1/2 or
EZH2 have been approved and are being utilized in various
therapeutic strategies.

Tazemetostat, the first oral EZH2 inhibitor, was approved by the
FDA in January 2020 for patients over 16 years of age with
advanced epithelioid sarcoma that is ineligible for complete
resection.®® It is also the first targeted drug for epithelioid
sarcoma treatment.>>' In a phase Il clinical trial (NCT02601950),
tazemetostat demonstrated good tolerability and clinical activity,
with a low incidence of severe treatment-related adverse events
such as anemia and weight loss.>>*> Tazemetostat has also been
studied as a monotherapy in R/R follicular lymphoma (FL),
showing promising, durable responses and an acceptable safety
profile®>*?*  Common severe adverse events included
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thrombocytopenia, neutropenia, and anemia.?>* In Japan, a phase
I/Il trial evaluated tazemetostat 800 mg twice daily in R/R EZH2
mutation-positive FL, showing encouraging response rates and
tolerability, which helped to accelerate its approval by the FDA
and PMDA for this indication.?>>2>® Furthermore, tazemetostat is
being investigated as a single agent for malignant mesothelioma,
with ongoing efforts to refine biomarkers for its activity in
malignant pleural mesothelioma.”®” Research is also underway to
assess the efficacy and tolerability of tazemetostat in combination
with other therapeutic agents, including programmed cell death 1
(PD-1)/programmed cell death 1 ligand 1 (PD-L1) inhibitors,
chemotherapy, and targeted therapeutics across different tumor
types.*®2%° 'Notably, phase Il clinical trials are exploring
tazemetostat in combination with lenalidomide and rituximab
(NCT04224493) or doxorubicin (NCT04204941) focusing on R/R FL
and epithelioid sarcoma, which are highly anticipated for their
potential to redefine treatment paradigms.

Valemetostat tosilate is an innovative dual inhibitor of EZH1/2
that received approval from the PMDA in Japan for the treatment
of R/R adult T-cell leukemia/lymphoma (ATL) in September
2022.%%" It is administered orally and should be taken on an
empty stomach to avoid adverse food effects.?®> Dosage
adjustments are necessary when valemetostat is used concur-
rently with strong inhibitors of cytochrome P450 3 A and P-
glycoprotein, which can affect its metabolism and excretion.”®
In a multicenter phase 2 trial involving patients with R/R
aggressive ATL, valemetostat demonstrated promising efficacy,
even in heavily pretreated patients. The common treatment-
associated adverse effects reported were manageable, including
thrombocytopenia, anemia, alopecia, dysgeusia, neutropenia,
lymphopenia, leukopenia, decreased appetite, and pyrexia.?®*
However, resistance to valemetostat has been observed in some
patients with ATL, potentially due to acquired mutations in the
polycomb repressive complex 2 (PRC2) within tumor cells,
highlighting a significant challenge in long-term treatment
scenarios.> Currently, valemetostat and its analogs are also
being investigated in various preclinical studies and animal
models for conditions such as tumor protein p63 gene-
rearranged  lymphoma, sinonasal  teratocarcinosarcoma,
ibrutinib-resistant mantle cell lymphoma, and human T-cell
leukemia virus type 1-associated myelopathy. These studies
further expand the potential therapeutic applications of vale-
metostat and warrant continued exploration of valemetostat-
based treatment strategies.?5>~2%8

OTHER EPIGENETICS-TARGETED DRUGS UNDER RESEARCH AS
CLINICAL CANDIDATES

Although there have been many advances in the research of
marketed drugs, they still belong to the tip of the iceberg relative
to the entire field of epigenetics-targeting drug development.
Many small molecule inhibitors and agonists targeting epigenetic-
modifying enzymes are being identified and progressively
advancing into the early stages of clinical trials. This section
categorizes and summarizes these drugs based on their mechan-
isms, highlighting agents that show potential therapeutic value in
clinical settings (Fig. 4).

Epigenetics-targeted drugs and DNA methylation

This critical regulatory mechanism of gene expression involves
adding methyl groups to DNA, primarily at cytosine bases in
CpG dinucleotides, which generally leads to gene silencing. The
process is dynamically regulated by DNMT and TET enzymes.
The aberrant activity of these enzymes is closely linked with the
pathogenesis of a wide range of diseases, not only cancers but
also metabolic, inflammatory, and neurological disorders, under-
scoring the therapeutic relevance of targeting these path-
ways.?®97272 Therefore, DNA methylation provides a promising
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platform for developing epigenetics-targeted drugs in clinical
practice (Table 3).

Targeting the writer of DNA methylation: DNMT. Current ther-
apeutic strategies primarily involve DNMT inhibitors, which
suppress the expression or enzymatic activities of DNMTs, thereby
counteracting improper DNA methylation patterns. These inhibi-
tors are crucial in correcting the abnormal addition of methyl
groups to DNA, a common feature in many pathologies.

DNMT inhibitors: Most DNMT inhibitors under investigation are
employed in treating hematological or solid tumors, with a smaller
portion used for inflammatory or proliferative benign dis-
eases.'>>?> DNMT inhibitors fall into two principal categories
based on their mechanisms of action: nucleoside DNA methylation
inhibitors and non-nucleoside DNA methylation inhibitors.

Among the nucleoside analogs, the FDA-approved drugs
azacitidine and decitabine are noteworthy. These compounds
integrate into the DNA structure and are recognized by DNMTs
during DNA replication, thereby obstructing normal DNA methyla-
tion processes.”’* Another significant compound, guadecitabine
(SGI110, an antimetabolite of decitabine), represents a second-
generation DNA methylation inhibitor. It is an antinucleotide
molecule that resists degradation by cytidine deaminase.?’®
Research primarily focuses on its application against various
malignant tumors. However, although guadecitabine has demon-
strated good tolerance and favorable outcomes in many clinical
trials, there is still clinical evidence indicating that its application
may cause serious treatment-related adverse effects, such as
pneumonia, sepsis, aspiration pneumonia, metabolic disorders,
neutropenia, leukopenia, and pruritis.>’®%’” Furthermore, a recent
phase Il clinical trial conducted among patients with succinate
dehydrogenase-deficient tumors was terminated due to low
objective response rates.?’® Additionally, when combined with
traditional antitumor agents such as chemotherapeutic drugs and
immune checkpoint blockade agents, guadecitabine demon-
strates a potent synergistic effect, enhancing long-term clinical
benefits. 2?2282 promisingly, its use in treating patients with AML
has advanced to phase lll clinical trials, indicating high response
rates and comparable safety, positioning it as a promising future
alternative.””9*®3 Other nucleoside DNA methylation inhibitors
include CP-4200, with cellular uptake less dependent on the
nucleoside transporters involved in azacytidine uptake;?®* F-aza-T-
dCyd (NSC801845), optimized structurally from T-dCyd, F-T-dCyd,
and Aza-T-dCyd;*® DHDAC, which is less cytotoxic and more
stable;?®® NPEOC-DAC, a decitabine derivative modified at the N4
position of the azacitidine ring, displaying significantly reduced
potency at low doses in inhibiting DNA methylation;®” and
zebularine, known for its high selectivity and better biocompat-
ibility towards pathological cells,*®® demonstrating significant
therapeutic effects not only on tumors but also on non-tumor
diseases like renal fibrosis,*®*® T2DM,**° and NAFLD.*®" Addition-
ally, clofarabine, an FDA-approved purine nucleoside analog for
treating pediatric AML, primarily inhibits DNA biosynthesis and the
ribonucleotide reductase enzyme and has shown potential in
early-stage carcinogenesis through DNMT1 inhibition.???

Beyond these, various non-nucleoside DNMT inhibitors have
been identified. These include specific artificially synthesized
inhibitors and naturally occurring agents with a demethylation
function.??>2°* Enhancements to the physical properties of these
natural compounds, such as solubility and stability, benefit the
development of more effective DNMT-targeted inhibitors.2%>2
Non-nucleoside DNMT inhibitors are categorized based on their
diverse  mechanisms of action into competitors of
S-adenosylmethionine (SAM), competitive or non-competitive
inhibitors of DNMT, regulators of DNMT expression, and binders
of DNA substrates.”® MG98 and hydralazine are the only two drugs
currently in clinical trials. MG98, an antisense oligodeoxynucleotide,
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Fig. 4 The development direction and major categories of epigenetics-targeted drugs. a Epigenetics-targeted drugs are developed through
the virtual screening of compound libraries, drug design based on molecular structure, and the exploration of potential mechanisms of
known agents. Subsequently, applying PROTAC, CRISPR/Cas, and other technologies or mechanisms to optimize the physical properties, and
inhibitory or agonistic effects of compounds. Finally, the druggability of possible agents should be improved in experimental, preclinical and
clinical studies. b The classification of epigenetics-targeted drugs and their corresponding marketed representative agents are depicted in this
section. Among them, epigenetics-targeted drugs that have already been approved and applied in clinical treatment are highlighted in

corresponding colors
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reduces DNMT1 mRNA levels by targeting its 3’ untranslated
region. However, several clinical trials are far from satisfactory.?®”
A two-stage phase Il clinical trial evaluated the antitumor efficacy
of MG98 in seventeen patients with metastatic renal carci-
noma.2®® However, it failed to detect a decrease in DNMT1
activity caused by MG98, urging caution against potential side
effects like transaminase elevation and fatigue from excessive
dosages during intravenous administration.””®?°° Hydralazine, a
low molecular weight molecule, interacts with DNMT through a
network of hydrogen bonds with arginine and glutamic acid
residues.3%° Its combination with traditional chemotherapeutic
agents has been found to mitigate the progression of both
hematological malignancies and solid tumors3°'3% In a
completed phase Il clinical trial, 15 patients with solid tumors
qualified for the assessment of the therapeutic response to
hydralazine and magnesium valproate. The majority of patients
(80%), benefited from treatment and exhibited satisfactory
clinical efficacy and tolerability.*®* These findings underpin the
hypothesis that epigenetic aberrations induced by chemother-
apeutic agents are a primary cause of chemoresistance,
providing a theoretical basis for the combined use of
epigenetics-targeted drugs and chemotherapy in tumor therapy.

Targeting the eraser of DNA methylation: TET. Due to the
significant heterogeneity in the roles that TET enzymes play
across various diseases, the effectiveness of targeting TET
enzymes as a therapeutic strategy depends on the specific
disease or even different stages within a disease.>*> While there
are currently no epigenetic-targeted drugs that modulate TET
available on the market, experimental studies and clinical trials
suggest that reshaping methylation landscapes through TET
inhibitors and agonists may be a viable approach to treating
diseases.

TET inhibitors: To date, numerous small molecules have been
identified that inhibit TET enzymes. Research into these TET
inhibitors primarily focuses on elucidating their underlying
molecular mechanisms. We categorize these inhibitors into three
groups based on their distinct mechanisms of action, which will be
discussed in detail below.

Auranofin, C35, and eltrombopag specifically target and bind to
the catalytic domains of TET proteins, directly inhibiting their
enzymatic activities. C35 exhibits potent inhibitory effects on all
members of the TET family.3°°**” In contrast, the effects of
auranofin and eltrombopag are specific to TET1 and TET2,
respectively.3°®3°° Notably, eltrombopag, a nonpeptidyl thrombo-
poietin receptor agonist approved by the US FDA for use in
patients with aplastic anemia as an iron chelator>'® Recently,
Guan et al.>*° reported the negative effects of eltrombopag on
TET2. Intriguingly, this mechanism is independent of its iron
chelation properties, presenting it as a potential TET2-targeted
epigenetic agent and providing new insights for epigenetics-
oriented therapy.>*® Further, well-designed studies are essential to
evaluate the clinical application potential of these molecular-level
discoveries.

Itaconic acid, fumarate, and succinate are in vivo synthesized
metabolites that indirectly impair TET catalytic activity by
competitively binding to TET2 alongside o-KG, a crucial cofac-
tor3""3"3 These metabolites are promising precursors for devel-
oping TET-targeted epigenetic drugs, as they are well tolerated
in vivo.*'**"> However, considerable work is necessary before
clinical application, such as designing appropriate carriers that can
deliver these agents directly to pathological cells, given their
potential impact on the vital activities of normal cells. Additionally,
synthetic compounds like dimethyloxallylglycine and TETi76,
which mimic the properties of a-KG, serve as competitive
inhibitors of TET.>'®*'” These agents represent a novel approach
to developing TET inhibitors.
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Bobcat339,°'®3"®  NSC-311068,>*° NSC-370284,**° and UC-
514321,%° inhibit DNA methylation by reducing intracellular TET
levels. Bobcat339 induces the degradation of TET3 directly,*'® and
its inhibitory effects on TET1 and TET2 are observed only in the
presence of coordinating copper(ll).3?' NSC-370284 and UC-
514321 bind directly to the DNA-binding domain of signal
transducer and activator of transcription 3 (STAT3) or STATS5,
transcriptional activators of TET1, leading to suppressed expres-
sion of TET1 in vivo.3?® This mechanism has been confirmed in
mouse models of AML and medulloblastoma, showing synergistic
effects with standard chemotherapy.>?°3?? The therapeutic
potential of these compounds in additional diseases is an exciting
area for future research.

TET agonists: As previously discussed, TET inhibitors are highly
valued for treating diseases. Conversely, research into TET agonists
is also anticipated to yield promising breakthroughs and pave the
way for clinical applications. Most TET agonists currently under
investigation are drugs that upregulate cofactors of TET, such as
vitamin C and enzymes involved in a-KG metabolism; other small
molecules, including 3-nitroflavanones,®® retinoic acid,>** ioper-
amide hydrochloride,*** and mitoxantrone,**> are reported to
directly upregulate TET expression.

Vitamin C, or ascorbate, uniquely interacts with the C-terminal
catalytic domain of TET, positioning it as a novel epigenetic-
modifying agent.323?” As an antioxidant, it also helps maintain
the divalent state of iron ions, indirectly supporting TET
activity.>*> Characterized by TET repair and increased 5hmC
levels, vitamin C administration can exert therapeutic roles in
various tumors and non-tumor diseases.>?¥33° Furthermore, it
has been used as an adjuvant, synergizing with other immu-
notherapeutic or chemotherapeutic agents.”*' 3% The synergis-
tic treatment of vitamin C with azacitidine or decitabine in
clinical trials has shown positive outcomes for patients with
myeloid tumors.>3>33¢ However, the optimal doses, frequency,
and duration of vitamin C administration remain debated, with
long-term treatment and follow-up required for further investi-
gation.?3” Therefore, the full exploration of the therapeutic role
of vitamin C as an epigenetic-modifying drug is crucial for its
future clinical applications.

Inhibitors of IDH and a-KG dehydrogenase elevate a-KG levels.
In tumor cells, IDH1/2 mutations lead to the production of the
oncometabolite 2-HG, which competes with a-KG for binding
sites on TET, potentially leading to reversible inhibition of TET
proteins and dysregulation of DNA methylation levels.33%33° The
administration of enasidinib and siRNA against IDH2 has been
shown to restore the low methylated state of the genome,
consistent with the reactivation of TET enzymatic activ-
ities. 3497342 However, observations suggest that other a-KG-
dependent enzymes, such as histone demethylases and prolyl
hydroxylases, might play a more dominant role in the
progression of IDH-mutant diseases.>** These findings highlight
the potential for developing TET agonists based on IDH
inhibitors to reshape the epigenetic landscape, warranting
further investigation. Additionally, inhibiting a-KG dehydrogen-
ase enhances a-KG levels and TET activities, restoring DNA
demethylation and ameliorating the progression of T2DM and
breast cancer3*3% Similarly, 10X1, an inhibitor of a-KG
oxygenases and a potent inhibitor of lysine demethylase 3 A
(KDM3A) and KDM4A, has been found to reduce TET enzymatic
activities in helper T cells, emerging as a potential epigenetic
drug for various autoimmune diseases.>*® In conclusion, a-KG
represents a promising target for TET-targeted drug develop-
ment that should be further explored in clinical trials.

Targeting the reader of DNA methylation: MBD and UHRF1. With

the discovery of proteins that read methylated DNA sites,
burgeoning research has aimed to identify small molecules
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targeting these enzymes, sparking considerable enthusiasm for
developing novel therapeutic targets.

MBD inhibitors: The MBD protein family, critical readers of DNA
methylation, consists of six members: methyl-CpG-binding protein
1 (MeCP1), MeCP2, MBD1, MBD2, MBD3, and MBD4.>* The
aberrant activities and expression of these proteins observed in
various diseases have recently positioned them as potential
targets for epigenetic drugs. Current research predominantly
focuses on MBD2 inhibitors, which are rapidly progressing.

The development of MBD2 inhibitors hinges on two prerequi-
site factors. Firstly, the knockdown of MBD2 or the application of
targeted siRNA has demonstrated positive effects in tumor
treatment, underscoring the therapeutic potential of targeting
MBD2.3*® Secondly, successfully elucidating MBD2's molecular
structure and associated mechanisms lays the scientific ground-
work for identifying and designing inhibitory molecules. MBD2
inhibitors can be categorized into three groups based on their
mechanisms of action. The first group disrupts the binding of the
N-terminal MBD to methylated DNA.**® Through docking analysis,
molecules such as CID3100583 and 8,8-ethylenebistheophylline
have been identified to target the interaction between MBD2 and
DNA® The second category aims to block the interaction
between the C-terminal coiled-coil domain and the GATA zinc
finger domain containing 2A, which has shown potent inhibitory
effects on MBD2-dependent DNA methylation.*>' However, no
drugs based on this mechanism are currently in use, highlighting a
gap in research that demands further exploration. The third group
prevents the interaction with HDAC and the formation of the
nucleosome remodeling and deacetylase complex via an intrinsi-
cally disordered region.?*>>* Utilizing this concept, Na et al.>>
developed a novel technique that efficiently discriminates
potential compounds interacting with intrinsically disordered
proteins through expanded virtual screening. This approach led
to identifying two MBD2 inhibitors, ABA and APC. These findings
provide a sound basis for a therapeutic strategy targeting MBD2
and advocate for more comprehensive in vivo studies to assess
their efficacy and safety.

UHRF1 inhibitors: Ubiquitin-like with plant homeodomain (PHD)
and RING finger domains 1 (UHRF1) plays a pivotal role in
recruiting DNMT1 during replication, primarily through the
recognition of hemimethylated DNA and the subsequent flipping
of hemimethylated CpG sites via the SET and RING associated
domain (SRA).>**7*%® UHRF1 also interacts with HDAC1 and
facilitates the di- and tri-methylation of H3, contributing to the
ubiquitination of histones and the formation of heterochroma-
tin.>>° The upregulation of UHRF1 has been observed in various
pathologies, particularly in tumors, making it a promising target
for therapeutic intervention.26%3¢

The initial identification of small inhibitors targeting the SRA
domain of UHRF1 was based on structure-based screening and
computational analyses. Compounds such as NSC232003,¢?
UM63,3%% UF146,3%* chicoric acid,>*®> have been shown to block
the interaction between UHRF1 and 5mC sites, effectively
preventing the proliferation of diverse cancer cell lines. Advanced
screening techniques, such as nonequilibrium capillary electro-
phoresis of the equilibrium mixture, have facilitated the identifica-
tion of proanthocyanidins and baicalein as promising inhibitors.>®
Furthermore, Ciaco et al.2®’ reported the development of novel
UHRF1 inhibitors, AMSA2 and MPB7, based on the structure of
UM63. These inhibitors suppress SRA-mediated base-flipping
activities without DNA intercalation and demonstrate minimal
effects on non-cancer cells, offering a basis for further optimiza-
tion. In addition to the SRA domain, the tandem Tudor domain
and PHD domain of UHRF1, which are involved in recognizing
methylated lysine and arginine residues on H3, have also become
targets for inhibitor design.3®®¢° While some inhibitors targeting
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these domains have been reported, their effects have only been
validated in vitro, and more evidence is needed before proceed-
ing to clinical trials.>’°37? Current research suggests that
inhibiting UHRF1 alone may not be sufficient to restore gene
silencing affected by hypermethylation. However, combining
UHRF1 inhibitors with other epigenetic inhibitors, such as HDAC
inhibitors, can lead to synergistic effects and improved therapeu-
tic outcomes.*”**’* Consequently, multi-target inhibitors have
been developed and are emerging as clinical candidates for tumor
therapy.>”>7"8 Additionally, the use of small molecules that act as
UHRF1 degraders, such as diosgenin and MK2206, has been
explored for prostate cancer treatment, representing a novel
therapeutic approach.?”**%® Natural substances like hinokitiol
have shown therapeutic effects in mouse models in a UHRF1
depletion-dependent manner although the underlying mechan-
isms remain to be fully elucidated and represent a direction for
future research.®’

Epigenetics-targeted drugs and histone acetylation

The dynamic equilibrium and normal function of histone
acetylation and deacetylation are regulated by the cooperative
actions of the lysine acetyltransferase (KAT) and HDAC families,
along with various reader proteins. Acetylation of lysine residues
at the N-terminus of histones induces negative charges that
trigger gene transcription, while decreased acetylation down-
regulates gene expression. Conversely, an imbalance in histone
acetylation/deacetylation disrupts normal gene expression pat-
terns, leading to the onset and progression of diseases. The
development of related epigenetic drugs is ongoing, offering new
therapeutic options for treating these conditions (Table 4).

Targeting the writer of histone acetylation: KAT. Histone acetyla-
tion serves various functions within cells. However, aberrant
acetylation catalyzed by KAT can trigger the pathogenesis of
various human diseases, including neurodegenerative diseases,
metabolic diseases, and tumors.*®273% Developing epigenetic
drugs that regulate KAT activity is a promising avenue for treating
these diseases.

KAT inhibitors: Numerous inhibitors targeting KAT have been
developed, primarily focusing on the P300/CBP, GNAT/PCAF, and
MYST classes.®73%8 These enzymes contain two accessible
domains: the acetyl-lysine binding BD and the catalytic domain,
utilizing acetyl CoA as a cofactor to transfer acetyl groups. Thus,
designed inhibitors can target the enzymatic activity and the
binding sites for acetyl CoA. Moreover, research into KAT
degraders is advancing with the advent of proteolysis-targeting
chimeras (PROTACs). These degraders are ternary complexes
comprising ligands for targeted proteins and E3 ubiquitin ligase,
along with a connecting linker, allowing targeted degradation via
a ubiquitination-dependent method.>%°

Five KAT inhibitors have entered clinical practice, including
CCS1477, FT-7051, NEO2734, PRI-724, and PF-07248144. CCS1477
targets the P300/CBP (KAT3A/KAT3B) via interaction with the BD
fragment, exhibiting potent antitumor effects in cancer cell lines
and animal models.>?*3°" This has led to its application in
monotherapy and in combination with chemotherapeutic drugs in
phase | and Il clinical trials (NCT04068597, NCT03568656), with the
potential to improve therapeutic strategies for both advanced
solid tumors and hematological malignancies. FT-7051, another
P300/CBP inhibitor targeting the BD domain, has been shown to
reduce H3K27Ac at specific promoter sites and is currently under
study in a phase | clinical trial for patients with hormone receptor-
positive prostate cancer.3*> NEO2734, a dual P300/CBP and BET
inhibitor, demonstrates therapeutic potential comparable to the
combination of a BET inhibitor and a P300/CBP inhibitor in
treating certain cancers.3>3%* It is currently being evaluated in a
phase | clinical trial focusing on castration-resistant prostate
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cancer and other advanced solid tumors to assess its maximum
tolerated oral dose (NCT05488548). PRI-724 effectively disrupts the
interaction between pB-catenin and CBP, ameliorating various
diseases by inhibiting the Wnt/B-catenin signaling pathway.>** Its
safety, tolerability, and antifibrotic effects have been further
evaluated in two completed clinical trials among patients with
hepatitis C virus (HCV)- and HBV-induced cirrhosis.>***°” However,
PRI-724 fails to exhibit sufficient evidence of improvement in
hepatic function according to existing data’°® Lastly, PF-
07248144, a selective inhibitor of KAT6 (a member of the MOZ/
MORF family), is currently under clinical investigation for the
treatment of advanced breast cancer (NCT04606446). In summary,
KATs represent compelling targets for therapeutic strategies, and
developing novel and high-quality inhibitors with improved safety
and efficacy is reaching an exciting phase.

Targeting the eraser of histone acetylation: HDAC. Zn*"-depen-
dent classical HDACs and nicotinamide adenine dinucleotide
(NAD)"-dependent HDACs (sirtuins) are crucial for dynamic
deacetylation modifications on histones and non-histone proteins,
playing significant roles in ontogeny and tumorigenesis. Despite
the HDAC family’s broad substrate range in vitro, their specific
subcellular localization restricts their biological functions and
target proteins. Using inhibitors and agonists of HDACs and
sirtuins to correct abnormal acetylation patterns is a promising
therapeutic strategy.>?®3°° Notably, the therapeutic effectiveness
of these interventions, in an epigenetic-dependent manner,
hinges on the participation of target enzymes in histone
deacetylation.

HDAC inhibitors: HDAC inhibitors are designed based on the
spatial structure of their targets, characterized by highly conserved
and homologous catalytic domains, including a catalytic channel,
a zinc cation, and secondary pockets. Most HDAC inhibitors
consist of a surface binding region, binding to the catalytic
channel, and a zinc-binding group along with the linker, chelating
the zinc ion.*® Four main categories of HDAC inhibitors are
extensively studied: pan-inhibitors, selective inhibitors, multitarget
agents, and PROTACs-based HDAC degraders.3°® We will now
discuss the recent applications of these HDAC inhibitors in clinical
trials.

Four FDA-approved HDAC inhibitors—vorinostat, romidepsin,
belinostat, and panobinostat—demonstrate a pan-inhibitory
effect on almost all HDAC members and have made significant
progress in treating some hematological malignancies. This
success has fueled enthusiasm for developing additional pan-
inhibitors to expand the clinical indications of these drugs.
Currently, several pan-inhibitors, including ivaltinostat
(CG200745), AR-42, abexinostat (PCl-24781), bisthianostat (CF-
367), and sodium valproate, are under clinical trials for various
tumors. The phase Il study on ivaltinostat for advanced pancreatic
ductal adenocarcinoma reports enhanced sensitivity of tumor
cells to gemcitabine and erlotinib, presenting it as a potential
treatment option.”° Another phase Il study aims to determine
the maximum tolerated dose and dose-limiting toxicity of
ivaltinostat in combination with gemcitabine and erlotinib in
patients with advanced pancreatic cancer, although clinical data
have not been publicly disclosed, suggesting potential challenges
(NCT02737228). In phase | trials, single-agent AR-42 has shown
promise in treating type 2-associated meningiomas and schwan-
nomas, with patients exhibiting good tolerance and therapeutic
potential **?>%* However, a phase | trial focusing on advanced
sarcoma and kidney cancer was terminated early due to observed
dose-limiting toxicities in six patients (NCT02795819). Abexino-
stat, an oral small pan-inhibitor, whether used as monotherapy or
in combination with chemotherapeutic agents, has shown
promising therapeutic potential and acceptable safety profiles
in solid tumors and hematological malignancies.*®***° Notably, a
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phase lll study on abexinostat for locally advanced or metastatic
renal cell carcinoma is ongoing in various regions, highlighting its
potential as a clinical candidate (NCT03592472). Bisthianostat, a
novel bisthiazole-derived pan-HDAC inhibitor, was studied in
phase 1a clinical trial.*°” Although preliminary data suggested
modest efficacy and tolerability as a single agent in patients with
R/R MM, this study has been terminated for undisclosed reasons
(NCT03618602).

The non-selective inhibition characteristic of pan-HDAC inhibi-
tors often leads to a broad spectrum of adverse effects and off-
target toxicities, which restrict their widespread clinical applica-
tion.*®® Given the diverse roles of different HDAC classes, there is
increasing interest in developing selective HDAC inhibitors,
viewed as promising alternatives with better tolerance.****'°
However, due to a lack of evidence supporting the involvement of
HDAC5/6/7/8/10 in histone deacetylation, selective inhibitors
targeting these enzymes are not typically included in summaries
of epigenetic-targeted drugs.*'’ Chidamide and givinostat, both
FDA-approved selective inhibitors, have shown superior thera-
peutic efficacy and safety profiles. Givinostat, in particular, has
promisingly expanded the clinical indications of HDAC inhibitors
to include non-tumor diseases. Beyond these marketed drugs,
several selective inhibitors have entered clinical practice. Notably,
four such inhibitors are undergoing phase Il clinical trials:
pracinostat (NCT03151408), entinostat,*'? magnesium valproate
(NCT00533299), and tacedinaline (NCT00005093). Among these,
only the phase Ill trial of entinostat combined with exemestane in
treating hormone receptor-positive advanced breast cancer has
shown satisfactory efficacy and manageable toxicities.*'> How-
ever, among patients with other types of tumors such as colorectal
carcinoma, lung cancer, endometrial endometrioid adenocarci-
noma, and hematologic malignancies, entinostat fails to improve
survival despite exhibiting good clinical efficacy.*’>™*'® Impor-
tantly, according to an early-terminated, phase | clinical trial that
evaluated the combination of entinostat, hydroxychloroquine, and
regorafenib, the drug regimen among patients with metastatic
colorectal carcinoma was poorly tolerated, with higher risks of
weight loss, fatigue, and anorexia.*'® Despite these advancements,
selective inhibitors still face significant developmental challenges
as they emerge as the next generation of HDAC inhibitors.

Recently, multitarget agents-based HDAC inhibitors have
gained attention and have been posited to perform versatile
roles in disease treatment.*'”*'® Various such agents, including
those dual-targeting HDACs and kinases, receptors, DNA, tran-
scriptional factors, and apoptosis-related proteins, are under
preclinical investigation. Examples include curcumin (previously
mentioned as a DNMT/METTL3 inhibitor), CUDC-101, tinostamus-
tine (EDO-S101), fimepinostat (CUDC-907), domatinostat (4SC-
202), and dacinostat (NVP-LAQ824, LAQ824), all of which are
involved in various clinical trials.>?® It has been widely reported
that these multitarget agents enhance safety and reduce drug
resistance in various diseases, both as monotherapy and in
combination with radiotherapy or chemotherapy.*°~*** However,
emerging research offers a contrasting perspective. In a recent
phase Ib clinical trial focusing on domatinostat (a dual inhibitor of
LSD1/HDAC) in patients with advanced melanoma, the drug failed
to enhance the efficacy of treatments targeting anti-PD-1 and
cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) while
unexpected severe skin toxicity was observed.*** Furthermore,
as current knowledge about these multitarget agents is still
primarily derived from early-stage clinical trials, extensive inves-
tigations are necessary to validate their therapeutic value in a
broader population.

HDAC agonists: While HDAC inhibitors have been extensively
studied, research on HDAC agonists has been less prevalent.
However, the therapeutic value of these agents in specific diseases
has been demonstrated. Theophylline, used initially as an inhibitor
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of phosphodiesterase and adenosine receptors in treating asthma
and chronic obstructive pulmonary disease, has recently shown
activated effects on HDAC in low doses. These effects synergis-
tically enhance the anti-inflammatory properties of cortisol in
asthma and chronic obstructive pulmonary disease treatments.*?
Nonetheless, a phase Il clinical study revealed that additional
administration of low-dose theophylline, along with inhaled long-
acting [,-agonists and corticosteroids, failed to enhance HDAC
activity in vivo. This left no significant difference from the anti-
inflammatory properties of standard therapy.**®

SIRT inhibitors and agonists: The sirtuin family’s role in devel-
oping various diseases, including inflammation, cardiovascular
diseases, metabolic disorders, neurodegenerative diseases, and
cancer, underscores the importance of exploring molecules that
modulate their activity. Notably, SIRT2 is involved in the
deacetylation of histone H4 during the G2/M transition and
mitosis but is predominantly found in the cytosol, where it
participates in non-histone deacetylation.*?”#?® SIRT3-5 are mainly
located in mitochondria and possess a mitochondrial targeting
sequence,*? while SIRT7 is primarily found in the nucleus, though
fewer studies have addressed molecules that regulate its
activity.** Consequently, the inhibitors and agonists of SIRT1
and SIRT6 are highlighted as promising epigenetics-targeted
drugs with significant potential.

From a mechanistic perspective, five classes of inhibitors of
SIRT1 have been identified: First, competitive inhibitors that vie for
acylated substrates at the binding sites, exemplified by natural
products such as sirtinol, splitomicin, and cambinol analogs;‘m'432
Second, competitive inhibitors that challenge NAD" for binding
sites, including selisistat (EX-527) and Sosbo;**37*** Third, adeno-
sine analogs such as Ro 31-8220;*%**" Further, binary inhibitors
that compete with substrates or cofactors at separate binding
sites, represented by ELT-31, a non-selective SIRT1-3 inhibitor;**®
And the last, non-competitive inhibitors, including nicotinamide
and its analogs, tenovins, thioacetyl-lysine peptides, and other
small peptides.**=**! EX527, one of the few sirtuin inhibitors in
clinical use, has demonstrated antitumor effects in vitro and
potential as an adjunct in tumor therapy.*** Additionally, it has
proven safe and well-tolerated within the therapeutic concentra-
tion range for treating neurodegenerative diseases.**> However,
minimal therapeutic effects were observed in a phase | clinical trial
focusing on early-stage HD, with further large-scale trials needed
to explore its clinical potential.*** Ongoing research also
investigates EX-527’s potential roles in improving other metabolic
diseases, including endotoxemia,*** diabetic nephropathy,** and
infertility (NCT04184323) remains ongoing. Utilizing computa-
tional tools to predict potential allosteric sites has led to the
identification of some allosteric SIRT6 inhibitors, including JYQ-
42, compound 11e,**® and a pyrrole-pyridinimidazole deriva-
tive.**?4% Given that histone deacetylation catalyzed by SIRT6
promotes both tumor and non-tumor diseases, designing and in-
depth study of these allosteric SIRT6 inhibitors represent a
promising research field for human disease treatment.*>'*>?

The agonists of the sirtuin family have been widely studied
since the discovery of the first SIRT1 agonist, resveratrol, in
2003.%%3 The initially discovered sirtuin agonists mainly upregulate
target enzyme activity through allosteric effects and are classified
into two primary categories based on their origins. The first
category comprises natural products extracted from plants,
including resveratrol and other polyphenolic molecules.***~*>°
The second category consists of synthesized agonists that exhibit
greater selectivity, focusing particularly on SIRT1, such as SRT1460,
SRT1720, SRT2104, SRT2183, and SRT3025, as well as those
targeting SIRT6, including UBCS039 and MDL-800.%%° Additionally,
compounds that are suggested to upregulate SIRT1 expression
have been identified. These are predominantly involved in the
activation of the mitogen-activated protein kinase pathway,
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including DDIT3,%" phloretin,*®* puerarin,*®® and atractylenolide
I1.*5* Other reported agonists include include astragaloside
intravenous,*®® hesperidin,*®® caffeic acid phenethyl ester,*®’
agomelatine,*®® ligustilide,**® tanshinone I1A,*’® and farnesol.*”
These studies emphasize the role of SIRT1 activation in the
deacetylation of various non-histones. However, the potential of
these molecules as epigenetics-targeted drugs requires further
exploration. Moreover, NAD'-enhancing molecules, which pro-
mote NAD™ generation or rescue their levels, represent a novel
class of sirtuin agonists. These molecules may activate all sirtuin
members with a single compound, attracting considerable
attention.*’? Given the diverse roles of NAD " in multiple signaling
pathways, additional discussion is needed to determine whether
drugs that increase NAD™ levels have therapeutic effects in a
sirtuin-dependent manner.

Targeting the reader of histone acetylation: BET, YEATS,
and PHD. BET, YAF9, eleven-nineteen-leukemia protein (ENL),
acute lymphocytic leukemia 1-fused gene from chromosome 9
protein (AF9), TAF14, and SAS5 (YEATS) domain, and PHD finger
proteins are critical “readers” of acetylated residues and play
essential roles as epigenetics-modifying enzymes in the transcrip-
tion of downstream target genes. Drugs that target aberrant levels
or activities of acetyl-recognition domain-containing proteins
represent an emerging class of therapies for various diseases.

BET inhibitors: In recent years, a substantial number of BET
inhibitors have been identified, encompassing pan-inhibitors,
BD1/BD2 selective inhibitors, dual inhibitors of kinases and BET,
and PROTACs-based inhibitors.5%*”347* From a therapeutic stand-
point, BET inhibitors are primarily developed for treating tumors,
with some also showing potential in non-tumor diseases, such as
VYN-201 and VYN-202, among other BD2 selective inhibitors.*’*
More than twenty BET inhibitors have progressed to clinical
trials, with several undergoing advanced phase evaluations.
Notably, apabetalone (RVX-208) stands out as the sole BD2-
selective inhibitor in phase Ill trials for addressing cardiovascular
diseases and metabolic disorders such as T2DM.*’¢7*% Apabeta-
lone demonstrates significant anti-inflammatory properties, pro-
viding a robust scientific basis for its ongoing clinical
evaluation.*”°™*8" Another BET inhibitor, pelabresib (CPI-0610),
has also reached phase lll trials and shows promise as a treatment
for myelofibrosis.*®? In earlier phase Il studies, pelabresib
combined with ruxolitinib surpassed the efficacy of Janus kinase
inhibitor monotherapy in treating symptomatic myelofibrosis
while maintaining a manageable safety profile.*®>%%* ZEN-3694,
a leading pan-BET inhibitor, has advanced to phase Il trials,
demonstrating efficacy when used with cyclin-dependent kinases
(CDKs) inhibitors and conventional chemotherapy in cancer
treatment.*® Preliminary phase Ib/lla trials indicate that ZEN-
3694, in combination with enzalutamide, is beneficial for patients
with metastatic castration-resistant prostate cancer.**® An increas-
ing number of trials focusing on ZEN-3694 are currently underway,
which will provide further data to evaluate its therapeutic promise.
Furthermore, recent reports highlight dinaciclib, a well-known
CDK inhibitor, now recognized for its novel activity in BET
suppression.”®” The dual inhibitory capability of dinaciclib
presents a potential strategy to counteract BET resistance in
AML treatment.”®” These developments underscore the potential
of these drugs to achieve market approval for broad clinical use.
However, some BET inhibitors as single-agent therapies have
shown mixed outcomes in clinical trials for distinct cancer settings,
despite their excellent results in preclinical models.**® For
example, several phases 1 and 2 clinical trials investigating the
therapeutic effect of birabresib on solid or hematological
malignancies were terminated prematurely because of limited
efficacy (NCT02698176, NCT02698189, NCT02698176,
NCT02296476). Therefore, combining BET inhibitors with other
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traditional drugs may open new possibilities for the development
of antitumor strategies.

Numerous novel BET inhibitors have been identified recently,
enhancing the landscape of therapeutic options. These include
OPN-51107, a pan-BET inhibitor that mitigates T cell dysfunction in
chronic lymphocytic leukemia;*®° XL-126, a BD1-selective inhibitor
noted for its potent anti-inflammatory effects;**° and DW-71177,
another BD1-selective inhibitor geared towards AML treatment.*®"
Additional developments involve brain-permeable BD1-selective
inhibitors for multiple sclerosis treatment,**> compounds with
dual HDAC/BET inhibitory action for challenging tumors,**
phenoxyaryl pyridone derivatives as BD2-selective inhibitors for
AML,*** and SRX3177, a potent triple-action CDK4/6-phosphoino-
sitide 3-kinase-BET inhibitor for respiratory diseases linked to
B-coronavirus.**> These advancements significantly contribute to
understanding BET-targeted drug development, designing small
molecule inhibitors tailored to the diverse pathological character-
istics of human diseases.

YEATS domain inhibitors: Identified in 2014, the YEATS domain-
comprising YAF9, ENL, AF9, TAF14, and SAS5—serves as a novel
reader for histone acetylation. This domain also recognizes histone
crotonylation and benzoylation, which are critical in regulating
gene expression.***™*?8 The human genome encodes four YEATS
domain-containing proteins: ENL, YEATS domain-containing 2
(YEATS2), AF9, and glioma amplified sequence 41 (GAS41). These
proteins are primarily implicated in the pathogenesis of tumors,
particularly hematologic malignancies, and represent promising
targets for epigenetic therapies.***>°? Research has shown that
the YEATS domain binds to acylated lysine side chains through a
common binding pocket and engages in n-n-m stacking interac-
tions, providing a structural and theoretical foundation for
developing targeted inhibitors.>® A significant milestone was
the identification of the first small-molecule chemical probe, SGC-
iMLLT, which targets ENL and its paralog AF9. This probe’s
inhibitory effects were validated in biological assays.>** Further-
more, another approach involves blocking the protein-protein
interaction (PPI) between YEATS domain proteins and disruptor of
telomeric silencing 1-like (DOTIL), effectively suppressing the
activity of YEATS domain proteins.’®>*% Current research is
focused on developing selective inhibitors for various YEATS
domain proteins, with the deepest insights into ENL inhibitors. In
2022, Liu et al.>*” highlighted the promising potential of the oral
ENL inhibitor TDI-11055 in treating AML in mouse models,
advancing the clinical application of ENL inhibitors for AML
treatment. Additionally, combination therapies involving ENL
inhibitors with KAT or BET inhibitors have been emphasized.”*®>%°
In 2020, Jiang et al>'® introduced the first selective inhibitor
targeting the AF9 YEATS domain, presenting a novel cyclopeptide
for in-depth exploration of the functional similarities and
differences between AF9 and ENL, thereby laying the groundwork
for novel YEATS domain inhibitor development. An optimized
method for the solid-phase synthesis of these inhibitory
cyclopeptides has since been proposed, significantly reducing
preparation time and enhancing yield.>'® Moreover, the study of
amide-m interactions between histone acyl-lysine and the AF9
YEATS domain has led to the development of chemical
compounds that disrupt this noncovalent interaction, notably
those incorporating urea or aromatic rings.”''*'2 In 2021, the first
selective GAS41 inhibitor was reported; this synthesized molecule
binds to dimerized GAS41 YEATS domains and blocks interaction
with acetylated histone H3 in cancer cell lines.>'?

PHD finger domain inhibitors: BD and PHD finger-containing
protein (BRPF) and BD and PHD finger transcription factor (BPTF)
are crucial targets involved in tumor progression and the
development of resistance to molecularly targeted therapy drugs,
such as kinase inhibitors and poly ADP-ribose polymerase (PARP)
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inhibitors.>’*>'® To date, an array of BRPF inhibitors featuring
distinctive scaffolds—such as 3-acetyl-indole, 1,3-dimethylquino-
lin-2-one, 1,3-dimethyl benzimidazole, 1-(indolin-1-yl)ethan-1-one,
1,3-dimethylquinolin-2-one, and 2,3-dioxo-quinoxaline—has been
identified. These compounds represent novel avenues for
therapeutic innovation.”'’">2? However, as the inhibitory effects
of these agents have primarily been confirmed in vitro, extensive
efforts are required to advance these drugs to clinical trials. BPTF
inhibitor development has not kept pace with those targeting
other proteins with BD motifs, primarily remaining within
fragment-based drug discovery. Only a handful have been tested
in vivo or in vitro to demonstrate their inhibitory actions and
therapeutic potential. AU1, the first small molecule selective for
BPTF, has shown effectiveness in mouse models of gastric cancer
and neuroblastoma.’'%?3%24 Bromosporine has exhibited signifi-
cant antitumor effects in breast cancer and melanoma, suggesting
promising therapeutic strategies for solid tumors.>?>>® The novel
selective inhibitor C620-0696 has shown cytotoxic effects in non-
small-cell lung cancer cells overexpressing BPTF.>?” The continued
exploration of these inhibitors in oncology is highly anticipated.

Epigenetics-targeted drugs and histone methylation

Histone methylation is a highly dynamic regulator crucial for
activating or suppressing gene transcription. Histone methyltrans-
ferases, demethylases, and reader proteins modify and maintain
epigenetic signals that influence chromatin structure and cellular
functions. Their dysregulation is linked to a variety of diseases,
particularly malignant tumors. Recent advances in biochemistry
and understanding of pathogenesis have led to identifying and

developing small-molecule inhibitors that target aberrant
demethylation patterns (Table 5).
Targeting  the  writer ~ of  histone  methylation:  KMT

and PRMT. Histone methyltransferases (HMTs), including KMTs
and protein arginine methyltransferases (PRMTs), are central to
regulating histone methylation and are implicated in numerous
biological and pathological processes. Inhibitors of HMTs are
extensively researched as potential therapeutic agents. Notably,
innovative drug discovery strategies for HMT proteins—such as
covalent inhibition independent of SAM-competitive or substrate-
competitive mechanisms, dual-target inhibition, and targeted
degradation strategies—have received considerable attention and
have rapidly progressed.**®7>3° These inhibitors, in addition to
marketed drugs, are being advanced to clinical practice for further
evaluation and oversight.

EZH2 inhibitors: Since the identification of the suppressor of
variegation 3-9 homolog 1 (SUV39H1), the inaugural histone KMT8
discovered in 2000, numerous proteins mediating histone
methylation have been reported. These include EZH1/2, euchro-
matic histone-lysine N-methyltransferase 2 (G9a/EHMT2), G9a-like
protein (GLP/EHMT1), DOT1L, and various SET domain-containing
histone lysine methyltransferase (SETD) and nuclear receptor
binding SET domain protein (NSD) families.>>'33 QOver recent
decades, considerable efforts have focused on developing
efficient and selective inhibitors targeting various histone KMT
subfamilies with potential therapeutic applications in disease
treatment.>34>%7

In addition to the two marketed drugs summarized in the
previous section, tazemetostat (EPZ-6438) and valemetostat (DS-
3201b), numerous novel EZH2 inhibitors are under investigation,
with several advances in clinical studies, particularly compounds
featuring the 2-pyridone moiety which encompass both bicyclic
heteroaromatic and monocyclic aromatic rings.>*® CPI-1205
(lirametostat) has undergone evaluation in three clinical trials
(NCT03480646, NCT03525795, NCT02395601) to assess its toler-
ance and therapeutic potential. Although CPI-1205 has shown
good tolerability in phase | stages, phase Il trials have yet to
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Table 5. Summary of histone methylation-targeted drugs for different diseases in clinical trials
Type Drug Target(s) Condition(s) Status/outcome(s) Phase(s) Other intervention(s)/drug(s)  Study ID/reference(s)
KMT CPI-1205 EZH2 B cell lymphoma Completed (unpublished) Phase | — NCT02395601
inhibitor  cpj_1205 EZH2  Melanoma, NSCLC, RCC, Completed (unpublished)  Phase | In combination with NCT03525795
urothelial carcinoma Ipilimumab
CPI-1205 EZH2 Castration-resistant Unknown Phase I/ In combination with NCT03480646
prostate cancer Il Enzalutamide or Abiraterone/
Prednisone
CPI-0209 EZH2/  Ovarian cancer Recruiting Phase | In combination with NCT05942300
EZH1 Carboplatin
CPI1-0209 EZH2/  MF/Sezary syndrome Recruiting Phase | — NCT05944562
EZH1
CPI-0209 EZH2/ Urothelial carcinoma, Recruiting Phase I/ — NCT04104776
EZH1 ovarian cancer, 1l
endometrial carcinoma,
DLBCL, PTCL,
mesothelioma
SHR2554 EZH2  Healthy volunteers Completed (metabolizing  Phase | In combination with NCT04627129°%2
enzymes in vivo regulates Itraconazole
the plasma concentration
of SHR2554)
SHR2554 EZH2 Healthy volunteers Unknown Phase | — NCT05049083
SHR2554 EZH2 Healthy volunteers Completed (unpublished) Phase | — NCT06010680
SHR2554 EZH2 Healthy volunteers Completed (unpublished)  Phase | In combination with NCT05661591
Fluconazole
SHR2554 EZH2 Healthy volunteers Completed (unpublished)  Phase | In combination with NCT06093945
Omeprazole
SHR2554 EZH2 Healthy volunteers Completed (drug exposures Phase | Following a high-fat diet or NCT04335266
are essentially the same in fasting status
fasted and fed states)
SHR2554 EZH2 Healthy volunteers Completed (metabolizing  Phase I In combination with Rifampin NCT04577885
enzymes in vivo regulates
the plasma concentration
of SHR2554)
SHR2554 EZH2  Mature lymphoid Unknown (exhibits satisfied Phase | — NCT03603951%4%>4!
neoplasms efficacy and acceptable
adverse effects according
to available data)
SHR2554 EZH2 FL Not yet recruiting Phase I — NCT06368167
SHR2554 EZH2 HR-positive, HER2- Recruiting Phase Il Umbrella study NCT04355858
negative, endocrine-
resistant advanced BC
SHR2554 EZH2 PTCL Recruiting Phase I/ Umbrella study NCT05559008
1l
SHR2554 EZH2 TNBC Recruiting Phase I/ Umbrella study NCT03805399
Il
SHR2554 EZH2 B cell lymphoma, solid Recruiting Phase I/ SHR1701 (active comparator/ NCT04407741
tumors ] followed by SHR2554)
SHR2554 EZH2 HL Recruiting Phase I/ SHR1701 (active comparator/ NCT05896046
] followed by SHR2554)
SHR2554 EZH2 PTCL Recruiting Phase I/ In combination with CHOP NCT06173999
1l
SHR2554 EZH2 Castration-resistant Completed (unpublished)  Phase I/ With or without SHR3680 NCT03741712
prostate cancer 1l
SHR2554 EZH2 PTCL Recruiting Phase lll Chidamide (active NCT06122389
comparator)
PF-06821497 EZH2 Castration-resistant Recruiting Phase | — NCT03460977
prostate cancer, SCLC, FL
GSK126 EZH2  DLBCL, FL, MM, solid Terminated (the maximal ~ Phase | — NCT02082977°%
tumors dose and schedule shows
insufficient evidence of
clinical activity)
XNW5004 EZH2 Squamous cell carcinoma Recruiting Phase I/ In combination with NCT06022757
of head and neck, 1l Pembrolizumab
urothelial carcinoma,
prostate cancer, SCLC,
NSCLC, cervical cancer
AXT-1003 EZH2 NHL Recruiting Phase | — NCT05965505
EPZ-5676 DOTIL  AML, ALL Completed (unpublished) Phase | — NCT02141828
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Table 5. continued
Type Drug Target(s) Condition(s) Status/outcome(s) Phase(s) Other intervention(s)/drug(s)  Study ID/reference(s)
EPZ-5676 DOTIL  AML, ALL, MDS, Completed (exhibits good Phase | — NCT01684150"'4¢
myeloproliferative safety profiles while
disorders unsatisfied efficacy)
EPZ-5676 DOTIL  AML with an 11923 Completed (large-scale Phase I/ In combination with NCT03701295
translocation or partial  trials should be hold) Il Azacitidine
tandem duplication
EPZ-5676 DOTIL  ALL Terminated (due to the Phase I/ In combination with NCT03724084
study agent is no longer ] Cytarabine and Daunorubicin
available)
EZM0414 SETD2 MM, DLBCL Recruiting Phase | — NCT05121103
KTX-1001 NSD2 MM Recruiting Phase | — NCT05651932
PRMT  GSK3368715 PRMT1  DLBCL, PDAC, bladder ~ Terminated (due to a lack in Phase | — NCT03666988>°'
inhibitor cancer, NSCLC observed clinical efficacy
and the unfavorable risk/
benefit analysis)
CTS-2190 PRMT1  PDAC, NSCLC, TNBC Recruiting Phase I/ — NCT06224387
Il
GSK3326595 PRMT5 TNBC, TCC, GBM, NHL, Completed (unpublished)  Phase | With or without NCT02783300
ACC, HR-positive BC, Pembrolizumab
HPV-positive solid
tumors, NSCLC
GSK3326595 PRMT5 BC Completed (unpublished)  Phase Il Blank-controlled NCT04676516
GSK3326595 PRMT5 MDS, AML Terminated (due to an Phase I/ With or without Azacitidine NCT03614728
internal review of clinical ]
data)
INJ64619178 PRMT5  NHL, MDS, solid tumors  Active, not recruiting Phase | — NCT03573310°%®
(clinical benefit is limited)
INJ64619178 PRMT5  Solid tumors Completed (exhibits Phase | — a7
manageable dose-
dependent toxicity with
limited clinical benefit)
PF06939999 PRMT5  NSCLC, urothelial Terminated (exhibits Phase | With or without Docetaxel NCT03854227°%1148
carcinoma, squamous tolerable safety profiles and
cell carcinoma of head  objective clinical responses
and neck in a subset of patients)
TNG908 PRMT5  NSCLC, mesothelioma, Recruiting Phase I/ — NCT05275478
PDAC, sarcoma, GBM 1l
MRTX1719 PRMT5  Mesothelioma, PDAC, Recruiting Phase I/ — NCT05245500°”"
NSCLC, malignant Il
peripheral nerve sheath
tumor
PRT543 PRMT5  DLBCL, myelodysplasia, ~Completed (exhibits limited Phase | — NCT03886831°72
myelofibrosis, ACC, MCL, efficacy in ACC)
AML, CMML
PRT811 PRMT5  Solid tumors, CNS Completed (unpublished) Phase | — NCT04089449
lymphoma, gliomas
SKL27969 PRMT5  Solid tumors Terminated (due to Phase I/ — NCT05388435
portfolio prioritization) Il
AMG193 PRMT5  Biliary tract cancer, PDAC Recruiting Phase | In combination with NCT06360354
Gemcitabine/Cisplatin/
Pembrolizumab, or
Gemcitabine/Nab-paclitaxel,
or modified FOLFIRINOX
AMG193 PRMT5  NSCLC Recruiting Phase I With or withought NCT06333951
Carboplatin/Paclitaxel/
Pembrolizumab, or
Carboplatin/Pembrolizumab/
Pemetrexed, or
Pembrolizumab, or Sotorasib
AMG193 PRMT5  MTAP-null solid tumors  Recruiting Phase I/ With or without Docetaxel NCT05094336
1l
AMG193 PRMT5  MTAP-null solid tumors  Recruiting Phase I/ In combination with IDE397  NCT05975073
1l
SH3765 PRMT5  Advanced malignant Not yet recruiting Phase | — NCT05015309
tumors
TNG462 PRMT5  MTAP-null solid tumors  Recruiting Phase I/ — NCT05732831
Il
SCR6920 PRMT5  Solid tumors, NHL Recruiting Phase | — NCT05528055
SYHX-2001 PRMT5  Solid tumors Recruiting Phase | — NCT05407909
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Table 5. continued
Type Drug Target(s) Condition(s) Status/outcome(s) Phase(s) Other intervention(s)/drug(s)  Study ID/reference(s)
KDM Tranylcypromine LSD1 Non-APL AML subtypes, Completed (unpublished) Phase | In combination with ATRA NCT02273102
inhibitor MDS
Tranylcypromine LSD1 Non-APL AML subtypes  Unknown Phase I/ In combination with ATRA NCT02261779
1l
Tranylcypromine LSD1 Non-APL AML subtypes  Unknown Phase I/ In combination with ATRA and NCT02717884
Il Cytarabine
ORY-1001 LSD1 AML, MDS Recruiting Phase | In combination with NCT06357182
Azacitidine and Venetoclax
ORY-1001 LSD1 AML Recruiting Phase | In combination with NCT05546580
Gilteritinib
ORY-1001 LSD1 SCLC Not yet recruiting Phase I/ Atezolizumab and NCT06287775
Il Durvalumab (active
comparator/followed by ORY-
1001)

ORY-1001 LSD1 AML Completed (exhibits a good Phase | — EudraCT 2013-
safety profile without 002447-29
significant extra-
hematologic toxicity)

ORY-1001 LSD1 AML Completed (unpublished)  Phase Il In combination with EudraCT 2018-

Azacitidine 000482-36%%*

ORY-2001 LSD1 Healthy volunteers Completed (exhibits good Phase | Placebo-controlled EUDRACT 2015-
safety and tolerability) 003721-33%%7

ORY-2001 LSD1 MS Ongoing (exhibits safety Phase Il Placebo-controlled EudraCT 2017-
and tolerability according 002838-23
to early clinical data)

ORY-2001 LSD1 AD Completed (exhibits good Phase Il Placebo-controlled EudraCT 2017-
efficacy and tolerability) 004893-32

ORY-2001 LSD1 ADHD, BPD, ASD Completed (exhibits good Phase I — EudraCT 2018-
efficacy and tolerability) 002140-88

ORY-2001 LSD1 AD Completed (exhibits good  Phase Il Placebo-controlled EudraCT 2019-
efficacy and tolerability) 001436-54

ORY-2001 LSD1 ARDS Completed (exhibits good  Phase Il In combination with standard EudraCT 2020-
efficacy and tolerability) care treatment 001618-39

ORY-2001 LSD1 AD Completed (unpublished)  Phase Il Placebo-controlled NCT03867253

ORY-2001 LSD1 BPD Completed (unpublished)  Phase Il Placebo-controlled NCT04932291

GSK-2879552 LSD1 SCLC Terminated (due to the Phase | — NCT02034123
unfavorable risk/benefit
analysis)

GSK-2879552 LSD1 AML Terminated (due to the Phase | In combination with ATRA NCT02177812
unfavorable risk/benefit
analysis)

GSK-2879552 LSD1 MDS Terminated (due to the Phase I/ With or without Azacitidine NCT02929498
unfavorable risk/benefit Il
analysis)

IMG-7289 LSD1 AML Recruiting Phase | In combination with NCT05597306

Venetoclax

IMG-7289 LSD1 AML, MDS Completed (exhibits a good Phase I/ With or without ATRA NCT02842827
safe profile) Il

IMG-7289 LSD1 SCLC Active, not recruiting Phase I/ In combination with NCT05191797

Il Atezolizumab

INCB059872 LSD1 Ewing sarcoma Terminated (due to Phase | — NCT03514407
business decision)

INCB059872 LSD1 AML, MDS, SCLC, Terminated (due to Phase I/ With or without ARTA, NCT02712905

myelofibrosis, Ewing business decision) Il Azacitidine, and Nivolumab
sarcoma, poorly

differentiated

neuroendocrine tumors

INCB059872 LSD1 NSCLC, colorectal cancer Terminated (due to Phase I/ In combination with NCT02959437

sponsors’ decision) 1l Pembrolizumab and
Epacadostat
SP-2577 LSD1 Solid tumors Completed (unpublished) Phase | — NCT03895684
SP-2577 LSD1 Ewing sarcoma, myxoid  Active, not recruiting Phase | With or without NCT03600649
liposarcoma, Cyclophosphamide and
desmoplastic small Topotecan
round cell tumor

SP-2577 LSD1 Ovarian cancer, Withdrawn (due to salaries Phase | In combination with NCT04611139

endometrial cancer discontinued support) Pembrolizumab

SP-2577 LSD1 CMML, MDS Recruiting Phase I/ In combination with NCT04734990
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Table 5. continued
Type Drug Target(s) Condition(s) Status/outcome(s) Phase(s) Other intervention(s)/drug(s)  Study ID/reference(s)
SP-2577 LSD1 Ewing sarcoma, myxoid  Enrolling by invitation Phase I/ — NCT05266196
liposarcoma, 1]
desmoplastic small
round cell tumor
CC-90011 LSD1 AML Terminated (due to Phase | Azacitidine and Venetoclax NCT04748848
business decision) (active comparator/followed
by CC-90011)
CC-90011 LSD1 Castration-resistant Completed (unpublished)  Phase | In combination with NCT04628988
prostate cancer Abiraterone and Prednisone
CC-90011 LSD1 NHL, solid tumors Terminated (due to Phase | In combination with NCT02875223'1491150
business decision) Rifampicin
CC-90011 LSD1 SCLC Active, not recruiting Phase | In combination with Cisplatin NCT03850067
and Etoposide
CC-90011 LSD1 SCLC, NSCLC Completed (unpublished)  Phase Il In combination with NCT04350463
Nivolumab
45C-202 LSD1 AML, ALL, MDS, CLL, MM Completed (exhibits a good Phase | — NCT01344707'"°
safety profile and antitumor
activities)
45C-202 LSD1 Oesophagogastric Unknown Phase Il In combination with NCT03812796'"%
adenocarcinoma, (oesophagogastric Avelumab
colorectal cancer adenocarcinoma cohort
meets the criteria to
expand to stage 2
according to disclosed
data)
4SC-202 LSD1 Melanoma Completed (unpublished)  Phase I/ In combination with NCT03278665
Il Pembrolizumab
45C-202 LSD1 Melanoma Active, not recruiting (4SC- Phase I/ Nivolumab (active NCT04133948%**
202 addition does not Il comparator/in combination
increase treatment efficacy with 45C-202); in combination
according to early clinical with Nivolumab/Ipilimumab
data)
JBI-802 LSD1, SCLC and other Recruiting Phase I/ — NCT05268666
HDAC6 neuroendocrine-derived Il
cancers
TAK-418 LSD1 Healthy volunteers Completed (exhibits good Phase | Placebo-controlled NCT032284335%8
tolerability,
pharmacokinetic and
pharmacodynamic effects)
TAK-418 LSD1 Healthy volunteers Terminated (due to Phase | Placebo-controlled NCT03501069%38
business decision)
TAK-418 LSD1 Healthy volunteers Terminated (due to Phase | In combination with [18 F] NCT04202497
administrative reasons) MNI-1054 (radiotracer)
LH-1802 LSD1 AML, MDS Ongoing Phase | — CTR20222026
SYHA1807 LSD1 SCLC Unknown Phase | — NCT04404543
WDR MAK683 EED DLBCL Active, not recruiting Phase | — NCT02900651
domain
inhibitor
ACC adenoid cystic carcinoma, AD Alzheimer’s disease, ADHD attention deficit hyperactivity disorder, ALL acute lymphoblastic leukemia, AML acute myeloid
leukemia, APL acute promyelocytic leukemia, ARDS acute respiratory distress syndrome, ASD autism spectrum disorder, ATRA all-trans-retinoicacid, BC breast
cancer, BPD borderline personality disorder, CHOP Cyclophosphamide, Hydroxydoxorubicin, Oncovin, and Prednisone, CLL chronic lymphocytic leukemia,
CMML chronic myelomonocytic leukemia, CNS central nervous system, DLBCL diffuse large B cell lymphoma, DOTIL disruptor of telomeric silencing 1-like, EED
embryonic ectoderm development, EZH2 enhancer of zeste homolog 2, FL follicular lymphoma, GBM glioblastoma multiforme, HDAC histone deacetylase, HER2
human epidermal growth factor receptor 2, HL Hodgkin lymphoma, HPV human papillomavirus, HR hormone receptor, KDM lysine demethylase, KMT lysine
methyltransferase, LSD1 lysine specific demethylase 1, MCL mantle cell lymphoma, MDS myelodysplastic syndrome, MF mycosis fungoides, MM multiple
myeloma, MS multiple sclerosis, MTAP methyl-thioadenosine phosphorylase, NHL non-Hodgkin lymphoma, NSD nuclear receptor binding SET domain protein,
NSCLC non-small cell lung cancer, PDAC pancreatic ductal adenocarcinoma, PRMT protein arginine methyltransferase, PTCL peripheral T cell lymphoma, RCC
renal cell carcinoma, SCLC small cell lung cancer, SETD2 SET domain-containing histone lysine methyltransferase 2, TCC transitional cell carcinoma of the
urinary system, TNBC triple-negative breast cancer, WDR WDA40 repeat

provide sufficient data to confirm its antitumor efficacy. CPI-0209
(tulmimetostat), an oral, next-generation dual EZH2/EZH1 inhibitor
developed by the same company, is currently under clinical trial
for treating both solid tumors and hematological malignancies
(NCT05944562, NCT05942300, NCT04104776). SHR2554, a highly
selective EZH2 inhibitor, has demonstrated potent efficacy both in
vitro and in vivo.>*® Its first-in-human, dose-escalation, and dose-
expansion phase 1 trial conducted at 13 hospitals in China in 2018
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indicated good tolerance and promising antitumor activity in
patients with R/R lymphomas.>*>**' A pharmacokinetic study
revealed that combining itraconazole, an inhibitor of CYP3A4-
metabolizing enzymes, with SHR2554 improves its plasma
concentration while maintaining a favorable safety profile,
suggesting a new therapeutic strategy.>** PF-06821497, a
lactam-derived EZH2 inhibitor, was optimized from a series of
similar compounds using ligand-based and physicochemical-
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property-based strategies, showing optimal inhibitory and ther-
apeutic effects in mouse models.>*® It also has demonstrated
synergistic effects in combination with HDAC inhibitors, inhibiting
proliferation and inducing apoptosis in cancer cell lines>*
Currently, two clinical studies are exploring appropriate adminis-
tration methods for PF-06821497, such as intravenous injection or
oral intake, and whether it can be consumed with food
(NCT06392230, NCT05767905). In addition to demonstrating a
strong therapeutic effect in tumor treatment in animal models,
GSK126 has also achieved significant breakthroughs in enhancing
B-like cell regeneration among patients with TIDM."""*** How-
ever, a terminated phase | clinical trial revealed insufficient
evidence of clinical activity for GSK126 at tolerable doses.”*
XNW5004 (NCT06022757) and AXT-1003 (NCT05965505) are
innovative EZH2 inhibitors currently in clinical trials, reflecting
ongoing advancements in this therapeutic area. Moreover,
astemizole, originally an antiallergy medication inhibiting hista-
mine receptor H1, has recently been shown to disrupt the EZH2-
embryonic ectoderm development (EED) PPl within the PRC2,
offering new perspectives in developing EZH2/PRC2 inhibitors.>*’

DOT1L inhibitors: EPZ-5676 (pinometostat), EPZ004777, and
SGC0946 are three selective inhibitors of DOTIL that are currently
under extensive research. EPZ-004777 was the first SAM-
competitive inhibitor of DOT1L to demonstrate in vivo efficacy.>*®
Despite showing promising therapeutic effects in various subtypes
of AML through cell experiments and animal models, EPZ-
004777's preclinical application has been largely constrained by
its pharmacokinetic characteristics.>*>>*° EPZ-5676 has been
developed to improve selectivity and inhibition effects, showing
potential as a therapeutic agent for mixed lineage leukemia
(MLL).>®" Early investigations using patient-derived xenografts and
mouse models have indicated that EPZ-5676 exhibits potent
antileukemic activities, facilitating further evaluation.>*?*>3 In
three completed clinical trials (NCT01684150, NCT02141828,
NCT03701295), EPZ-5676 has been assessed for safety, tolerability,
and preliminary antitumor activity in pediatric patients with MLL,
with the combination of EPZ-5676 and azacytidine in a phase Ib/Il
study expected to show synergistic antiproliferative activities
(NCT03701295). SGC0946, a brominated analog, serves as another
selective inhibitor of DOTIL. Its therapeutic potential, either as
monotherapy or in combination with other inhibitors such as
HDACs and the mitogen-activated protein kinase pathway, has
been observed in various solid tumors, setting the groundwork for
clinical trials of SGC0946.>>*°>¢

Beyond EZH2 and DOTIL, several inhibitors targeting other
subfamilies are being investigated in clinical studies, including
EZM0414 and KTX-1001. EZM0414, a novel inhibitor of SETD2
derived from the optimization of EPZ-719, exhibits improved
pharmacokinetic properties and potent pharmacodynamic activity
in mouse xenograft models.>*” A phase I/Ib clinical trial is currently
underway to explore the safety, tolerability, and therapeutic
efficacy of EZM0414 in patients with R/R MM and R/R diffuse large
B-cell lymphoma (NCT05121103). KTX-1001, a selective NSD2
inhibitor, has been FDA-approved for clinical trials since 2022 and
is being studied in a phase | trial to treat patients with R/R MM
(NCT05651932). These meticulously organized clinical trials focus-
ing on KMTs are drawing increasing attention, leading to
significant breakthroughs in understanding the relationship
between human diseases and aberrant histone methylation.

PRMT inhibitors: Significant progress has been made in devel-
oping inhibitors for type | PRMTs (PRMT1-4, 6, and 8) and a
selective inhibitor targeting PRMT5, with several agents entering
the early phases of clinical trials.

Two type | PRMTs inhibitors are already in clinical stages,
including GSK3368715 and CTS-2190. GSK3368715 (EPZ019997),
an oral, reversible inhibitor of PRMT1/6/8 developed for treating
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tumors and pulmonary disorders.>>®~>%° GSK3368715 underwent a
phase 1 clinical trial for treating solid tumors and diffuse large
B-cell lymphoma in 2018. However, the first clinical application of
a PRMT1 inhibitor did not meet expectations and was terminated
early in 2022 due to its ineffectivenes.®®’ Given the adverse events
potentially caused by high and sustained concentrations of the
inhibitor in vivo, research into PROTAC-based degraders of
GSK3368715 has intensified, potentially offering therapeutic
benefits at lower doses and reducing adverse effects.”®®> CTS-
2190, another inhibitor targeting PRMT1/3/4/6, received clinical
trial approvals from the US FDA and China NMPA in February and
April 2023, respectively. A phase /Il clinical trial is being
conducted to evaluate its tolerability and preliminary antitumor
activity in healthy participants and patients with solid tumors
(NCT06224387).

Thirteen PRMT5 inhibitors have advanced to phase | and II
clinical trials. Among these, GSK3326595, JNJ64619178, and
PF06939999 were the earliest selective PRMT5 inhibitors to
receive clinical trial approvals. GSK3326595 is a substrate-
competitive inhibitor, while JNJ64619178 and PF-06939999
function as SAM-competitive agents.’®>™>%> The efficacy and
understanding of GSK3326595 primarily rely on animal model
data due to a lack of published results from completed clinical
trials. This inhibitor has been shown to induce DNA damage in
cancer cells and enhance the antiproliferative effects of poly ADP-
ribose polymerase inhibitors, such as niraparib;*®® however, long-
term or chronic use of GSK3326595 is associated with potential
liver-related adverse effects.>®” A completed phase | clinical trial
of JNJ-64619178 determined that a daily dose of 0.5mg was
better tolerated by participants with R/R B cell non-Hodgkin
lymphoma, though it demonstrated limited therapeutic
effects.>®® Conversely, PF-06939999 has shown an acceptable
safety profile and clinical efficacy in its phase | trial.>®° TNG908
and MRTX1719, both brain-penetrant PRMT5 inhibitors, have
shown promise in selectively targeting cancer cells deficient in
methylthioadenosine phosphorylase in both preclinical models
and clinical trials.>’®*"" Phase I/ll clinical trials for these drugs
recruit participants to assess their therapeutic effects on various
solid tumors (NCT05245500). Prelude Therapeutics has developed
PRT543 and PRT811, leading oral PRMT5 inhibitors whose safety
profiles and preliminary therapeutic potential have been eval-
uated in phase | clinical trials (NCT04089449, NCT03886831).
PRT543 has demonstrated good tolerance and efficacy among
patients with adenoid cystic carcinoma, warranting further
advanced clinical testing®’> A phase I/l clinical trial of
SKL27969 began in 2022 to evaluate its safety, tolerability,
pharmacokinetics, pharmacodynamics, and preliminary efficacy in
patients with advanced solid tumors. However, this study was
terminated in 2024 due to portfolio prioritization, with no
significant safety trends or issues identified during its execution
(NCT05388435). Other PRMT5 inhibitors, such as AMG193,
SH3765, TNG462, SCR6920, and SYHX-2001, are currently under
investigation in clinical trials and are in the “recruiting” phase.
Given that most of the small molecules or core scaffolds of PRMT5
inhibitors have been examined only in cellular experiments, there
remains a significant gap in knowledge regarding their efficacy
and therapeutic effects in vivo. Therefore, it is imperative to
bridge the crucial divide between fundamental research and
clinical application.

Targeting the eraser of histone methylation: KDM. KDMs are
enzymes that remove histone and nonhistone methylation. They
can be divided into two categories based on their molecular
structures: flavin adenine dinucleotide-dependent KDM (KDM1)
and Fe(ll)- and a-KG-dependent KDM (KDM2-7), also called
Jumonji C JmjC)-KDMs.>”3 Both upregulation and downregula-
tion of KDMs can affect the expression of pathological genes in
cancers or other disorders. Currently, representative inhibitors of
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diverse KDM proteins are being investigated. Based on catalytic
mechanisms, lysine specific demethylase 1 (LSD1/KDM1A)
inhibitors can be divided into irreversible and reversible
inhibitors; KDM2-7 inhibitors are classified into four types: a-
KG cofactor mimics or inhibitors of a-KG oxygenases (such as N-
oxalylglycine), metal cofactor disruptors, histone substrate
competitive inhibitors, and other substrate- and cofactor-
independent inhibitors.>”*

KDM2/7 inhibitors: KDM2 and KDM7 proteins, which belong to
the JmjC-KDM subfamilies, share high similarity in their Fe(ll)- and
0-KG-binding residues.’” The development of inhibitors for KDM7
and KDM2 has typically co-occurred. In 2013, a series of
hydroxamate analogs featuring an alkyl chain were identified.
These compounds demonstrated antiproliferative activity in
cancer cells by inhibiting KDM2A, KDM7A, and KDM7B.”¢
Similarly, Gerken et al.>”” developed a series of novel KDM2A/7A
inhibitors characterized by saturated indoline ring systems. These
indoline-containing compounds exhibited potent and selective
effects on KDM2A/7A at low micromolar concentrations, with
notable cellular activity. Nonetheless, addressing limitations such
as cytotoxicity and off-target effects remains challenging for
future research. Other selective inhibitors have also been
identified, including a cyclic peptide inhibitor, OC9, designed to
target the PHD finger domain of KDM7. This inhibitor results in the
inhibition of KDM7B and the activation of KDM7A.>’® Through
virtual screening of a-KG oxygenases, daminozide, a plant growth
regulator, was found to selectively inhibit KDM2A. The therapeutic
potential of daminozide was observed in mouse models of
osteoarthritis, pointing to new directions for developing 2KG-
competed inhibitors with enhanced selectivity, although its use in
humans is unlikely.?”®>8

KDM3 inhibitors: In addition to I0X1, various inhibitors of the
KDM3 family have been identified, most exhibiting a pan-
inhibitory effect across all family members. Through virtual
screening of natural products and traditional Chinese medicine
components, compounds JDI-4, JDI-12, and JDI-16 selectively bind
to the JmjC domains of KDM3B and KDM3C.®' Subsequent
in vitro and in vivo studies confirmed the inhibitory effect and
antitumor potential of JDI-16 in a KDM3-dependent manner.>®'
Another compound, JDM-7, also identified from this screening,
inhibits KDM3A and KDM3B in AML cell lines, although initial
observations indicated limited effects on the KDM3 family.>®?
Additionally, through high-throughput screening of benzhydryl
amine derivatives, CBA-1 was found to be a potent inhibitor of
KDM3A, exhibiting antiproliferative effects on colorectal cancer
cell lines.*®® The use of CBA-1 in zebrafish models also showed
minimal toxicity, suggesting its potential as a promising drug for
clinical application.®

KDM4 inhibitors:  Given the critical roles of KDM4s in cancers and
the inherent complexity of the KDM4 subfamily, significant efforts
have been dedicated to developing KDM4 inhibitors. These
inhibitors are categorized into four previously reviewed classes:
a-KG cofactor mimics, Metal cofactor disruptors, histone substrate
competitive inhibitors, and inhibitors targeted reader domains,
having been summarized extensively in previous work.>®**% |n
addition to these established categories, we emphasize the
progress in novel inhibitors that have not yet been summarized,
further expanding the scope of therapeutic options against KDM4-
related cancers.

TACH101 is a novel pan-inhibitor of KDM4A-D, competitively
inhibiting a-KG without affecting other KDM subfamilies. The
therapeutic effects of TACH101 have been demonstrated in
organoids and xenograft models, suggesting its potential as an
anticancer agent worthy of further investigation in animal
studies.”®® SD49-7, a derivative of SD70, is another novel KDM4
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inhibitor. It has shown a stronger effect than SD70 in suppressing
the proliferation of AML cell lines and enhancing the progression
of resistant tumors in mouse models.®” Based on virtual
screening, 2-(methylcarbamoyl)isonicotinic acid has been identi-
fied as an initial active fragment specifically inhibiting KDM4A by
preventing its binding to H3K9me3 in a substrate-competitive
manner.>®® Molecular docking and dynamics approaches have
recently revealed that a series of natural products containing
sugars, aromatic rings, and OH or O™ groups can interact with
KDM4 and inhibit its activities.’®® However, the mechanisms of
these interactions remain unclear, underscoring the need for
further development of these potential drugs.

KDM5 inhibitors: KDMS5 inhibitors have shown significant ther-
apeutic potential, though many compounds still lack sufficient
evidence to confirm their efficacy and safety in vivo.

A prevailing approach in KDM5 inhibition involves designing
small molecules that compete with a-KG for binding sites.>
Among these, KDOAM-25 is a potent and selective inhibitor
affecting MM and triple-negative breast cancer cells, with minimal
adverse effects observed in vivo applications. Nevertheless, its
poor cell membrane permeability hinders its efficacy.”®' RS3195
exhibits inhibitory effects on KDM5B and KDM5D in vitro. Due to
potential toxicity, RS5033 was developed as an alternative,
featuring a phenyl ring instead of a pyrrole nucleus to improve
tolerance.’*> KDM5-C49, an analog of 2,4-PDCA, binds to KDM5B
in vitro and inhibits its enzymatic activities.’*> To enhance cell
membrane permeability and selectivity, derivatives KDM5-C48 and
KDM5-C70 have been developed.®**~?® Through high-throughput
virtual screening, a series of cyclopentalclchromen derivatives
targeting KDM5A have been identified as promising drugs due to
their potent inhibitory effects and low toxicity.’®® N70, a
thienopyridine-based selective KDM5A inhibitor, displays a-KG-
competitive inhibition, while its analog, N71, binds irreversibly to
KDM5A through covalent modifications.>®’”

Numerous compounds, identified through virtual screening and
optimization of reported inhibitory molecules, employ different
mechanisms of action.’*®**° Among these, KDM5-inh1 and CPI-
455 are broadly studied pan-inhibitors of KDM5. Using either
KDM5-inh1 or CPI-455 has demonstrated therapeutic effects on
cancer cell lines and has facilitated synergistic interactions with
conventional antitumor agents.°®*®°" Further research should
explore the potential for this synergy in animal models. GS-5801,
designed from GS-080—one of the most potent KDM5 inhibitors
—shows significant anti-HBV activity. Despite its promise, the
in vivo effects of GS-5801 have not met expectations, under-
scoring the need for additional studies to enhance its efficacy.®
Utilizing the AlphaScreen method, ryuvidine was identified as an
inhibitor of KMD5A/B/C, exhibiting substantial therapeutic impact
on drug-tolerant cells.5®> Dexmedetomidine, recently identified as
a KDMS5 inhibitor, is utilized to manage acute kidney injury in a
KDM5-dependent manner.®®* A novel approach was introduced
by Yang et al.,’® who reported the first selective metal-based
KDMS5A inhibitor, rhodium(lll) complex1. This compound disrupts
the interaction between KDM5A and H3K4me2/3, offering a new
scaffold for optimizing KDM5A-targeted drugs. The screening of
imidazopyridine-analogs of zolpidem led to the discovery of 043,
a novel chemical inhibitor of KDM5A. O413 generates and sustains
patient-specific induced pluripotent stem cells in vitro.°® Addi-
tionally, TK-129, a pyrazole-based KDM5B inhibitor, is applied in
treating cardiovascular diseases.®” High-throughput screening
technology has facilitated the identification of PBIT, another novel
KDM5B inhibitor. Despite its promising attributes, PBIT exhibits
unstable therapeutic effects across different cell lines, necessitat-
ing careful consideration of its application in treatment.5%®
Similarly, several pyrazole derivatives that inhibit KDM5B have
been recognized, with several demonstrating potent activity in
cells, suggesting new therapeutic strategies.’®® Furthermore, lida
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et al.®’® designed a selective KDM5C inhibitor with a triazole
scaffold and subsequently synthesized a KDM5C degrader using
PROTAC techniques. This selective degrader shows enhanced
inhibitory effects on prostate cancer cell lines compared to its
prodrug, thus expanding the possibilities for anticancer agent
design.

KDM6 inhibitors: The KDM6 subfamily has gained attention as a
therapeutic target for various diseases. GSK-J1 and GSK-J4 are two
well-studied classical inhibitors of KDM6B, showing significant
potential in treating autoimmune diseases, metabolic disorders,
and tumors, and enhancing the effectiveness of traditional
antitumor agents.5’'®'* Using optimized delivery systems for
GSK-J1 has further advanced the development of effective in vivo
strategies.’’> Beyond these compounds, novel inhibitors have
been introduced. For instance, KDOBA67, a hydroxyl derivative of
GSK-J4, demonstrates favorable cell permeability in chordoma cell
lines and inhibits the progression of chordoma.®’® Employing a
virtual fragment screening approach, Giordano et al.5"” identified
a series of benzoxazole scaffold compounds that bind to the
KDM6B subfamily with high affinity, showing therapeutic promise
in melanoma cell lines. Zhang et al’'® developed a simple
capillary electrophoresis method for screening KDM6B inhibitors,
leading to the identification of salvianic acid A and puerarin 6”-O-
xyloside as effective agents. Additionally, Jones et al.®'® used
computational methods to develop an optimized peptide derived
from the H3 C-terminus, which may enhance selectivity when
linked with known inhibitors.

LSD1 inhibitors: Extensive research has been conducted on the
biological and pathological functions of LSD1 and its inhibitors.
Compared to other KDM subfamilies, LSD1 inhibitors have seen
significant advances.®®® Currently, several LSD1 inhibitors such as
tranylcypromine (TCP), ORY-1001 (ladademstat), ORY-2001, GSK-
2879552, IMG-7289 (bomedemstat), INCB059872, SP-2577 (secli-
demstat), CC-90011 (pulrodemstat), 45C-202 (domatinostat), JBI-
802, TAK-418, LH-1802, and SYHA1807, are undergoing clinical
trials.

TCP, an irreversible inhibitor, is being used in clinical practice
among patients with AML and MDS, showing promising effects
either alone or in combination with all-trans-retinoic acid in phase
I/l clinical trials, with overall response rates exceeding 20%.%2'6%2
Building on TCP’s structure, novel inhibitors like ORY-1001, ORY-
2001, GSK-2879552, INCB059872, and IMG-7289 have been
developed, which also bind irreversibly to LSD1.5%® These
advancements have broadened the spectrum of treatable diseases
with LSD1 inhibitors. Notably, ORY-1001 and ORY-2001, both orally
administered, have been evaluated for their effectiveness in R/R
hematologic malignancies and neurological disorders such as
borderline personality disorder and AD.52*"5%8 |n completed phase
I clinical trials, ORY-1001 exhibited a good safety profile without
significant extrahematologic toxicity among healthy volunteers
and patients with AML, indicating good therapeutic poten-
tial.®**6%” GSK2879552 has shown antitumor efficacy in animal
models,®*° yet several clinical trials have been terminated due to a
high incidence of adverse events.®*®®3! Similarly, clinical trials for
INCB059872 were halted due to business decisions, among other
reasons (NCT02959437, NCT03514407, NCT03132324,
NCT02712905). Greater attention must be dedicated to evaluating
the tolerability and efficacy of novel treatments. According to
completed clinical trials, IMG-7289 demonstrates potential in
ameliorating  several  blood  disorders  (NCT04254978,
NCT03136185, NCT02842827), with numerous recent registrations
for novel clinical trials concerning this drug. SP-2577 and CC-9001
are reversible LSD1 inhibitors*? which, compared to their
irreversible counterparts, exhibit enhanced safety profiles and
have been extensively studied in both solid tumors and
hematological malignancies.5**5** Domatinostat and JBI-802, dual
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inhibitors targeting LSD1 and HDAC, selectively interact with class
| HDAC isoenzymes and HDAC6, respectively.®?® Although
promising antitumor effects have been observed in cancer cell
lines, the therapeutic potential of domatinostat requires further
exploration due to its unfavorable toxicity.***%3> TAK-418, a novel
LSD1 inhibitor noted for its effective brain penetration, is
considered a potential treatment for central nervous system
disorders.*®%3” The administration of TAK-418 was well tolerated
by healthy volunteers in a phase | clinical trial, laying a solid
foundation for further investigation.®*® LH-1802 and SYHA1807,
novel inhibitors, are currently under clinical trial evaluation for
metastatic prostate cancer and small-cell lung cancer, respectively
(NCT03678025, NCT04404543). The encouraging outcomes from
these clinical-stage applications have spurred greater interest in
the development of LSD1 inhibitors, with ongoing efforts to
discover effective and tolerable agents.

Targeting the reader of histone methylation: reader domains. The
identification of histone lysine and arginine methylation is
attributed to proteins possessing malignant brain tumor (MBT)
domains, chromodomains, Tudor domains, proline-tryptophan-
tryptophan-proline (PWWP) domains, PHD fingers, and WD40
repeat (WDR) domains.%*° Notably, enzymes that serve as writers
or erasers for histone methylation may also contain these reader
modules, such as PHD fingers and Tudor domains, aiding in
recognizing residues they catalyze.®*® Although numerous inhibi-
tors targeting reader domains have been discovered, nearly half of
these originate from structure-based virtual screenings and lack
in vivo evaluation of their inhibitory effects and therapeutic
activity.%*' Encouragingly, MAK683, an inhibitor targeting EED—a
representative histone methylation reader containing the WDR
domain—has entered clinical trials.®** Currently, MAK683 is in a
phase | clinical trial for treating diffuse large B-cell lymphoma
(NCT02900651). Inspired by this milestone, many potent and
selective inhibitors of EDD and other molecules targeting reader
domain proteins are expected to advance into clinical trials as
promising therapeutic strategies.

Epigenetics-targeted drugs and m6A

RNA m6A methylation, a prevalent and conserved modification in
eukaryotic RNAs, is crucial in determining transcript fate at the
post-transcriptional level through RNA processing, export, degra-
dation, and translation. Dysregulated m6A regulators contribute to
various pathological conditions, particularly in the pathogenesis of
diverse tumors.5*® With the identification of various enzymes
involved in m6A modification—including writers, erasers, and
readers—the reversibility of m6A modification has been increas-
ingly recognized, providing a foundation for developing
epigenetics-targeted drugs that regulate RNA m6A as a core
mechanism.

Targeting the writer of m6A: METTL3. METTL3 plays a critical role
in the m6A modification process by transferring methyl groups
from SAM to target RNA, catalyzing the conversion of adenosine
to methyladenosine. This function of METTL3, the most exten-
sively studied m6A writer, has been linked to the development of
various pathologies, notably various tumors.°** Recent research
has highlighted a range of inhibitors and agonists targeting
METTL3, with several epigenetic drugs demonstrating promising
efficacy both in vitro and in vivo, thus reinforcing the significance
of METTL3 regulation in disease pathology and its potential as a
therapeutic target.

METTL3 inhibitors: The study of METTL3 inhibitors has attracted
increasing attention due to their diverse roles in regulating gene
expression across different diseases. These inhibitors are categor-
ized into competitive and allosteric inhibitors and gene expression
suppressors, each leveraging distinct mechanisms of action.
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SAM analog is the dominant part of the competitive inhibitors,
initially developed based on a fulfilled screening of compounds
containing the adenosine moiety (the fragment responsible for
the combination with METTL3 at the binding sites for SAM). In
2020, Bedi et al.5* performed a series of docking studies on over
4000 adenosine-moiety compounds, identifying seven molecules
with potential binding affinity to METTL3; however, their
inhibitory effects in vivo were minimal. Similarly, Moroz-Omori
et al.%*® and Dolbois et al.**’ reported on adenine-based libraries,
identifying UZH1a and UZH2 as compounds that occupy the
catalytic pocket of METTL3, suggesting their role as potential
competitive inhibitors in vitro. Cpd-564, an METTL3 inhibitor
identified from ChemDiv and MCE screening libraries, has shown
significant reno-protective effects in mouse models of acute
kidney injury induced by cisplatin and ischemia-reperfusion.®*®
Coptisine chloride, identified via molecular docking-based virtual
screening from the Vitas-M chemical library, displayed high
affinity to METTL3, exerting competitive inhibitory effects by
occupying the SAM binding pocket.®*® STM2457 and STM3006
are novel small molecules that bind non-covalently to the
catalytic center of METTL3, reducing its enzymatic activity.5>%%>"
Specifically, STM2457 has demonstrated promising antitumor
effects and tolerability in mouse models, improving drug
resistance to chemotherapy.®>%%*27%%* |n comparison, although
STM3006 exhibits enhanced cellular potency, its in vivo efficacy
is constrained by its shorter half-life.%>" In 2023, STC-15, an oral
inhibitor optimized from STM2457, became the first and the only
RNA m6A target drug to be applied in phase | clinical trials
(NCT05584111). Through detailed studies on the spatial structure
of the catalytic domain of METTL3, a series of branched,
Y-shaped molecules are designed. These were synthesized by
integrating chemical fragments from the most effective inhibi-
tors, resulting in molecules with selectivity and binding affinities
surpassing those of STM2457, the only commercially available
METTL3 inhibitor.®>® This advancement not only underscores the
potential of METTL3 as a therapeutic target but also guides
future drug design. Additionally, several natural products with
METTL3-inhibitory capabilities have been identified. Quercetin,
known as a DNMT inhibitor, has been found to interact with the
adenosine moiety pocket in METTL3, forming a stable complex
that reduces its catalytic activity.®>® This interaction decreases
METTL3 hyperactivation and lowers m6A levels in protein kinase
D2 mRNA, improving insulin sensitivity under palmitic acid
stimulation—a benefit in hyperinsulinemia conditions.®>” Other
natural compounds like berberine and curcumin, also noted for
DNMT/HDAC inhibition, have shown METTL3 inhibitory activity,
though their mechanisms require further clarification.5>%6>°
Moreover, molecules F039-0002 and 7460-0250 have been
designed to target METTL3's catalytic pocket, showing potential
in treating inflammatory bowel disease.?®® Several candidates
identified through silico analysis of South African natural
products—SANCDB0370, SANCDB0867, and SANCDB1033—also
exhibit METTL3 inhibitory properties, with further validation
needed.®®' More recently, Li et al.?® designed a stapled peptide
inhibitor, RSM3, targeting the PPl at the METTL3-METTL14
interface. This inhibitor offers a unique approach compared to
other small-molecule competitive inhibitors, providing a novel
avenue for therapeutic intervention.

Allosteric inhibitors prevent METTL3/14-dependent m6A methy-
lation in a non-competitive manner. To date, three allosteric
inhibitors have been identified. The first two allosteric inhibitors
are CDIBA and CDIBA-43n, which initially function as cytosolic
phospholipase A2 inhibitors preventing inflammation. They show
an inhibitory effect in the presence of METTL3/14 complex,
instead of separate METTL3 and METTL14 subunits.®®® The third
compound, eltrombopag (previously mentioned as a TET agonist),
is recently reported to bind with the METTL3 subunit at an
allosteric site and has shown potential in treating AML.653654
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Metformin, traditionally used as a first-line treatment for T2DM,
has recently been found to inhibit METTL3 expression, possibly
contributing to its beneficial effects in patients with malignant
tumors.%®® The role of metformin in inhibiting METTL3 expression,
at the post-transcriptional level, in breast tumors, is first reported
in breast cancer.°®® Subsequently, the application of metformin is
also found to inhibit METTL3 expression at the transcriptional
level, mediated by the recruitment of DNMT.®®” This dual action of
metformin, combined with chemotherapy, offers potential bene-
fits for patients resistant to traditional chemotherapy, potentially
mitigating poor prognoses.®5”¢%® Given its safety profile, metfor-
min is a promising candidate as an epigenetic drug targeting
METTLS3.

METTL3 agonists: While research has predominantly focused on
METTL3 inhibitors, there is also interest in agonists, given their
potential benefits in DNA damage repair, tumor therapies, and
regenerative medicine.®®°7%”2 In 2019, Selberg et al.”* predicted
interactions between four small-molecule ligands with METTL3
involving piperidine and piperazine rings, similar to SAM’s
binding. These interactions enhanced cell viability and promoted
proliferation, although differing onset times among the com-
pounds suggest the need for further development of more
effective METTL3 complex activators.®”®> Melatonin seems to act as
an agonist of METTL3. Lv et al®”* proposed that melatonin
pretreatment can upregulate the expression level of METTL3,
restore m6A levels in spermatogonial stem cells, and help them
resist the destructive effect of Cr(Vl) on reproductive function.
However, this viewpoint has recently been questioned. In mouse
models with colon inflammation, melatonin inhibits METTL3
expression through melatonin receptor 1B.5”° Further research is
necessary to clarify melatonin’s role in METTL3 regulation.

Targeting the eraser of m6A: FTO and ALKBH5. FTO and alkB
homolog 5 (ALKBH5) are established m6A erasers, each playing
significant roles in epigenetic regulation. FTO is primarily involved
in energy homeostasis, demethylating m6A in various RNA
species, including cellular mRNA, which impacts multiple biologi-
cal processes.®’® ALKBH5 not only demethylates m6A-marked
mRNA but also m6A-marked single-stranded DNA (ssDNA),
influencing oncogenic or tumor-suppressive activities.”” Over
the years, numerous small molecules targeting these m6A writers
have been identified and designed, showing promising therapeu-
tic efficacy in vitro and in vivo and advancing the development of
epigenetic drugs.

FTO inhibitors: Current strategies for developing FTO inhibitors
are multifaceted. Based on the spatial structure of FTO,
competitive or non-competitive inhibitors that bind to FTO
covalently or non-covalently have been developed. With a deeper
understanding of FTO functionality, metabolites in vivo possibly
related to FTO have been identified, represented by D-2-HG, a
metabolite produced by mutant IDH.°”® Furthermore, exploring
the mechanisms underlying medical agents that treat FTO-related
diseases provides a theoretical foundation for drug discovery.”®
Subsequently, optimizing the molecular structures of these initially
detected compounds will contribute to the development of FTO
inhibitors with high selectivity and inhibitory effects, providing
promise for the clinical application of FTO inhibitors in the future.
Here, we summarize the typical drugs that inhibit FTO, which are
the foundation for developing novel inhibitors through constant
iterations.

In 2012, the first FTO inhibitor, rhein, was identified. Rhein
impairs FTO activity by disrupting its interaction with ssDNA at the
catalytic domain.®®® Although rhein increases m6A levels in vitro,
its weak selectivity and low inhibitory efficacy have limited its
clinical potential, highlighting the need for more effective FTO
inhibitors.’®® New FTO inhibitors need to be designed to
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overcome these drawbacks. Meclofenamic acid (MA), an FDA-
approved nonsteroidal anti-inflammatory drug, binds selectively
to similar sites on FTO.%®" MA and its prodrug, MA2, have shown
promising results in reversing tumor progression and enhancing
the efficacy of chemotherapeutic drugs, significantly prolonging
survival.?8"%82 Inspired by MA, various compounds have been
developed, such as the fluorescein derivative FL1, which retains
the benzyl carboxylic acid structure critical for interaction with
FTO. The complex formed between FTO and FL1 inhibits the
enzyme’s activity and facilitates the study of FTO-related signaling
pathways through fluorescein labeling.?®® Other optimization
molecules include GNPIPP12-MA,®** 13a,°%° FB23/FB23-2,°%° Dac-
51/Dac-85,°%” ZLD115,°%® and FTO-02/FTO-04/FT0-43.°%%%% These
compounds significantly improve MA in inhibitory activity, cell
permeability, and biosafety while reducing off-target effects and
potential resistance. Another similar mechanism inhibitor is
diacerein, a structural analog of rhein, which has shown antitumor
effects in breast cell lines.®”!

In addition to interfering with the interaction between ssDNA
and FTO, inhibitors of this enzyme also compete with cofactors
such as a-KG and iron(ll). For instance, fumarate hydrazide 2 and
compounds with the aminohydroxyfuranone core exemplify this
approach.2®%  Furthermore, the discovery of N-CDPCB, a
competitive inhibitor that binds to non-conserved fragments of
FTO, provides novel insights into the development of inhibitory
agents. Mechanistically, compounds like benzene-1,3-diol and 4-
Cl-1,3-diol are crucial in mediating and enhancing the specific
interaction between FTO and N-CDPCB.®®** Additional potential
inhibitors, such as CHTB and radicicol, have been identified
through virtual screening; these compounds have similar struc-
tures.®>>%% However, related evidence is lacking to exhibit their
efficacy. Moreover, Su et al.®®” reported on CS1 and CS2, which
tightly bind to the catalytic pocket of FTO, activating immune
checkpoint genes and reversing immune evasion in tumor
diseases. Clausine E, another FTO inhibitor, targets the enzyme’s
hydrophobic cavity, exhibiting antitumor activity.®*®

These ongoing discoveries provide a deeper understanding of
the diverse structures of molecules interacting with FTO and their
mechanisms of action, promoting large-scale virtual screenings to
identify more potential inhibitors. For example, mupirocin,
entacapone, compounds “18,077” and “18,079”, several quinolone
derivatives, and a series of 1,2,3-triazole analogs have been
identified as potential FTO inhibitors.5**~7%* Notably, quinolone
derivatives and their antitumor properties have shown the
potential to improve symptoms in neurodegenerative diseases
by inhibiting FTO activity.”°® These findings broaden the potential
clinical applications of FTO inhibitors.

FTO agonists: Recent studies have identified that certain tricyclic
antidepressants, such as imipramine and amitriptyline, exert their
antidepressant effects by activating FTO in N2a cells.”** This
emerging area of research highlights the potential therapeutic
benefits of FTO activators and calls for more attention to their
development and evaluation.

ALKBHS5 inhibitors: The RNA demethylase ALKBHS5 is recognized
as a pro-oncogene, playing a vital role in the post-transcriptional
regulation of various targets in cancer biology.?”’ Interest in
targeting ALKBH5 for therapeutic purposes has significantly
increased. We classify the identified ALKBH5 inhibitors into three
main categories based on their mechanisms of action. The first
category comprises typical competitive inhibitors that compete
with cofactors for binding sites. These agents consist of I0X1 (also
known as a TET/KDM inhibitor), MV1035, and Ena21, which exhibit
the therapeutic potential of targeting ALKBH5 in antitumor
therapies.”%7%” Compounds that non-covalently interact with
the active pocket of ALKBH5 are classified as the second group.
Through structure-based virtual screening and optimization, the
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current compounds include DDO-2728, 2-((1-hydroxy-2-oxo-2-
phenylethyl)thio)acetic acid, and 4-((furan-2-ylmethyl)amino)tetra-
hydropyridazine-3,6-dione.”®®7% The third category includes
molecules that bind to the m6A-binding pocket of ALKBHS5,
directly disrupting the interaction between the enzyme and its
substrates. For instance, compounds 20m and TD19 are
representative of this type.”'®”'" Some compounds still exist
whose potential mechanisms for inhibiting ALKBH5 have not been
elucidated, such as ALK-04, Enal5, ZINC78774792, and
ZINC00546946, although their antiproliferative effects have been
revealed in vitro and in vivo.””7'?7'3 |n brief, the continued
development and in-depth research into ALKBH5 inhibitors hold
significant potential for disease treatment, necessitating further
efforts.

Targeting the reader of m6A: IGF2BP and YTH domain family. The
discovery of m6A readers with specific motifs has spurred
significant interest in developing drugs targeting these proteins,
expanding the possibilities for therapeutic interventions.

IGF2BP inhibitors: Insulin-like growth factor 2 mRNA-binding
proteins (IGF2BPs) are newly identified m6A readers that enhance
the stability and maintenance of their target mRNAs.”'* IGF2BP
plays an oncogenic role in various cancers, making its inhibition a
promising strategy for antitumor therapy.”'

Six IGF2BP inhibitors have been developed, demonstrating
antitumor effects by disrupting IGF2BP-RNA interactions. BTYNB,
the first identified IGF2BP1 inhibitor, suppresses melanoma and
ovarian cancer cell proliferation by blocking IGF2BP1’s interaction
with c-Myc mRNA.”'® BTYNB's therapeutic effects are being
studied across various tumor models, including esophageal
squamous carcinoma,”'” neuroblastoma,”'® and cholangiocarci-
noma.”'® CWI1-2 and JX5 are novel IGF2BP2 inhibitors with
antileukemic activities that inactivate the Notch1 signaling path-
way. CWI1-2 forms a hydrophobic interaction with IGF2BP2's RNA-
binding core, while JX5 binds tightly to the protein. Further
research is needed to enhance their safety and reduce cytotoxi-
city.”?%”2! Cucurbitacin B, a natural product, exerts a pharmaco-
logical allosteric effect on IGF2BP1. In hepatocellular carcinoma
mouse models, it modifies IGF2BP1’s configuration, reducing its
efficacy.”?> Another compound, “7773," specifically disrupts the
IGF2BP1-Kras mRNA interaction, effectively inhibiting IGF2BP1’s
pro-oncogenic activity.”?®> Isoliquiritigenin is the only small
molecule identified targeting IGF2BP3.”2* Derived from the
Chinese herb licorice, it downregulates IGF2BP3 expression,
showing promise in treating non-small cell lung cancer.”**

YTH domain family inhibitors: YTH domain family (YTHDF)
comprises a group of readers featuring a YTH domain at the
C-terminus. This domain forms a hydrophobic pocket essential for
recognizing m6A modifications.””> Elevated levels of YTHDF
proteins have been associated with the progression of various
cancers.”?® Conversely, reducing these proteins can synergistically
enhance the effectiveness of ionizing radiation and anti-PD-L1
therapies in reducing cancer burdens.”?”7?® This underscores the
potential of YTHDF inhibitors as a promising direction for
improving antitumor treatments.

The binding sites between YTHDF proteins and m6A modifica-
tions are primary targets for most YTHDF inhibitors.”?® The
successful elucidation of the crystallographic structures of the
YTH domains in YTHDF proteins has provided critical opportunities
for drug design.”*® High-throughput screening technology has
identified three small molecules—ebselen, DC-Y13, and DC-Y13-
27—as effective YTHDF inhibitors.”?””3" Ebselen targets YTHDF1
and YTHDF2, either covalently or non-covalently binding to the
YTH domain.”®' DC-Y13 and DC-Y13-27, particularly the latter, act
as selective inhibitors of YTHDF2, offering therapeutic benefits.”?’
Additionally, studies have shown that disrupting O-GlcNAcylation
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Table 6. Summary of chromatin remodeling-targeted drugs for different diseases in clinical trials
Drug Target(s)/ Condition(s) Status/outcome(s) Phase(s) Other intervention(s)/  Study ID
mechanisms(s) drug(s)
FHD- SMARCA4/2 Metastatic uveal melanoma Terminated (due to business Phase | — NCT04879017
286 allosteric reasons)
inhibitor
FHD- SMARCA4/2 AML, MDS, CMML Recruiting Phase | With or without low- NCT04891757
286 allosteric dose Cytarabine or
inhibitor Decitabine
PRT3789 PROTACs-based NSCLC and other solid tumors ~ Recruiting Phase | With or without NCT05639751
SMARCA2 with SMARCA4 gene mutation Docetaxel
degrader
FHD- PROTACs-based Advanced synovial sarcoma Terminated (due to sponsors’ Phase | — NCT04965753
609 BRD9 degrader decision)
CFT8634 PROTACs-based Synovial sarcoma and other Terminated (no significant clinical Phase I/ — NCT05355753
BRD9 degrader SMARCB1-perturbed soft tissue  activity with CFT8634 as a single I
sarcomas agent)
AML acute myeloid leukemia, BRD9 bromodomain containing 9, CMML chronic myelomonocytic leukemia, MDS myelodysplastic syndrome, NSCLC non-small
cell lung cancer, PROTAC proteolysis-targeting chimeras, SMARCA4 SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin A4

of YTHDF proteins can also decrease their stability and enzymatic
activities, providing new avenues for identifying YTH-inhibiting
small molecules.”3*733

Epigenetics-targeted drugs and chromatin remodeling

SWI/SNF complexes are intricate multimeric structures composed
of diverse, variable subunits that play distinct roles, emphasizing
the importance of personalized characteristics and frequent
mutations in these subunits in various human diseases. Recently,
the design of small molecules targeting different components of
the SWI/SNF complex has expanded, yielding numerous potential
therapeutic interventions. Those that have progressed to clinical
trials are detailed in Table 6.

The active DNA-dependent ATPase A domain inhibitor
(ADAADI) was the first discovered inhibitor targeting the SWI/
SNF complex. It was identified during studies on mammalian cell
resistance to certain antibiotics in vitro.”>* ADAADI binds to
specific motifs in the enzyme complex, inducing conformational
changes that inhibit SWI2/SNF2's catalytic activities.”>* Currently,
ADAADI shows promising therapeutic effects in prostate cancer in
preclinical studies, laying the groundwork for further development
of SWI/SNF-targeted epigenetic drugs.”*”

Research has also focused on specific inhibitors targeting the
SWI/SNF-related, matrix-associated, actin-dependent regulator of
chromatin A4 (SMARCA4) and its paralog SMARCA2, which are
DNA-stimulated ATPases within the SWI/SNF complexes.
SMARCA4, commonly mutated in various tumors, is associated
with reduced sensitivity to traditional cancer treatments.”3¢737
Inhibiting SMARCA4/2 is an effective strategy for curbing tumor
growth and improving patient outcomes. Papillon et al.”3®
reported the earliest selective allosteric inhibitors of the
SMARCA4/SMARCA?2 subunits, with confirmed effects on pediatric
H3K27M diffuse midline glioma and AML in both in vivo and
in vitro settings.”**’*® FHD-286, a novel orally bioavailable
SMARCA4/SMARCA?2 allosteric inhibitor, has shown preclinical
efficacy. Combined treatment with FHD-286 and other epigenetic
drugs, such as decitabine, BET inhibitors, and menin inhibitors, has
demonstrated synergistic effects in reducing AML burden without
significant toxicity.”*' Notably, FHD-286 has entered clinical
development for treating various malignant tumors, including
metastatic uveal melanoma (NCT04879017) and several malignant
hematological disorders (NCT04891757).

An alternative approach to inhibiting SMARCA4/SMARCA2
involves using specific inhibitors that target their BDs. This
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strategy extends to other BD-containing proteins within the
SWI/SNF complexes, such as polybromo-1 (PBRM1), BD containing
7 (BRD7), and BRD9, also considered promising targets for
epigenetic drug development. Notably, SMARCA4/SMARCA2 and
BRD9/BRD7 each contain one BD, whereas PBRM1 contains six
tandem BDs, providing numerous potential interaction points for
inhibitors.”*? Current research primarily focuses on inhibitors for
family VIIl BD in SMARCA4/SMARCA2 and PBRM1, with four major
classes of inhibitors reported: salicylic acid fragment hits such as
PFI-3;7%*7% aminopyridazines represented by GNE-064;"%° quina-
zolinones represented by LM146,”47% and dihydroquinazoli-
nones represented by compound16 and GNE-235.7%97°° These
inhibitors are categorized as either pan-inhibitors, affecting
multiple proteins, or selective inhibitors, targeting specific
proteins. PFI-3, its analogs, and GNE-064 are pan-inhibitors,
whereas LM146 shows a higher affinity for SMARCA2, and
compound16 and GNE-235 are selective for PBRM1. The
therapeutic applications of these inhibitors, particularly the pan-
inhibitors, have been extensively studied in various dis-
eases.”>"7> However, the efficacy of PFI-3 as a standalone
treatment for malignancies has been less satisfactory. The
application of compound16, on the other hand, demonstrates
promising therapeutic effects in PBRM1-dependent prostate
cancer, suggesting its potential as a foundational treatment for
PBRM1-driven cancers.”*® As for the other molecules, though their
binding ability and inhibitory effects have been validated at the
molecular level, sufficient evidence is still lacking in vivo or in vitro
to demonstrate their clinical value. Furthermore, targeting family
IV BD of BRD9 and BRD7 has led to the development of many
selective inhibitors. Current research includes inhibitors like BI-
7271,%° BI-7273,°° BI-9564,”°° I-BRD9,”*” iBRD9,*® GNE-375,>°
and newly identified inhibitors developed through integrated
computational approaches.”®® Selective inhibitors for BRD7, such
as 1-78 and 2-77/°" and molecules like LP99, TP-472, 4-
acylpyrroles, and GSK6776, which inhibit both BRD9 and BRD7,
are being evaluated for their therapeutic effects in various
pathologies.”5%776°

PROTAC technology plays a significant role in developing SWI/
SNF inhibitors, with novel agents such as AU-24118 and AU-15330
being tested in preclinical studies and clinical trials. AU-24118 and
AU-15330 are degraders targeting family VIl BD in SMARCA4/
SMARCA2 and PBRM1, which are valuable tools in castration-
resistant prostate cancer treatment.”*®’%” AU-24118 has shown
promise in inducing tumor regression at therapeutic doses.”®®
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Table 7. Summary of non-coding RNA drugs for different diseases in clinical trials
Drug Target/ Condition(s) Status/outcome(s) Phase(s) Other intervention(s)/ Study ID/references
Mechanism drug(s)
MRG-106 MiR-155 CTCL, MF, CLL, DLBCL, Completed (unpublished) Phase | Stable background therapy NCT02580552
inhibitor and ATCL (simultaneously applied in
few participants)
MRG-106 MiR-155 CTCL, MF Terminated (due to business reasons) Phase Il Vorinostat (active NCT03713320
inhibitor comparator)
MRG-106 MiR-155 CTCL, MF Terminated (due to eligible subjects Phase Il — NCT03837457
inhibitor receiving treatment in a crossover
arm of NCT03713320)
MRG-110 MiR-92a-3p Healthy volunteers Completed (unpublished) Phase | Placebo-controlled NCT03603431
inhibitor
MRG-110 MiR-92a-3p Healthy volunteers Completed (significant inhibition on Phase | Placebo-controlled NCT03494712""!
inhibitor targeted miRNA in vivo)
RG-012 MiR-21 AS Completed (unpublished) Phase| — NCT03373786
inhibitor
MRG-201  MiR-29b Healthy volunteers Completed (unpublished) Phase | Placebo-controlled NCT02603224
mimic
MRG-201  MiR-29b Keloid Completed (exhibits therapeutic Phase Il Placebo-controlled NCT03601052
mimic effects and manageable adverse
events)
MRX34 MiR-34a Liver cancer, SCLC, Terminated (due to serious immune- Phase | — NCT018299718041152
mimic lymphoma, melanoma, related adverse events)
MM, RCC, NSLCL
MRX34 MiR-34a Melanoma Withdrawn (due to immune-related Phase I/ Dexamethasone NCT02862145
mimic serious adverse events in the phase | I premedication
study)
TargomiRs MiR-16 MPM, NSCLC Completed (exhibits acceptable Phase | — NCT02369198''>3
mimic safety profile and early signs of
therapeutic activity)
INT-1B3 MiR-193a- Advanced solid tumors Terminated (due to the insufficient Phase | — NCT04675996
3p mimic funding)

cell carcinoma, SCLC small cell lung cancer

AS Alport syndrome, ATCL adult T cell leukemia/lymphoma, CLL chronic lymphocytic leukemia, CTCL cutaneous T cell lymphoma, DLBCL diffuse large B cell
lymphoma, MF mycosis fungoides, Mi-R microRNA MM multiple myeloma, MPM malignant pleural mesothelioma, NSCLC non-small cell lung cancer, RCC renal

However, long-term treatment at high doses can lead to
mutations in the BD and overexpression of ATP-binding cassette
subfamily B member 1 (ABCB1), which contributes to drug
resistance development.’%® Combining these treatments with
ABCB1 inhibitors could potentially mitigate resistance to
SMARCA4/SMARCA2 inhibitors in vivo. Additionally, applying
PROTACs to previously reported inhibitors can enhance their
selectivity and reduce off-target effects. For instance, the linkage
of BI-7273 with an E3 ubiquitin ligase has led to the design of
dBRD9-A, the first BRD9-directed degrader, which is undergoing
optimization.”®®7%° The current focus on dBRD9-A, which is being
tested for its efficacy in AML, MM, and interferon-induced
inflammation in animal models, highlights its potential as a
promising therapeutic for both tumor and non-tumor condi-
tions.”%8770771  Additional PROTACs-based SWI/SNF inhibitors,
such as those derived from dihydropyrrolo-quinazolin scaffolds
(targeting SMARCA4, SMARCA2, and PBRM1),”*” A947 (targeting
SMARCA?2),”’? VZ-185 (targeting BRD9 and BRD7),’”? CFT8634 as
well as FHD-609 (targeting BRD9), further illustrate the breadth of
ongoing research.””* Notably, FHD-609 have recently advanced to
clinical trials for synovial sarcoma (NCT04965753), underscoring
the critical role of drug development targeting mutations in SWI/
SNF complexes. Moreover, CFT8634 was originally planned for
investigation in a phase 1/2 clinical trial of synovial sarcoma and
other SMARCB1-perturbed soft-tissue sarcomas (NCT05355753).
However, the clinical trial was terminated because of the less
significant clinical activity of CFT8634 as a single agent.
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Considering the prevalence of mutations in SWI/SNF complexes
in cancers, continued research into the in vivo therapeutic effects,
potential applications, and long-term risks of these drugs is
essential for assessing their clinical utility.

Epigenetics-targeted drugs and non-coding RNA

A deep understanding of ncRNA’s role in disease progression,
particularly in various cancers, has led to innovative epigenetic
strategies for disease management.””> RNA interference (RNAI)
technologies, which utilize small double-stranded RNA to selec-
tively interact and degrade specific intracellular RNAs, mimic gene
deletion phenotypes.”’%””” RNAi-based therapies targeting ncRNA
are categorized based on their action mechanisms and intended
outcomes: silencing overexpressed ncRNAs to curb disease-related
expressions, restoring downregulated ncRNAs to regain lost
functions, and blocking ncRNA localization to prevent ncRNA
from functioning by interfering with its subcellular localization.
RNAi-oriented drugs altering ncRNA patterns have been widely
studied and applied in clinical practice (Table 7). Herein, we
summarize the emerging technologies for ncRNA-targeted agent
development, aiming at supplementing the current understand-
ing of drug design.

Significant advancements in molecular editing and delivery
systems have bolstered the clinical viability of these innovative
ncRNA-targeted therapies.””®”7° One pivotal development has
been the chemical modification of synthetic nucleic acids to
enhance their stability and delivery efficiency. The initial focus on
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replacing phosphodiester bonds with phosphorothioate has been
a cornerstone in numerous FDA-approved oligonucleotide thera-
pies,”® although concerns about inflammation and toxicity in vivo
have prompted research into alternative modifications for RNA-
targeted based on RNAL.”®" Over the years, various modification
strategies have emerged, including those based on 2-O-methyl,
2'-O-methoxyethyl, 2'-fluoro, and n-acetylgalactosaminyl, aiming
to preserve the therapeutic attributes of nucleic acids while
enhancing their stability.”®? Locked nucleic acids (LNAs) represent
a notable innovation, linking the 2" and 4’ carbons of ribose rings
with methylene bridges, thus improving hybridization affinity and
resistance to nucleases.”®®> Cobomarsen, an LNA-based inhibitor
targeting miR-155, exemplifies this technology’s potential, having
shown promising results in preclinical studies for hematological
malignancies and solid tumors and exhibiting positive effects in
mycosis fungoides patients.”®* 738 |n addition, the therapeutic
efficacy of cobomarsen has been further validated in patients with
mycosis fungoides, indicating well-tolerated and positive clinical
potentials (NCT03713320).

Furthermore, integrating nanomedicine-based delivery sys-
tems, such as lipid-based, polymeric, inorganic, and biomimetic
nanoparticles, has significantly advanced the development of
RNAi drugs. These delivery techniques enhance the stability and
bioavailability of oligonucleotide drugs and improve their
efficacy in modulating target ncRNA expression and function-
ality.”® The recent emphasis on nanoparticles designed for
targeted delivery of therapeutic nucleic acids to specific
subcellular organelles marks a significant advancement in ncRNA
therapy. As ncRNAs are present not only in the cytoplasm but
also the nucleus and various organelles, targeting these
subcellular locations can enhance the efficacy of treat-
ments.”?%’?! Researchers are exploring opportunities to inte-
grate subcellular organelle-targeting signals into nanoparticle
delivery systems. Current studies have reported RNAi nanopar-
ticle systems designed to target the nucleus, mitochondria,
endoplasmic reticulum, and Golgi apparatus.”*>”7?> Though
nucleus-targeted nanoparticles have been studied in regulating
ncRNAs, only a few of them have proposed the incorporation of
nucleus-targeting TAT peptide and nucleus-targeting peptide
amphiphile into nanoparticle delivery systems to achieve active
transportation.”®> Many researchers have only reported the high
concentrations of therapeutic oligonucleotides in the nucleus
without elucidating the mechanisms involved in nucleus-
targeting. This approach leaves a gap in our understanding of
the complex and precise intracellular delivery processes that
involve biomembrane systems and cytoskeletal interactions.”*®
The variability in cell types, delivery materials, and therapeutic
nucleic acids means that successful results in specific contexts
may not universally apply, highlighting the challenges in
translating these strategies from experimental to clinical settings.

Additionally, the integration of clustered regularly interspaced
short palindromic repeats (CRISPR)/CRISPR-associated system
(CRISPR/Cas) technologies, particularly CRISPR/Cas9, into ncRNA
research offers novel avenues for manipulating ncRNA expression,
including INcRNAs and microRNAs (miRNAs).”?” 8% CRISPR/Cas9's
flexibility and high specificity make it an advantageous tool for
gene-targeted cancer therapies, such as CRISPR interference,
activation, and knockout strategies, now moving into preclinical
trials. This gene-editing technology promises to enhance the
efficacy of traditional cancer treatments and aims to minimize off-
target effects, thus fostering the development of personalized
medicine.8°'8%2

However, several challenges persist despite the growing
number of ncRNAs identified as potential therapeutic targets.
Technological advancements are still needed, and safety concerns
must be rigorously addressed.2%® The premature termination of
the Phase | clinical trial for MRX34, a liposomal mimic of miR-34a,
due to severe immune reactions and fatalities, underscores the
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critical need for comprehensive preclinical data and cautious
progression to clinical trials.8%*

PRACTICAL CHALLENGES IN THE EPIGENETIC DRUG
DEVELOPMENT AND APPLICATION

Massive efforts have been made in epigenetics-targeting drug
development, whether approved in different countries for the
treatment of specific indications or currently identified and further
evaluated in fundamental experiments or clinical trials, exhibiting
notable potential. However, there are still practical issues that
should be dealt with when applying them to a large scale in
clinical practice.

First of all, a thorough understanding of epigenetic mechanisms
is crucial for successfully applying epigenetic-targeted drugs.
Alterations in epigenetic enzymes can change DNA, histones, or
chromatin structures, impacting cellular processes like transcrip-
tion, replication, and DNA repair. Even minor modifications in
epigenetic enzyme activity can significantly affect cellular func-
tions. Therefore, deepening our understanding of epigenetic
biology is essential. However, gaps remain in our knowledge,
particularly regarding the roles of epigenetic regulation and its
proteins in mammals, such as new DNA modifications like m6A,
RNA modifications beyond m6A, novel reader domains, and PPI
networks related to epigenetic regulation. These areas represent
potential targets for novel epigenetic drugs but require further
exploration.2%78'° Second, many molecules identified through
virtual screening and molecular docking techniques are primarily
used as molecular probes to study enzyme localization and
function. However, transitioning from a potent molecular probe to
a viable therapeutic agent involves rigorous in vivo evaluation to
confirm their inhibitory effects and therapeutic potential. This step
is crucial as it determines whether these compounds can be safely
and effectively used in clinical settings.®''®'? These small
molecules are potent probes to detect the localization and
function of targeted enzymes, and their potential for medical use
needs confirmation. Notably, another challenge that needs to be
overcome is associated with the precise localization and targeted
activity of epigenetics-targeted drugs is critical for enhancing their
clinical efficacy and reducing potential side effects. The need for
precise delivery of epigenetic drugs to subcellular structures is
underscored by the diverse localizations and functions of their
target enzymes and ncRNAs. For instance, enzymes responsible for
histone modifications are found both in the nucleus, where they
modify histones, and in the cytoplasm, where they regulate non-
histones and related signaling pathways at the post-translational
level 8138 Similarly, the function of ncRNAs depends significantly
on their localization and distribution within the cell.”*® To address
these challenges, a deeper understanding of the intracellular
trafficking mechanisms is required. Additionally, developing
sophisticated drug delivery systems, such as lipid-based nano-
particles or targeted delivery vehicles, can enhance the specificity
and efficiency of these therapies by directing them to their precise
intracellular sites of action. Furthermore, the challenge of
achieving selective inhibition within the HDAC family exemplifies
the broader issue of specificity in drug design. Many drugs
targeting epigenetic enzymes exhibit pan-inhibitory effects,
leading to significant off-target effects and adverse reactions,
particularly when the drugs indiscriminately affect multiple
members of an enzyme family.*®® This necessitates the develop-
ment of more selective inhibitors that specifically target single
proteins or subfamilies of proteins. By focusing on selective
inhibition, researchers can potentially improve the safety and
efficacy of these treatments, minimizing unwanted interactions
and enhancing their therapeutic impact.

Importantly, the possibility of developing resistance to
epigenetic-targeted drugs, which is another factor limiting their
further application, cannot be ignored. Several studies have
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investigated the mechanisms involved in the development of
resistance to epigenetic agents in different cancers.2>®"7 The
activation of certain signaling pathways and gene mutations in
tumor cells play an indispensable role in inducing the develop-
ment of drug resistance to epigenetic agents. Research has shown
that the activation of enhanced Wingless/Integrated (Wnt)/
[-catenin signaling contributes to developing resistance to BET
inhibitors in leukemia cells. However, inhibition of this pathway
helps rescue drug sensitivity in vitro and in vivo.2'®8'® Further-
more, enhanced activity of the protein kinase B (AKT)/mTOR
complex 1 (mTORCT) signaling pathway is also responsible for
drug resistance to BET inhibitors in prostate cancer.?° In another
study on HDAC resistance in solid tumors, the potential role of the
activation of some kinases and downstream pathways was also
reported.®2' Additionally, altered TME may be one of the culprits
in promoting drug resistance. Tumor-associated macrophage
(TAM), a pivotal mediator in inducing tumor cells to develop
resistance to traditional antitumor therapies, has recently been
proposed to be involved in the occurrence of epigenetic drug
resistance.82#8%3 A 2020 study on triple-negative breast cancer
reported that interleukin-6 (IL-6) and IL-10 derived from TAM
activated STAT3 signaling in tumor cells, conferring them with
drug resistance to BET inhibitors.®?®> Additionally, these findings
pave a theoretical foundation for the combination of epigenetics-
targeted drugs and other pharmaceutical molecules to optimize
their long-term efficacy.®?* The relationship between drug
resistance to epigenetic agents and mutations in certain genes
is observed in tumor cells, especially in the case of applying EZH2
and IDH inhibitors.>*82>826 Based on this idea, the loss-of-function
mutation of specific genes by CRISPR/Cas techniques may provide
better platforms for coping with drug resistance.

In conclusion, for epigenetics-targeted drugs, it is crucial to
balance pharmacokinetics (how the drug is processed in the
body), tolerability (how well the drug is tolerated), and therapeutic
efficacy (how to avoid off-target off-target toxicities and
resistance). Developing optimal dosing regimens that maximize
efficacy while minimizing side effects and resistance requires a
thorough understanding of the drug’s behavior in the body,
including its absorption, distribution, metabolism, and excretion.
Innovative dosing strategies, possibly involving controlled release
formulations or real-time monitoring of drug levels, could play a
vital role in achieving this balance. Continued research into the
biological and pathological roles of targets for epigenetic drugs is
essential.

DEVELOPING TRENDS AND FORTHCOMING PROSPECTS IN
EPIGENETICS-TARGETED DRUGS

Research on epigenetics-targeted drugs has progressed rapidly,
with a growing focus on their potential as next-generation clinical
candidates. Current trends, illustrated in Fig. 5, emphasize the
synergy between these agents and other therapeutic modalities
such as chemotherapy, radiotherapy, kinase inhibitors, and
immunotherapy. This integration promotes precision medicine
and personalized treatment strategies and enhances the overall
effectiveness of cancer therapies.?’#2 Furthermore, developing
epigenetic degraders, which can hydrolyze targeted proteins,
complements the inhibitory functions of traditional epigenetic
drugs.2* Notably, the swift advancement of sequencing technol-
ogy has empowered the detection of epigenetic irregularities with
growing efficacy, substantially enhancing the integration of
epigenetics into personalized medicine.

Epigenetics-based combination therapy in cancer cells

The integration of epigenetics-targeted drugs with conventional
cancer therapies—such as chemotherapy, targeted therapy,
immunotherapy, and hormone therapy—is emerging as a
promising strategy for cancer treatment. Increasing experimental
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studies and clinical trials are assessing the safety and efficacy of
various combination regimens. The benefits of these combina-
tions can be categorized into two primary aspects:

Epigenetic drugs can synergize with other cancer therapies by
modulating the metabolic and pathological characteristics of
cancer cells, immune cells, and stromal cells within the TME.2*°
Although immune checkpoint inhibitors (ICls), which target
immune checkpoint proteins (ICPs), such as PD-L1, PD-1, and
CTLA-4, show significant potential, their effectiveness may be
limited by factors such as insufficient antigen presentation and
suboptimal T cell responses in the TME.2'#2 Epigenetic
modifications can enhance the expression of tumor antigens
and ICPs, overcoming these limitations. The use of epigenetic
therapies not only disrupts immunosuppressive pathways but also
enhances the recruitment of tumor-reactive immune cells,
resulting in synergistic effects with ICls,'36833-83°

Interfering with aberrant epigenetic features is crucial for
combating drug resistance, a major challenge in oncology.
Chemoresistance often correlates with changes in DNA methyla-
tion and histone acetylation, among other epigenetic character-
istics.'3836837  Combining chemotherapeutic agents  with
epigenetic drugs has become an important strategy to address
resistance, 23423 also helping to mitigate chemotherapy-related
side effects.®**®*! Additionally, reversing epigenetic alterations in
chemoresistant tumor cells can restore their sensitivity to
conventional therapies, offering a renewed opportunity for
treatment.®*? In the context of targeted therapy, inhibitors of
mutant kinases initially provide rapid benefits but often lead to
the development of resistance over time.®** The potential of
epigenetic treatments, particularly HDAC and DNMT inhibitors, to
reverse such resistance is currently being explored.®*** The
development of dual inhibitors, like CUDC907, CUDC101, and 4SC-
202, shows promising results in overcoming resistance in kinase-
driven cancers and warrants further investigation®*® For
hormone-dependent cancers, such as estrogen receptor-positive
breast cancer and androgen receptor-positive prostate cancer,
endocrine therapy remains a crucial treatment option.®*” How-
ever, epigenetic alterations can lead to resistance during
endocrine therapy.2*®®*° Targeting these epigenetic changes
can help sustain the effectiveness of endocrine therapies and
reduce the proliferation of cancer cells.848°

At present, various combination regimens based on HMA and
traditional anticancer drugs have entered clinical trials, gaining the
potential to become an alternative for patients with certain
diseases. For example, the combination of the oral B-cell
leukemia/lymphoma 2 inhibitor venetoclax with HMAs has
become a standard regimen among patients with AML or MDS
who are ineligible for intensive chemotherapy. In November 2018,
the FDA approved this combination for AML therapy.®>'-83
Further, triplet regimens that include HMAs, venetoclax, and other
targeted agents are being developed for AML with specific gene
mutations.”??8>48% Early results from these clinical trials have
demonstrated a good safety profile and promising effects, with
ongoing studies needed to confirm their efficacy and potential
adverse events. In May 2022, the combination of ivosidenib, an
IDH1 inhibitor, and azacitidine was approved by the FDA for older
patients with newly diagnosed IDH1-mutated AML.%*° Other drugs
being combined with HMAs include HDAC inhibitors, polo-like
kinase 1 inhibitors, T-cell immunoglobulin domain and mucin
domain-3 antibodies, and PD-L1 antibodies.2>”8%° These combi-
nations are currently under evaluation in ongoing registrational
clinical trials across different stages, with promising results
anticipated for updating clinical strategies. Additionally, the
combination of HMAs with targeted therapy and immunotherapy,
as well as chemotherapy, is showing promising application
prospects, especially in hematologic malignancies with acquired
chemoresistance caused by aberrant DNA methylation.®¢'#52
Currently, azacitidine is approved in multiple countries and is
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Fig. 5 The promising trends and practical challenges in the clinical application of epigenetics-targeted drugs. From the perspective of clinical
practice, epigenetic agents are expected to become promising adjuvants in combination with traditional antitumor therapeutics, contributing
to superior efficacy and decreased resistance. Based on this idea, multitarget anticancer agents inhibiting both HDAC and other pathological
molecules have gained much attention as a new strategy. Further, epigenetic degraders based on PROTAC or other techniques responsible for
TPD help supplement the catalytic function of epigenetic inhibitors. Notably, the successful transport of epigenetic regulators to specific
tissues or cells, or even the finite subcellular structures, is the prerequisite for exerting therapeutic effects. The further optimization of different
types of nanoparticles makes them inspiring tools for the delivery system

widely used in patients with myeloproliferative disorders, such as
MDS, AML, chronic myelomonocytic leukemia (CMML), and
juvenile myelomonocytic leukemia, whereas decitabine is
approved for the treatment of MDS, AML, and CMML 853863

Small molecules serving as epigenetics-targeted degraders
As an emerging therapeutic strategy, epigenetics-targeted degra-
ders for targeted protein degradation (TPD), respected by
molecules based on PROTAC, autophagy-targeting chimera
(AUTAC), hydrophobic tagging (HyT), molecular glue (MG), and
other novel techniques for drug discovery are worth trying as a
remarkable alternative presenting pioneering approaches.®°
PROTAGs, first proposed in 2001, are considered revolutionary
technologies in drug discovery. They consist of a ligand for
targeted proteins, a ligand for E3 ubiquitin ligase, such as Von
Hippel-Lindau and Cereblon (CRBN), and a linker connecting the
two ligands.®®” Many degraders targeting diverse epigenetic
enzymes have been developed, including the newly designed or
derived from the optimization of known selective inhibitors.25825°
This technology has led to the creation of various degraders
targeting a wide range of epigenetic enzymes, enhancing their
potency, duration of action, safety profile, and ability to counteract
resistance mechanisms compared to conventional
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inhibitors.278% For instance, dBET1, derived from the BRD
inhibitor JQ-1, was the first PROTAC-based degrader targeting
BET proteins. It has demonstrated superior anticancer effects in
both AML cell lines and mouse xenograft models compared to JQ-
1 alone.B%6#7° Fyrther optimization led to dBET6, which increased
cell permeability significantly improved survival rates in solid
tumor models, and reduced the emergence of resistance.*
Innovative approaches to enhance the selectivity and safety of
PROTACs include antibody-PROTAC technology, which combines
monoclonal antibodies targeting specific pathological cells with
degraders. This strategy facilitates targeted delivery, minimizing
side effects while maximizing efficacy. Antibody-PROTACs have
been developed for breast cancer cells overexpressing human
epidermal growth factor receptor 2 and prostate cancer cells
expressing six transmembrane epithelial antigens of the prostate
1, showing enhanced degradation specificity in these cell
types.2’#2 Compared with general degradation agents, these
small molecules present the preferential degradation of target
proteins in specific cell lines. Additionally, integrating control
elements into PROTAC molecules allows for activation in specific
physiological or pathological conditions, reducing potential off-
target effects.®?”® Techniques such as photocaged PROTACs,
photo-switchable PROTACs, and radiotherapy-triggered PROTAC
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prodrugs represent cutting-edge strategies in this area. These
methods ensure that the degradation activity of PROTACs can be
spatially and temporally controlled, enhancing their clinical
applicability and safety.®*87 Overall, the evolution of PROTACs
and other PROTACs-oriented TPD strategies is shaping a promis-
ing future for epigenetics-targeted therapies, offering more
precise and effective treatment modalities for various diseases,
particularly cancer.

Other types of epigenetics-targeted degraders, such as
AUTAC-based agents, HyT-based degraders, and MG, offer
innovative alternatives to PROTACs for TPD. Each technology
employs distinct mechanisms and offers unique advantages for
therapeutic applications. Unlike PROTACs, which utilize the
proteasomal degradation pathway, AUTAC agents promote
lysosome-dependent degradation of target proteins’’ One of
the key benefits of AUTAC degraders is their enhanced
membrane permeability due to their typically low molecular
weights, making them potent therapeutic candidates?’® For
instance, AUTAC-based degraders targeting BRD4, developed
from the covalent interaction between autophagy key proteins
and JQ-1, have shown significant antiproliferative activity across
multiple tumor cell lines. This demonstrates their potential as
effective medical tools for treating various diseases.®’° Intro-
duced in 2011, HyT technology uses small molecules composed
of a targeted protein ligand, a hydrophobic tag, and a linker.
Unlike PROTACs that often target the ubiquitin-proteasome
system, HyT-based degraders work by increasing the hydro-
phobicity of the target protein, facilitating its degradation.®®°
MS1943, an EZH2 HyT degrader, illustrates this technology’s
effectiveness.®®' It has shown superior inhibitory effects on
tumor cell lines and greater selectivity towards cancer cells over
normal cells, demonstrating significant tumor suppression and
good tolerance in mouse models.28" Other HyT-based degraders
are also developed, including those targeting HDAC and YEATS
domain readers, providing therapeutic strategies for diseases
caused by mutations or dysfunction in specific proteins.3827884
Further development of HyT-based degraders is ongoing, with
efforts to improve their bioavailability and therapeutic effects in
vivo by exploring new hydrophobic labels®®> MG differs
fundamentally from PROTACs and other degraders by inducing
degradation through promoting tight binding between the
target protein and proteasome components, leading to the
protein’s subsequent degradation.®¢#” A notable example is
the MG-based degrader DD-1-073, targeting HDAC1/3, derived
from SAHA (a known HDAC inhibitor). This was among the first
applications of MG in HDAC degrader development.®%® Similarly,
another MG-based agent targeting BRD4, termed JP-2-197, is
further established as an optimal derivative of JQ-1.2%% Due to
their low molecular weights, DD-1-073 and JP-2-197 have
favorable pharmacokinetic properties, enhancing cell perme-
ability and drug-ability.2%® Despite their potential, the develop-
ment of MG-based agents faces challenges due to the lack of
systematic strategies for their design and identification, making
large-scale screening and optimization difficult.

Developing epigenetic-targeting degraders, especially those
targeting HDACs and epigenetic readers, has made significant
progress, opening new avenues for clinical practice. These novel
small molecules offer promising therapeutic alternatives, but
several challenges and limitations must be addressed to enhance
their clinical applicability and effectiveness.

Combining epigenetics-targeted drugs and sequencing
technology

Owing to the substantial relationship among epigenetic signa-
tures, lifestyle choices, and environmental influences, drugs that
target epigenetic mechanisms are highly promising for advancing
personalized medicine.®%® However, leveraging these drugs in this
field is challenging. As disease research enters a new phase owing
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to advancements in sequencing technologies, the potential for
epigenetic therapies to enhance personalized healthcare is being
progressively realized %

The advent of these cutting-edge technologies, ranging from
whole-genome sequencing to single-cell analysis, has facilitated
the detection of gene mutations and expression alterations
associated with epigenetic changes throughout disease pro-
gression.®®' This advancement significantly enhances our
understanding of the heterogeneity in epigenetic modifications
across various cell types, thereby revealing new therapeutic
targets for clinical application. In recent years, advancements in
single-cell methodologies have allowed researchers to further
explore the multiple dimensions of the epigenome, including
chromatin accessibility, DNA methylation patterns, histone
modification profiles, and chromatin interaction net-
works. 892789 (Collectively known as “single-cell epigenomics”,
this burgeoning field offers an enhanced comprehension of
epigenomic regulation in physiological and pathological set-
tings at the level of individual cells from a more intuitive
perspective.8°78%7 These comprehensive “omic” profilings sup-
port the distinct biological identity of individuals, thus provid-
ing a solid theoretical foundation for refining therapeutic
strategies to achieve individual targeting.®® Furthermore, by
integrating CRISPR/cas9 gene-editing technology with various
sequencing, researchers can conduct high-throughput func-
tional genomic screens and identify pathological genes that are
responsive to epigenetic therapies. This step not only aids in
identifying novel targets for epigenetic agents but also
promotes the assessment of therapeutic responses of target
tissues or cells.®%9°% For example, these methods may help
detect the occurrence of drug resistance and optimize the
efficacy of epigenetic interventions.*®’

The significant potential of epigenetics in customizing perso-
nalized medicine has generated high enthusiasm, and advance-
ments in this field have been consistently focused in medical
research. Notably, the introduction of sequencing technologies
has enabled us to investigate the correlation between epigenetic
markers and disease pathology more comprehensively, thus
facilitating the development of targeted therapeutic strategies.
Nonetheless, the current epigenetic technologies used in the
laboratory present several technical challenges that require
refinement, such as the necessity for high-demand algorithms,®*?
sufficient amounts of training data,”® limited genome coverage
per cell,®°*°% and uncertain reproducibility.”® These techniques
require significant improvement before they can be effectively
used in clinical practice.

CONCLUSIONS AND PERSPECTIVES

Since the term “epigenetics” was first introduced in 1942, there
has been a significant focus on elucidating the mechanisms and
pivotal roles of epigenetic modifications and their associated
enzymes in human physiology and pathology. Drugs targeting
epigenetic enzymes have shown promising potential for treating
diseases, particularly cancers. This review comprehensively
examines the major epigenetic mechanisms involved in the
pathogenesis and progression of various diseases. It also
highlights recent advances in epigenetics-targeted drugs, under-
scoring their potential in clinical settings. Additionally, we
explore the integration of novel technologies in drug develop-
ment and the synergistic value of these drugs in conjunction
with other cancer therapies, pointing to the future direction of
epigenetics-oriented therapeutic strategies. Despite these
advancements, significant challenges remain. For instance,
certain enzymes that regulate the epigenetic landscape still lack
effective targeted drugs, and those identified through virtual
screening require further in vivo and in vitro investigation to
validate their efficacy and safety profiles. Addressing these gaps
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will be crucial for integrating epigenetics-targeted drugs into
clinical practice.

Advances in in-depth understanding of epigenetics have
largely enhanced possibilities of curing disease. To date, the
application of epigenetics-modifying drugs in preclinical and
clinical setting has provided promise for the beginning of the era
of epigenetic-orientated therapeutic strategies. Given the future
needs in this field, great attention should be focused on
exploring the heterogeneity of epigenetic hallmarks in different
diseases to design and develop epigenetics-targeted drugs with
high selectivity and improved targeting efficiency, based on the
elucidation for the biological and pathological roles of epige-
netics. These results are imperative for designing and developing
agonists and inhibitors of epigenetic enzymes with enhanced
selectivity and bioactivity. Furthermore, apart from the knowl-
edge based on experimental research and preclinical studies,
assessing the therapeutic potential of epigenetic drugs for
specific diseases, particularly in advanced clinical trials, is also
vital for advancing this field. Concurrently, emphasis should be
placed on the clinical potential of integrating innovative drug
discovery technologies into developing epigenetic-based drugs.
Moreover, while capitalizing on unique strengths of epigenetics,
efforts should be made to combine these novel agents with
traditional therapeutic modalities, with a view to achieving
synergic effects in treating disease, especially in the case of
tumors with genomic complexity. In conclusion, we believe that
deepened research in this field will catalyze innovation in
treatment approaches for diseases involving epigenetic mechan-
isms, offering new hope to patients.
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