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Pancreatic endocrine and exocrine signaling and crosstalk in
physiological and pathological status
Chenglin Hu1,2,3, Yuan Chen1,2,3, Xinpeng Yin1,2,3, Ruiyuan Xu1,2,3, Chenxue Yin1,2,3, Chengcheng Wang 2,3,4,5✉ and
Yupei Zhao 1,2,3,4✉

The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones
such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex
interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in
maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the
endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the
exocrine and endocrine parts share the same origin—the “tip-trunk” domain. In certain circumstances, pancreatic exocrine cells
may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including
pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells
may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This
crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related
to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and
disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the
regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and
treatment of diseases.

Signal Transduction and Targeted Therapy           (2025) 10:39 ; https://doi.org/10.1038/s41392-024-02098-3

INTRODUCTION
The pancreas is a unique organ with dual functions, both
endocrine and exocrine. The endocrine portion of the pancreas
consists of islets, which help control blood glucose levels by
releasing hormones like insulin, glucagon, and somatostatin. Each
hormone functions through a specific signaling pathway, not only
regulates endocrine and exocrine functions but also plays a key
role in the homeostasis of cells. At the same time, the exocrine
part assists in the breakdown of carbohydrates, proteins, and fats
by secreting a variety of enzymes.1 Historically, these two
functions have often been studied independently. However,
emerging evidence indicates that intricate crosstalk between the
endocrine and exocrine components plays a crucial role in
maintaining pancreatic function and has significant implications
for various diseases.
Recent research highlights the importance of endocrine-

exocrine crosstalk in the pathogenesis of serious conditions like
pancreatic cancer and diabetes. Pancreatic ductal adenocarci-
noma (PDAC), a highly aggressive cancer, is often associated with
endocrine dysfunctions such as diabetes.2 In the case of PDAC, this
crosstalk becomes particularly evident. Notably, many PDAC
patients develop new-onset diabetes as an early symptom, likely
due to the disruption of insulin secretion caused by tumor growth.

In turn, diabetes, particularly long-standing type 2 diabetes (T2D),
is recognized as a risk factor for PDAC development.3 Similarly,
chronic pancreatitis, another exocrine-related disorder, can lead to
both exocrine and endocrine insufficiencies, further demonstrat-
ing the bidirectional influence between these systems.4 Under-
standing these interactions is crucial, as both PDAC and diabetes
are not only common but also deadly, underscoring the need for
comprehensive research that explores how dysfunction in one
system can impact the other. The crosstalk between endocrine
and exocrine functions involves complex signaling pathways, such
as the insulin-glucagon feedback loop, which plays a crucial role in
regulating both glucose metabolism and exocrine enzyme
secretion. Disruption in these pathways, as seen in PDAC and
chronic pancreatitis, can exacerbate disease progression by
further impairing both metabolic and digestive functions. How-
ever, despite its significance, this potential crosstalk remains
underappreciated in many studies, with the majority of research
focusing on either the endocrine or exocrine aspects in isolation.
This oversight may lead to an incomplete understanding of
pancreatic function and its involvement in disease progression.
This review aims to bridge this gap by systematically examining

the cross-functional interactions between the endocrine and
exocrine components of the pancreas. By highlighting key studies
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that have explored the signaling of pancreatic endocrine and
exocrine components and crosstalk, we seek to provide a
comprehensive overview of how this signaling pathway as well
as interactions contribute to the development of both physiolo-
gical and pathological conditions such as diabetes, pancreatitis,
and PDAC. Furthermore, this review also highlights the need for
an integrative approach to research. Future studies should focus
on exploring both endocrine and exocrine dynamics simulta-
neously to better understand the complex mechanisms under-
lying diseases.

HISTORICAL DISCOVERIES AND MILESTONE EVENTS IN
PANCREATIC RESEARCH
Islets and cells in islets
In 1869, Paul Langerhans, a German pathologist, first identified
clusters of cells within the pancreas while studying the histology
of the organ. These clusters, later known as the islets of
Langerhans, were described as distinct from the surrounding
acinar cells responsible for exocrine functions.5 Although Langer-
hans did not hypothesize their specific function, his discovery laid
the groundwork for future investigations into their role in
endocrine regulation.
In 1893, Gustave-Édouard Laguesse, building on Langerhans’

work, suggested that these islets might serve an endocrine
function.6 This hypothesis marked the beginning of focused
research into the hormonal roles of the pancreas, particularly in
the regulation of blood glucose levels. In the following decades,
researchers connected the function of the islets of Langerhans
with a substance crucial for glucose metabolism.
In 1921, Banting and Best’s isolation of insulin allowed for its

purification and subsequent clinical testing.7 Before the discovery
of insulin, diabetes was often fatal, but the ability to administer
insulin transformed the disease into a manageable chronic
condition, significantly improving the quality of life and life
expectancy for millions of patients.
The diversity of pancreatic islet cells was first described in 1907 by

Lane, who categorized them into A cells (α cells) and B cells (β cells).8

In 1923, Kim and Murlin discovered glucagon, a substance that
induces hyperglycemia.9 The source of glucagon remained unknown
until 1962 when α cells were identified as its origin. Further studies by
Bellman et al. refined this understanding by distinguishing A1 cells
and A2 cells, with A2 cells being the glucagon-producing α cells.10–12

D cells (δ cells), which were different from the previously described A
and B cells, were first identified by Bloom in 1931.13 Somatostatin, the
hormone produced by D cells, was later discovered in 1975.13–15

Pancreatic polypeptide (PP) was initially found during the isolation of
insulin in chickens in 1968,16 and its localization in a new islet cell
type, PP cells, was confirmed in chickens in 1974 and later in human
islet.17,18

Enzymes and acinar cells
The study of the exocrine part of the pancreas can be traced back
to 1856. Claude Bernard, a famous French physiologist, played a
pivotal role in advancing knowledge about the pancreas’ function
in digestion. In 1856, Bernard discovered that the pancreas
secreted a fluid capable of emulsifying fats. This fluid, now known
as pancreatic juice, contains enzymes critical for the digestion of
fats, proteins, and carbohydrates.19 His work laid the groundwork
for the study of the pancreas's exocrine function, highlighting its
crucial role in the digestive system. His discovery marked the first
step in understanding how the pancreas contributes to digestion
beyond its previously known endocrine functions. Trypsin was first
isolated in 1876 by the German scientist Willy Kuhne, who was the
first to observe alterations in the secretion of pancreatic acinar
cells under a microscope.20 Ivan Pavlov, a Russian physiologist,
conducted extensive studies on the digestive system, focusing on
the regulatory mechanisms of pancreatic enzyme secretion.

Through his classical conditioning experiments in the 1890s,
Pavlov demonstrated the neural regulation of pancreatic secre-
tion, showing how stimuli such as the sight and smell of food
could trigger enzyme release. Pavlov’s research found the
regulation of the pancreatic exocrine function of the nervous
system, making an important contribution to understanding the
pancreatic enzyme secretion mechanisms.21,22 He was awarded
the Nobel Prize in Physiology or Medicine for his significant work
in understanding the mechanisms of digestion.
Acinar cells are the main executors of pancreatic exocrine

function. In the mid-20th century, George E. Palade used electron
microscopy to study the ultrastructure of pancreatic acinar cells
responsible for producing and secreting digestive enzymes. In
1974, he was honored with the Nobel Prize in Physiology or
Medicine for his groundbreaking discoveries related to the cell’s
structural and functional organization.
We can appreciate how early discoveries laid a robust foundation

for the in-depth study of the pancreas’ exocrine functions and their
critical role in digestion (Fig. 1). This understanding not only enriched
basic biological knowledge but also drove significant clinical
innovations that continue to benefit patients with pancreatic and
digestive disorders in the following decades. Future studies could
further explore this relationship, potentially leading to more
comprehensive treatment strategies that address both digestive
and metabolic disorders simultaneously. By continuing to build on
these foundational discoveries, we can develop more targeted
therapies that not only treat the symptoms of pancreatic diseases
but also address their root causes.

Endocrine and exocrine signaling molecules
Except for the discovery of insulin, the discovery of insulin
receptors made great contributions to understanding the under-
lying signaling mechanisms of how insulin works in glucose
metabolism. In 1971, two research teams identified the insulin
receptor by observing the binding of 125I-labeled insulin to the
membranes of adipose tissue and liver cells.23,24 And in the
following few years, the interactions between insulin and insulin
receptors in various healthy or pathological states, like obesity and
diabetes, had been elucidated.25–30

Glucagon produced by the α cells in the pancreas increases
blood glucose levels by promoting glycogen breakdown and
gluconeogenesis in the liver. Early in 1966, its function had been
regarded as a counter-regulatory hormone that complements
insulin’s actions, maintaining glucose homeostasis.31

Somatostatin was identified in 1975, produced by δ cells in the
pancreas, and demonstrated its inhibitory effects on the secretion
of both insulin and glucagon.13–15 Within the islets of Langerhans,
this hormone functions as a paracrine regulator, fine-tuning the
balance of glucose-regulating hormones.32,33

Pancreatic polypeptide, produced by PP cells, was found to
influence both endocrine and exocrine pancreatic functions. It
modulates gastrointestinal motility and the release of digestive
enzymes, linking the endocrine and exocrine functions of the
pancreas.34

In 1902, Bayliss and Starling discovered secretin, the first
hormone identified, which stimulates the pancreas to secrete
bicarbonate-rich fluid.35,36 This neutralizes stomach acid, provid-
ing an optimal pH for digestive enzyme activity in the intestine.37

As to the digestive enzymes regulator, cholecystokinin was
discovered by Ivy and Oldberg in 1928, stimulating the release
of pancreatic digestive enzymes and bile from the gallbladder,
aiding in the digestion of fats and proteins.38 These hormones
exemplify the intricate regulatory mechanisms governing exocrine
pancreatic secretion.39,40

The pancreas’ ability to regulate both endocrine and exocrine
functions through these signaling molecules demonstrates its
integrated role in maintaining overall metabolic homeostasis. This
dual functionality is crucial for efficient nutrient digestion and
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glucose metabolism. These discoveries underscore the importance
of crosstalk and feedback mechanisms in the pancreas.

THE CLOSE CONNECTION BETWEEN ENDOCRINE AND
EXOCRINE PARTS OF THE PANCREAS
Pancreas development
In the process of embryonic development, pancreatic cells of all
types derive from the foregut endoderm. In mice, pancreatic
development initiates at E8.5. The dorsal endoderm thickens to
form a bud with a stalk, known as the dorsal pancreatic bud.41

Concurrently, the ventral pancreatic bud emerges as the
endodermal epithelium proliferates outward from the ventral
end of the foregut. The notochord inhibits the sonic hedgehog,
allowing the dorsal pancreatic bud to develop.42 These structures
are surrounded by mesenchyme. The transcription factor Pdx1
(pancreatic and duodenal homeobox 1) is considered the earliest
(E8.5) and most specific gene expressed in embryonic pancreatic
development.43 Pdx1 plays a crucial role not only in the early
expression of embryonic pancreatic development but also in the
differentiation of endocrine precursor cells into insulin-secreting
cells. In mice, Pdx1 inactivation in the mature pancreas leads to
diabetes, underscoring its role in maintaining normal pancreatic
function.44

At E9.5, Pdx1 is highly expressed in the cells of both dorsal and
ventral pancreatic bud.45 The pancreatic bud grows outward to
form a curled structure with a hollow center. Simultaneously, the
dorsal pancreatic epithelium separates from the notochord in the
region of high Pdx1 expression. Endothelial cells from the dorsal
aorta come into contact with the dorsal pancreatic endoderm,
providing metabolic support and a range of inductive signals for
pancreatic development.46 Subsequently, the dorsal aorta sepa-
rates from the dorsal pancreatic epithelium, which becomes
enveloped by mesenchyme. Mesenchyme is crucial for pancreatic
development and can secrete fibroblast growth factor 7 (FGF7)
and FGF10 to promote embryonic epithelial proliferation.47 Mice
with Pdx1 deficiency exhibit pancreatic epithelial cells that fail to
respond to growth signals from mesenchyme.48 At E9.5, in
addition to Pdx1, the pancreatic epithelial precursor cells also

express pancreas-specific transcription factors, including Ptf1a,
SOX9, Nkx2.2, Nkx6.1, and Nkx6.2. These transcription factors
regulate pancreatic development and fate determination, and
their co-expression characterizes pancreatic epithelial progenitor
cells.45

After E10.5, pancreatic epithelial progenitor cells undergo
extensive proliferation and expansion. Simultaneously, the intest-
inal tube rotates, and the ventral and dorsal pancreatic buds
merge to form branched structures with distinct differentiation
potentials in the tip and trunk domains. The formation of these
branched structures may be facilitated with the assistance of the
Rho-GTPase family member Cdc42.49 Cells in the tip domain are
Ptf1a+ multipotent progenitor cells (MPCs) capable of generating
pancreatic endocrine cells, ductal cells, and acinar cells. Stem cells
in the trunk domain, identified by Nkx6 expression, can
differentiate into ductal cells and endocrine cells. By E13, MPCs
in the tip domain lose their multipotency and become acinar
precursors, capable only of producing acinar cells. Cell fate
specificity and pancreatic morphogenesis are closely tied to cell-
cell interactions and the regulatory effects of surrounding tissues,
including blood vessels and mesenchyme.50

The final event in islet morphogenesis is the differentiation of
endocrine cells. studies have shown that Ngn3+ endocrine
progenitor cells are unipotent precursors, distinct from ductal
progenitors, and can differentiate into five endocrine cell
types.51,52 Ngn3, which is uniquely expressed in endocrine cells
is critical for the differentiation of endocrine cells.53 Various
transcription factors play a role in the differentiation process,
leading to the formation of distinct endocrine cell types.54 α cell
transcription factors include Foxa2, Nkx2.2, Pax6, and Arx. In
contrast, β cell differentiation requires the expression of Mafb,
Pdx1, Hlxb9, Pax4, Pax6, Islet1, Nkx2.2, and Nkx6.1.
Endocrine cells detach from the ductal epithelium, and migrate

toward the mesenchyme and blood vessels, ultimately forming
islets. Although this process is completed after E13, single-cell RT-
PCR can detect the coexistence of glucagon, insulin, somatostatin,
and pancreatic polypeptide in the dorsal pancreatic epithelium as
early as E10.5.55 Co-expression of glucagon and insulin can be
detected at E9.5, suggesting that these co-expressing cells may be

Fig. 1 Historical discoveries and milestone events in pancreatic research. Significant historical milestones in the understanding of pancreatic
structure and function highlight the discovery timeline of various components and functions of the pancreas. Created in BioRender.com
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precursors of certain endocrine cells.56 However, the fate of
double-hormone-positive cells is still unclear, as studies have
shown that the development of α and β cells occurs indepen-
dently of each other.57–59

SOX9 plays a crucial role in pancreatic duct development and is
currently recognized as one of the markers for the ductal
lineage.60 It is expressed in pancreatic progenitor cells and plays
a role in maintaining the progenitor cell population. Simulta-
neously, SOX9 promotes the expression of Ngn3, thereby
stimulating the generation of endocrine progenitor cells.61

Following the activation of Ngn3, SOX9 expression is subsequently
downregulated to facilitate the differentiation of endocrine cells
by modulating the Notch pathway’s activity gradient.62 Under
high levels of Notch signaling, Hes1 (Ngn3 inhibitory factor) is
induced, leading to the retention of SOX9 expression in progenitor
cells, which then transition into ductal cells. Ductal cells possess
the potential to transdifferentiate into endocrine cells.
Currently, research on pancreatic development primarily

focuses on murine models. Due to the genetic similarity between
mice and humans, as well as the ease of experimentation, mice are
commonly used in studies related to pancreatic development.
While the murine model provides critical insights into pancreatic
development, it is important to recognize the similarities and
differences in the human context. Limited by ethical requirements
for embryological research in humans, our understanding of
human pancreatic development is far less comprehensive than
that of mice. However, we can still discern similarities and
differences between human and mouse pancreatic development
from existing studies.
In terms of commonalities, both human and mouse pancreatic

development follow a similar developmental pattern, including
the formation of dorsal and ventral pancreatic buds and the
expression of certain genes that drive a series of differentiation
processes. This has been thoroughly reviewed by Rachael et al.63

Important genes in mouse pancreatic development, such as SOX9,
Ptf1a, and Ngn3, are also present in the differentiation of
pancreatic cells in humans.64–66

However, there are significant differences in the timeline and
gene expression patterns between human and mouse pancreatic
development. First, the developmental timeline of the human
pancreas is significantly longer than that of the mouse. Pancreatic
development in mice begins around embryonic day 8.5 (E8.5) and
most organ differentiation is completed by around E14.45 In
contrast, while the initiation of pancreatic development in humans
is similar, the process of maturation takes much longer, with full
pancreatic maturation only achieved in the mid-to-late stages of
pregnancy.65

Gene expression patterns also differ between species. For
example, the Pdx1 gene is strongly expressed early in the
pancreatic development of mice (E8.5) and remains at high levels
throughout the differentiation process.43 In humans, while Pdx1 is
also expressed early on, the timing and intensity of its expression
may be influenced by more complex regulatory mechanisms,
potentially leading to differences in the progression of pancreatic
development between humans and mice. Mice with Pdx1 loss
exhibit pancreatic hypoplasia, a phenomenon confirmed over 30
years ago.67 In 1997, a case was reported of a newborn with
homozygous loss of Pdx1 who developed diabetes, presenting
with exocrine insufficiency and hyperglycemia.68 In humans,
mutations in the Pdx1 gene have been associated with neonatal
diabetes, often accompanied by varying levels of exocrine
dysfunction.69 Heterozygous mutations in Pdx1 seem to have a
negative impact on insulin-positive cells,70 a phenomenon also
observed in mice, where Pdx1 heterozygous mutations result in
impaired β cell function and increased apoptosis.71,72

The expression of the Ngn3 gene also shows different timing
and patterns in the two species. In mice, Ngn3 expression is
concentrated between E13.5 and E15.5, while in humans, the peak

expression occurs later, correlating with the later maturation of
human islet cells.73 Mutations in the Ngn3 gene affecting
pancreatic and intestinal endocrine cell differentiation have been
reported,74 but the manifestations in humans are inconsistent.
Some studies have found that individuals carrying completely
inactivated Ngn3 mutations do not develop permanent neonatal
diabetes.75 Early research suggested that Ngn3 insufficiency might
be compensated by other mechanisms,76 but subsequent studies
revealed that these mutations might be functionally hypomorphic
rather than fully inactive.77 Furthermore, even with only 10% of
Ngn3 functionality, pancreatic endocrine cell differentiation can
still occur.78 The reasons behind the differing pancreatic functions
following Ngn3 inactivation in humans and mice remain to be
explored.
Overall, the differences between human and mouse pancreatic

development may partially explain the specificities and disease
susceptibilities in human pancreatic development, particularly
when it comes to single nucleotide polymorphisms (SNPs) in key
genes, which may lead to developmental failures or increased
disease risk. A meta-analysis of SNPs in T2D identified overlaps
with a range of pancreatic development genes.79 Therefore,
understanding and comparing these interspecies differences is
crucial for research on related diseases such as T2D, neonatal
diabetes, and pancreatic hypoplasia.
The development of the pancreatic endocrine and exocrine

parts is not mutually exclusive. All pancreatic cells originate from
pancreatic progenitor cells, and this shared cellular origin may
constitute a critical foundation for the crosstalk between the
endocrine and exocrine parts. This common lineage suggests that
disruptions or alterations in the developmental pathways could
have widespread effects across both systems, potentially leading
to a variety of pancreatic diseases. The crosstalk between these
parts is not only structural but also functional, as signaling
molecules and metabolic processes within the exocrine pancreas
can influence endocrine function, and vice versa. Understanding
this interplay opens up new avenues for research, particularly in
exploring how early developmental signals might be manipulated
to prevent or treat diseases like diabetes and pancreatitis.

Transdifferentiation of pancreatic exocrine cells into
endocrine cells
Transdifferentiation of pancreatic cells is the process by which a
differentiated cell is converted into another cell, although it was
once believed that the cellular phenotype of a mature somatic cell
cannot be changed. However, an accumulating number of studies
have proved that pancreatic cells are highly plastic. This process
involves cellular reprogramming, such as β cell neogenesis, where
new β cells regenerate from alternative pancreatic progenitors in
the adult pancreas. A notable example of pancreatic transdiffer-
entiation is acinar ductal metaplasia (ADM). Under certain
conditions, pancreatic exocrine cells, including ductal and acinar
cells, possess the ability to transdifferentiate into insulin-secreting
cells (Fig. 2).
Acinar cells are highly differentiated cells while they are highly

plastic. Recent studies have shown that acinar cells are able to
regenerate β cells, although longer processes are required.80

However, in adult humans and mice, β cell regeneration assays
showed that newly generated β cells were derived from the
original β cells,81,82 and do not involve the corresponding
progenitor cells.83 And the process of transdifferentiation can be
completed only before birth.84,85 In vitro, rat acinar cells could be
transdifferentiated into insulin-secreting cells when cultured with
EGF and LIF,86 or with a suspension of EGF and nicotinamide. The
lineage tracing system found that neonatal cells were derived
from acinar cells expressing amylase and elastase. Enzymatic
dissociation of pancreatic acini triggers EGF signaling, and
blocking the EGF receptor kinase inhibits transdifferentiation.
These newly formed cells can secrete insulin in response to
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glucose and other secretagogues, though their secretory capacity
is lower than that of native β cells,87 likely due to the limited
progenitor pool. Rat acinar cells AR42J were transformed into
endocrine cells by treatment with GLP-1, exendin-4, or acti-
vins.88–90 In vivo, combinations of different transcripts can
transdifferentiate acinar cells into three different endocrine cell
subtypes (β cells, α cells, and δ cells),91 suggesting that
transcription factors that promote endocrine cell fate predominate
over the acinar cell program. Studies have shown that three
transcription factors, Ngn3, Pdx1, and MafA can reprogram
differentiated pancreatic exocrine cells in adult mice into cells
that closely resemble β cells.92 The process depends on the
magnitude of expression of the three transcription factors and the
reprogramming-induced inflammatory response.93 Interestingly,
Chen et al. found that intestinal crypt cells could even differentiate
into β cells with the participation of these three transcription
factors.94 This transdifferentiation ability is not entirely unex-
pected, as intestinal stem cells possess multipotency, meaning
they can differentiate into various cell types, including endocrine
cells. However, this study demonstrates that under appropriate
conditions, intestinal cells can be directed to transform into β cells,
providing new possibilities for cell replacement therapies in
diabetes treatment. This also indicates that transcription factors
not only play a role in the early stages of cell fate determination
but can also induce mature cells to re-enter a differentiation state
under certain conditions and redirect their differentiation path-
way. This phenomenon indicates the potential of cellular plasticity
and opens new avenues for regenerative medicine and disease
treatment. The combination of the transcription factors Ngn3,
Pdx1, MafA, and Pax4 can induce morphological changes and
enhance insulin gene expression in AR42J cells.95 Insm1 further
enhances endocrine transdifferentiation in the AR42J cell line by

increasing the number and intensity of simultaneously activated
ITFs and MafA in insulin-positive cells.96 The transcription factor-
driven conversion of adult acinar cells is inhibited by Notch1 and
Hedge signaling pathways.97 Activated Notch1 signaling prevents
re-expression of Ngn3.98

Ductal cells that are more closely apposed along the path of
embryonic development can also transform into islet cells under a
variety of conditions. This outcome was experimentally accom-
plished through pancreatic duct ligation in mice and pancrea-
tectomy in rats.99,100 The loss of acinar and islet cells indicates that
ductal cells have the potential to differentiate into both acinar and
endocrine cell types.101 Ductal cells in the adult pancreas exhibit a
potential ability to generate β cells. Retrograde pancreatic ductal
injection of an adenoviral vector facilitates gene transduction,
resulting in the reprogramming of ductal cells into β cells and
promoting the proliferation of existing β cells.102 Disruption and
remodeling of cadherin-mediated cell-cell adhesion is crucial in
the transdifferentiation of pancreatic ductal cells into insulin-
secreting cells,103 in which PI3K has taken a vital part.104 When
hESC-derived ductal cells were prompted to undergo partial
epithelial-mesenchymal transition (EMT) by activin A treatment
under hypoxia, the resulting cells showed significant expression of
key endocrine markers, especially those associated with β cells.105

In the mouse model of acute pancreatitis, only a small number of
Krt5+ positive cells had the ability to differentiate into beta cells.
And this differentiation is dependent on the inhibition of Notch
signaling.106 Notably, transcription factors Ngn3, MafA, and Pdx1
are similarly known to be important during endocrine transdiffer-
entiation of ductal cells. In the adult pancreas, Ngn3 expression is
typically low but increases during β cell neogenesis triggered by
pancreatic duct ligation.107 The most notable outcome following
prolonged misexpression of Ngn3 in adult duct cells is a

Fig. 2 Pancreas development, cell differentiation, and transdifferentiation. At E8.5, the dorsal and ventral endoderm thickens to form two
buds, called dorsal buds and ventral buds respectively. Cells in the two buds are Pdx1+ multipotent progenitor cells. At E9.5, the curled
structure forms. Subsequently, these multipotent stem cells differentiate into two domains that together form a ramified structure. “Tip”
domain cells differentiated into Ptf1a+ acinar precursor cells, while “Trunk” domain cells differentiated into SOX9+ duct precursor cells and
Ngn3+ endocrine precursor cells. Transdifferentiation of acinar cells and ductal cells into islet endocrine cells and ADM can occur in mature
pancreas under specific conditions. Created in BioRender.com
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substantial and continuous increase in the number of all islet cell
types. Lineage tracing experiments indicate that newly generated
β cells arise from the Ngn3 expressing ductal epithelium.108

Whether acinar or ductal cells, activation of Ngn3 has been
implicated in the transformation into endocrine cells, which
subsequently induce the expression of endocrine-related
genes.109

Transdifferentiation of exocrine cells into exocrine cells, such as
ADM, and mutual transdifferentiation of endocrine cells were
reported in previous studies.110,111 In this review, we mainly focus
on the interaction between the endocrine and exocrine parts of
the pancreas. Transdifferentiation of pancreatic exocrine cells
reveals that endocrine and exocrine cells of the pancreas are not
mutually independent of one another in their cellular phenotype
and fate. Although research in pancreatic cell transdifferentiation
has made certain progress, there is sufficient evidence that
pancreatic acinar and ductal cells have the potential ability to
become cell replacement therapies for some diseases. Under
specific conditions, these cells have the ability to differentiate into
various functional pancreatic cell types, including islet and acinar
cells. These stem-like pancreatic cells have potential in regen-
erative medicine because they may be used to repair or replace
damaged pancreatic tissue, especially in diabetes or chronic
pancreatitis. Scientists are working to reveal the population of
stem cells or pluripotent progenitor cells within the pancreas,
understand how they are activated in disease states, and how
these cells can be harnessed for therapy. However, due to the
differences between species existing in rodents and humans, it is
difficult for animal experimental models to achieve clinical
translation in humans, so more researches are needed to explore

the regenerative mechanisms of transdifferentiation and more
potential alternative sources of β cells.

PANCREATIC ENDOCRINE SIGNALING
Endocrine signal refers to the hormones secreted by endocrine
cells, through the circulation of the blood passed to the target
cells or organs, regulating physiological function. Pancreatic
endocrine signaling plays a key role not only in the regulation
of blood glucose, metabolism, and homeostasis but also in various
cell life activities112–115 (Fig. 3).

Insulin and insulin receptor
The circulating form of insulin (activated form) is made of two
chains, A chain and B chain, which consist of 21 amino acids and
30 amino acids, respectively, linked by two disulfide bonds.116

Insulin is converted from proinsulin in pancreatic β cells. In the
Golgi apparatus, proinsulin is processed into insulin and
C-peptide, which are stored in secretory granules and released
when blood glucose levels rise.117

The insulin receptor (IR) belongs to the (αβ)₂-type receptor
tyrosine kinase family, which also includes the insulin-like growth
factor 1 receptor and the insulin receptor–related receptor (IRR),
and it plays a crucial role in regulating cell metabolism.118–120 Each
IR αβ heterodimer consists of an extracellular ligand-binding α
subunit and a transmembrane β subunit that contains the
cytosolic tyrosine kinase domain.119,121,122 Insulin binding triggers
a conformational change in IR, which activates its kinase activity
and triggers autophosphorylation.123 This phosphorylation creates
docking sites for insulin receptor substrate (IRS) proteins, including

Fig. 3 IR/IGF-1R signaling. The binding of insulin or IGF-1 to their receptors activates IRS proteins, leading to the activation of PI3K (p85/p110)
and subsequent conversion of PIP2 to PIP3. Activation of AKT, which phosphorylates targets such as TSC1/2, mTORC1, AS160, and GSK3,
regulating glucose uptake via GLUT4 translocation, protein synthesis, and cell survival. The Ras/MAPK pathway is activated through GRB2 and
SOS, leading to the activation of RAF, MEK, and ERK, influencing cell proliferation and differentiation. The nuclear effects of these pathways
include the regulation of transcription factors like FOXO, CREB, and Elk-1, affecting gene expression related to cell cycle, apoptosis, and
metabolism. Created in BioRender.com
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IRS-1 and IRS-2, which are then phosphorylated by the activated
receptor.124

IGF and IGF receptor. Insulin-like Growth Factor (IGF) refers to a
group of polypeptide hormones produced by the liver and other
tissues, with a structure and function similar to insulin. There are
two types, IGF-1 and IGF-2, which are crucial for cell proliferation,
differentiation, and growth, and are involved in growth hormone
(GH) regulation.125 IGFs exert their effects by binding to IGF
receptors (IGFR), which include two main types: IGF-1 receptor
(IGF-1R) and IGF-2 receptor (IGF-2R). IGF-1R is a transmembrane
tyrosine kinase receptor consisting of two α subunits and two β
subunits.126 The α subunit binds IGF-1, while the β subunit has
tyrosine kinase activity.127 While both IGF-1R and IR play roles in
cell proliferation, differentiation, survival, and metabolic regula-
tion, IGF-1R is more focused on promoting cell growth and
differentiation, whereas IR is more critical for glucose metabo-
lism.120 In contrast, IGF-2R, also known as the mannose-6-
phosphate receptor, lacks tyrosine kinase activity and regulates
IGF-2 by binding and internalizing it for degradation in
lysosomes.127,128

When IGF binds to IGF-1R and insulin binds to IR, two major
signaling pathways are activated: the PI3K/Akt pathway and the
Ras/MAPK/Erk pathway.129 The IRS-initiated PI3K/Akt pathway
primarily regulates metabolic processes, while the SHC-initiated
Ras/MAPK pathway controls cell growth and differentiation. These
pathways involve complex interactions among various signaling
molecules and proteins, working together to achieve specific
biological outcomes.

Insulin/IGF signaling in glucose metabolism. The activated PI3K/
Akt signaling pathway plays a crucial role in regulating glucose
metabolism. Akt phosphorylates and inhibits GSK-3, which
increases glycogen synthesis by reducing the inhibition of
glycogen synthase, the key enzyme responsible for converting
glucose to glycogen in the liver and muscle. When GSK-3 activity
is high, glycogen synthesis decreases, leading to higher blood
glucose levels.130 Besides its direct effect on glycogen synthesis,
GSK-3 may also influence gluconeogenesis and glycogenolysis by
regulating key enzymes including glucose-6-phosphatase and
phosphoenolpyruvate carboxykinase.131 Further research on the
regulation of GSK-3 across different tissues and conditions is
essential for developing new therapeutic strategies for metabolic
disorders such as diabetes and obesity.
Akt facilitates the movement of GLUT4 to the cell membrane,

thereby increasing glucose uptake in muscle and adipose
tissues.132 In its basal state, GLUT4 is stored in vesicles within
the cell, and upon insulin binding to IR, the number of GLUT4-
containing vesicles that move to the cell membrane increases,
promoting glucose uptake.132,133 Akt phosphorylates AS160, a
protein that regulates Rab GTPase, which in turn enhances the
movement of these vesicles toward the plasma membrane.134

Once GLUT4 is incorporated into the membrane, it significantly
increases the cell’s capacity to take up glucose. While the core
mechanisms of GLUT4 trafficking are understood, further research
is required to fully elucidate the complex signaling pathways
involved and to develop strategies that improve GLUT4 transloca-
tion for better management of metabolic disorders such as
diabetes.
In addition to regulating glucose metabolism in normal cells,

insulin/IGF also affects cancer cell metabolism by activating the
Ras/MAPK/Erk pathway. In cancer cells, Erk phosphorylates
PKM2 (pyruvate kinase M2), an enzyme crucial for glycolysis
and metabolic reprogramming.135 Before phosphorylation,
PKM2 exists primarily in a less active dimeric form, allowing
glycolytic intermediates to be diverted into biosynthetic path-
ways that support rapid cell growth. Upon phosphorylation by
Erk, PKM2 shifts to a more active tetrameric form, enhancing its

ability to catalyze the conversion of phosphoenolpyruvate (PEP)
to pyruvate and increasing glycolytic flux.136 This shift is
essential for sustaining the high glucose metabolism and lactate
production characteristic of the Warburg effect in cancer cells,
thereby promoting cancer cell survival and proliferation.135 Erk-
mediated phosphorylation of PKM2 plays a pivotal role in
reprogramming cellular metabolism to meet the needs of
rapidly growing cancer cells, underscoring its importance in
cancer progression.

Insulin/IGF signaling in cell growth and proliferation. By binding to
its receptors, insulin/IGF also functions as a growth factor through
the PI3K/Akt/mTOR pathway. mTOR, a dual-specificity protein
kinase, plays a central role in regulating anabolic processes by
responding to nutrient availability and growth factors.137

Mechanistic Target of Rapamycin Complex 1 (mTORC1), formed
with components like raptor and LST8, primarily regulates protein
synthesis and cell growth, while mTORC2, involving components
like rictor and mSin1, is involved in actin cytoskeleton regulation
and cell survival.138 mTOR catalyzes the phosphorylation of
targets such as S6K1 and 4E-BP1, promoting protein synthesis
and cell growth.139 Akt indirectly activates mTORC1 by inhibiting
the TSC1/TSC2 complex, a negative regulator of mTORC1.140

Despite advances in understanding mTOR signaling, the com-
plete network of downstream effectors and their roles in protein
synthesis, cell growth, and metabolism remains to be fully
elucidated.
In addition to its effects on metabolism, insulin regulates key

cell cycle proteins, such as cyclin D1, p21, and p27, to control cell
growth. Akt increases the stability and translation of cyclin D1,
driving cell cycle progression from the G1 to the S phase, thereby
promoting cell proliferation.141 Mechanistically, Akt phosphory-
lates and inhibits Glycogen Synthase Kinase 3 Beta (GSK-3β),
leading to increased transcription of cyclin D1 by stabilizing c-Myc
and β-catenin.142 Akt also inhibits proteins involved in cyclin D1
degradation, enhancing its stability and promoting nuclear
translocation.143

p21 (Cip1) and p27 (Kip1) are crucial cyclin-dependent kinase
inhibitors that regulate the cell cycle by inhibiting progression at
the G1/S and G2/M transition points.144,145 Akt phosphorylates p21
and p27, causing their translocation from the nucleus to the
cytoplasm.146 In the cytoplasm, phosphorylated p21, and p27
cannot effectively inhibit CDK-cyclin complexes, leading to
continued cell cycle progression and increased cell proliferation.147

Insulin/IGF signaling can promote cell proliferation by regulat-
ing gene transcription. Elk-1, a member of the ETS-domain
transcription factor family, plays a key role in this process. Elk-1
has three conserved domains, including an ETS domain for DNA
binding and a C-terminal region with MAPK phosphorylation
sites.148 Upon activation by Erk, Elk-1 undergoes phosphorylation,
leading to the loss of SUMO modification, which converts Elk-1
from a repressive to an active transcriptional form.149 Elk-1
regulates the expression of genes involved in cell growth and
proliferation, such as Egr-1, c-Fos, c-Myc, and c-Jun, which are
crucial for cell cycle progression and differentiation150–152 These
transcription factors, particularly c-Fos and c-Jun, form the AP-1
complex, which activates genes responsible for various cellular
processes, including proliferation, differentiation, apoptosis, and
stress response.153–156

Insulin/IGF signaling in cell survival and apoptosis. Insulin/IGF
signaling regulates cell survival and apoptosis through the PI3K/
Akt pathway by phosphorylating BAD (BCL-2-associated death
promoter).157 The BCL-2 family includes proteins that either
support cell survival, such as BCL-2 and BCL-XL or promote cell
death, such as BAD and BAX.158 The balance between these
proteins, forming homodimers or heterodimers, determines cell
fate. BAD promotes apoptosis by binding to and inhibiting
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anti-apoptotic proteins like BCL-2 and BCL-XL.159 However, when
Akt phosphorylates BAD, it prevents this binding, thereby
promoting cell survival. Further research is needed to fully
understand the downstream effectors and signaling pathways
modulated by phosphorylated BAD, especially in different cell
types and disease contexts.
Forkhead box (FOXO) transcription factors, named after the

Drosophila forkhead gene, are part of a large family with
19 subclasses, ranging from FOXA to FOXS.160 FOXO proteins
regulate the transcription of target genes involved in processes
such as cellular energy production, oxidative stress resistance,
and cell viability and proliferation.161 The movement of FOXO
transcription factors between the nucleus and cytoplasm is
regulated by nuclear export signals (such as 14-3-3 proteins)
and nuclear localization signals.162 FOXO protein activity and
subcellular localization are often regulated by post-
translational modifications such as phosphorylation, acetyla-
tion, and ubiquitination.163 Akt phosphorylates FOXO tran-
scription factors, causing them to be sequestered in the
cytoplasm by binding to 14-3-3 proteins, which prevents their
translocation to the nucleus.162 Through this mechanism, Akt
indirectly promotes cell survival. However, the specific
mechanisms regulating FOXO localization and activity, parti-
cularly the role of post-translational modifications, require
further investigation.

Insulin/IGF signaling in cell motility. Insulin/IGF signaling also
plays a role in cell migration. Microtubules, key elements of the
eukaryotic cytoskeleton, are made up of conserved α/β-tubulin
heterodimers and play a vital role in processes like cell division,
movement, and intracellular transport.164 To perform these
functions, microtubules form specific arrays, which are regulated
by microtubule-associated proteins (MAPs).165 Erk phosphorylates
MAPs, altering microtubule stability and dynamics, which are
important for cell division and transport.166

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase
that is vital for cell migration and focal adhesion.167,168 FAK
consists of several important domains, such as the focal adhesion
targeting domain, the Four-point-one, Ezrin, Radixin, Moesin
(FERM) domain, and the kinase domain.169 Activated FAK
regulates cell-matrix adhesion by connecting the extracellular
matrix to the actin cytoskeleton via integrin receptors, promoting
cell movement through interactions with other proteins like
paxillin and vinculin.170,171

Upon activation, FAK autophosphorylates at tyr397, creating a
high-affinity binding site that attracts Src family kinases and other
signaling molecules, triggering downstream pathways related to
cell survival, proliferation, and migration.172 Erk phosphorylates
FAK, contributing to cell motility and survival by modulating focal
adhesion dynamics and integrin signaling. Erk also activates RSK, a
serine/threonine kinase crucial for cell survival, growth, and
proliferation.173 RSK phosphorylates substrates such as the
transcription factor CREB and the apoptotic regulator BAD.174,175

Phosphorylation of CREB by RSK enhances gene expression
related to cell growth and survival, while phosphorylation of
BAD prevents it from inhibiting anti-apoptotic proteins like BCL-2,
thereby promoting cell survival. Additionally, Erk signaling can
lead to the transcriptional activation and stabilization of cyclin D1,
promoting the transition from the G1 to the S phase of the
cell cycle.
In summary, insulin/IGF signaling is a complex and finely tuned

process that integrates multiple pathways to regulate various
cellular functions, ensuring metabolic homeostasis, growth, and
survival. Dysregulation of this signaling can lead to metabolic
disorders such as diabetes, obesity, and insulin resistance
syndromes.176 Understanding the details of insulin/IGF signaling
pathways and their interactions is crucial for developing effective
therapeutic interventions for these conditions.

Glucagon signaling
Glucagon and glucagon receptor. Glucagon, a polypeptide
hormone secreted by pancreatic α cells, is essential for regulating
blood glucose levels. Its synthesis and secretion are primarily
influenced by blood glucose levels,177 insulin levels,178 and
neuromodulation.179,180 When blood glucose levels drop or during
a state of hunger, glucagon secretion increases, promoting liver
glycogen breakdown and gluconeogenesis, thereby raising blood
glucose levels.181,182 α cells respond to changes in blood glucose
by integrating signals from ion channels,183,184 paracrine fac-
tors,185 and nervous system regulation.179,186 These processes
allow for rapid and effective adjustment of glucagon secretion,
maintaining glucose homeostasis. The glucagon receptor (GCGR)
is a class B G protein-coupled receptor (GPCR), crucial for glucose
metabolism and homeostasis.187 GCGR consists of an extracellular
ligand-binding domain and a transmembrane domain with seven
helices, typical of GPCRs.188 Mutations in GCGR that affect its
conformation or ligand binding can significantly impair signaling,
leading to glucose homeostasis disorders.189,190

Glucagon signaling in glucose metabolism. The extracellular
domain of GCGR binds glucagon, triggering a conformational
change that activates the receptor. This activation leads to the
coupling of GCGR to G proteins, primarily Gs, which stimulates
adenylate cyclase activity and increases intracellular cyclic AMP
(cAMP) levels.191–193 The elevation of cAMP triggers the activation
of protein kinase A (PKA), which phosphorylates several down-
stream proteins, including CREB, leading to the transcriptional
activation of glucose 6-phosphatase and phosphoenolpyruvate
carboxykinase (PEPCK). This process enhances gluconeogenesis
and glycogenolysis in liver cells.194

In addition to phosphorylating CREB,195 PKA also triggers
multiple intracellular events. It phosphorylates and regulates
phosphofructokinase 2 (PFK-2) and fructose 2,6-bisphosphatase
(FBPase2),196 inhibiting PFK-2 activity and activating FBPase2,
which leads to increased levels of fructose 6-phosphate, promot-
ing gluconeogenesis and reducing glycolysis. PKA also stimulates
pyruvate kinase, modulating levels of fructose 1,6-bisphosphate
and pyruvate, leading to the suppression of glycolysis.197

Furthermore, PKA activates phosphorylase kinase, which facilitates
the breakdown of glycogen into glucose 1-phosphate, while
simultaneously inhibiting glycogen synthase.198

These mechanisms underscore the pivotal role of GCGR and
PKA in regulating glucose homeostasis, promoting glucose
production and release during periods of low blood glucose. This
pathway illustrates how glucagon is translated into metabolic
responses through intricate biochemical processes.

Glucagon signaling in amino acid metabolism. In the decades
following its discovery, glucagon was typically regarded as a
counter-regulatory hormone to insulin, with both hormones
working together to regulate glucose levels and maintain home-
ostasis.185 Beyond its role in glucose homeostasis, glucagon
binding to GCGR also regulates amino acid metabolism by
increasing the activity of enzymes in the urea cycle at the
transcriptional level.199,200 The capacity for ureagenesis largely
depends on enzyme activity, with long-term regulation requiring
the synthesis of five key enzymes.201 In rat hepatocytes, glucagon
stimulates the amino acid transport system A, increasing amino
acid uptake and providing substrates for ureagenesis.202

Glucagon induces ureagenesis by increasing substrate avail-
ability through amino acid uptake and by upregulating the
transcription of key enzymes like N-acetyl glutamate synthase
(NAGS).201 NAGS converts acetyl-CoA and glutamate to N-acetyl-
glutamate (NAG), the essential activator of carbamoyl phosphate
synthetase-1 (CPS-1), one of the enzymes initiating ureagenesis.203

This dual regulation allows for both long-term and rapid activation
of ureagenesis.204 Furthermore, glucagon may activate other
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metabolic products that influence NAGS activity. Blockade of the
glucagon receptor, either through GCGR gene knockdown or
antagonists, leads to increased plasma amino acid levels and a
decrease in ureagenesis.205,206 Blocking glucagon receptor signal-
ing decreases the expression of genes responsible for hepatic
amino acid uptake, resulting in elevated amino acid levels.205,207

However, other mechanisms by which glucagon influences the
key enzymes in ureagenesis remain to be fully understood.

Glucagon signaling in lipid metabolism. The glucagon receptor is
recognized as a potential target for hypolipidemic therapies due
to its role in modulating lipid metabolism. Glucagon can influence
the expression and activity of peroxisome proliferator-activated
receptors (PPARs), a group of ligand-activated nuclear receptors
that function as transcription factors.208 There are three isoforms
of PPARs: PPAR-α, PPAR-β/δ, and PPAR-γ, with PPAR-α and PPAR-γ
primarily involved in regulating lipid metabolism, insulin sensitiv-
ity, and glucose homeostasis.209 Glucagon stimulates PPAR-α,
promoting fatty acid β-oxidation, reducing triglyceride levels, and
increasing HDL cholesterol.210 Glucagon also influences PPAR-γ, a
key regulator of adipocyte differentiation and insulin sensitivity.211

This interplay between glucagon and PPARs underscores the
intricate regulation of lipid metabolism and storage, highlighting
their importance in the body’s metabolic adaptation to physiolo-
gical changes.
In hepatocytes, glucagon influences lipid metabolism through a

detailed intracellular mechanism. Upon binding to its receptor,
glucagon activates cAMP and CREB, leading to increased
expression of carnitine palmitoyltransferase 1 (CPT-1).212 CPT-1 is
essential for lipid metabolism, converting long-chain fatty acids
into acyl-carnitine for mitochondrial β-oxidation.213 Additionally,
glucagon activates PKA, which inhibits acetyl-CoA carboxylase,
reducing malonyl-CoA levels and relieving inhibition of CPT-1. This
process promotes β-oxidation and decreases fatty acid synthesis,
preventing the re-esterification of free fatty acids (FFAs) to
triglycerides and the release of very low-density lipoproteins
(VLDL). This mechanism allows cells to utilize stored fatty acids for
energy, particularly when glucose is scarce, enhancing lipid
metabolism. However, further research is needed to explore other
potential interactions within glucagon signaling.
Glucagon plays a crucial and diverse role in regulating

metabolic processes. By regulating blood glucose levels, glucagon
ensures a steady energy supply, especially during fasting or low
carbohydrate intake. Its role in amino acid metabolism through
ureagenesis underscores its importance in nitrogen waste
management and maintaining amino acid balance. In lipid
metabolism, glucagon’s activation of PPARs and CPT-1 supports
the utilization of stored fats for energy, contributing to metabolic
flexibility. This comprehensive regulation by glucagon highlights
its critical function in maintaining metabolic homeostasis, making
it a key target for therapeutic strategies in metabolic disorders
such as diabetes, hyperlipidemia, and obesity.

Somatostatin signaling
Somatostatin and somatostatin receptor. Somatostatin was first
isolated from pigs and found to inhibit the secretion of pituitary
growth hormone in both rats and humans.214 Initially believed to
be a product of hypothalamic neurons, somatostatin was later
found to be secreted by the δ cell.13,215 It was soon discovered
that somatostatin inhibits the secretion of insulin and glucagon
from the pancreas, as well as gastrin from the stomach.13,185,216,217

Somatostatin exerts its effects through a family of G-protein-
coupled receptors known as somatostatin receptors (SSTRs), which
include five subtypes (SSTR1-5), each with distinct tissue distribu-
tions and functions.218,219

Somatostatin signaling in the regulation of hormones. Somatos-
tatin receptors (SSTRs) are widely distributed in various tissues,

including the pancreas, where they mediate somatostatin’s
inhibitory effects on both endocrine and exocrine functions.220–224

In the central nervous system (CNS), somatostatin suppresses the
secretion of growth hormone (GH), prolactin (PRL), thyroid-
stimulating hormone (TSH), and adrenocorticotropic hormone
(ACTH) from the anterior pituitary.214,225–227 In the pancreas,
somatostatin is secreted in response to elevated blood glucose
levels and certain amino acids, inhibiting the release of hormones
such as insulin and glucagon.228 It also suppresses the secretion of
various gastrointestinal hormones, including cholecystokinin
(CCK), gastrin, secretin, vasoactive intestinal peptide, motilin, and
gastric inhibitory polypeptide.229 In terms of exocrine function,
somatostatin inhibits the secretion of gastric acid, bicarbonate,
and digestive enzymes, ensuring a balanced hormonal environ-
ment and preventing excessive hormone activity that could
disrupt metabolic homeostasis.228,230,231

Somatostatin exerts its effects by binding to SSTRs, which
inhibit adenylate cyclase activity, reduce intracellular cAMP levels,
and modulate ion channel activity.219,232 This modulation affects
Ca2+ levels, directly influencing the endocytosis and exocytosis of
hormones.233 Additionally, somatostatin can influence Ca2+

channels through a cGMP-dependent protein kinase pathway.234

In pancreatic α and β cells, somatostatin binds to SSTR2 and
SSTR5 receptors, activating the inhibitory G (Gi) protein, which
inhibits adenylate cyclase.235 This inhibition reduces intracellular
cAMP levels, leading to decreased PKA activity and ultimately
inhibiting glucagon and insulin secretion. Reduced PKA activity
inhibits voltage-dependent calcium channels (VDCCs), which are
essential for Ca2+ influx—a critical step for hormone granule
mobilization and fusion.236,237 Without sufficient Ca2+ influx, the
exocytosis of hormone-containing granules is impaired, reducing
hormone secretion. Additionally, decreased PKA activity may reduce
the phosphorylation of transcription factors such as CREB, which
typically promotes the transcription of genes necessary for glucagon
and insulin synthesis, further decreasing hormone secretion.238

Somatostatin signaling in antiproliferation. Somatostatin plays an
essential role in antitumor effects through various direct and
indirect mechanisms.239 At the mechanistic level, somatostatin
receptor signaling, especially via SSTR1 and SSTR5, interferes with
growth factor receptor pathways by diminishing the phosphoryla-
tion of key proteins like EGFR, MAPKs, and components of the
PI3K/Akt pathway—critical regulators of cell survival.240 Activation
of SSTR5 also leads to the dissociation of EGFR/ErbB2 hetero-
dimers, which are important for receptor tyrosine kinase autopho-
sphorylation and the initiation of downstream signaling.241

Protein tyrosine phosphatases (PTPs) also contribute to this
mechanism by removing phosphate groups from tyrosine kinases
associated with growth receptors.242 PTPs, specifically Src
Homology Region 2 Domain-Containing Phosphatase-1 (SHP-1),
Src Homology Region 2 Domain-Containing Phosphatase-2 (SHP-
2), and DEP-1/PTPeta, are recognized as downstream effectors of
SSTRs, transmitting antiproliferative signals.243 Somatostatin
blocks the cell cycle through PTPs, with SHP-1 regulating cell-
cycle components such as CDK2, p27, and cyclin D1.244

In addition, somatostatin receptors trigger apoptosis, with SHP-
1 being essential for the cytotoxic signaling that causes
intracellular acidification and ultimately cell death.245,246 SSTR1,
SSTR3, and SSTR4 suppress the Na+-H+ exchanger (NHE1),
resulting in intracellular acidification, which may contribute to
somatostatin’s resistance to cell migration in certain tumor
types.247,248 Through these mechanisms, somatostatin binds to
SSTRs, functioning as an antiproliferative agent and a potential
target for various tumor types.

Pancreatic peptide signaling
Pancreatic peptide and its receptor. Pancreatic peptide (PP) is a
member of the neuropeptide Y (NPY) family, secreted by the PP
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cell and primarily distributed in the pancreas.249,250 X-ray crystal-
lography has revealed the structure of PP, characterized by a
typical ‘PP-fold.’ This fold consists of a polyproline helix (residues
2–8) and an α-helix (residues 14–32), linked by a β-turn, creating a
hairpin-like formation with a small hydrophobic pocket.251 This
structure is crucial for its binding to neuropeptide receptors
(NPYRs), a group of Gi-protein-coupled receptors (GPCRs) that
inhibit cAMP production.252,253 Four subtypes of NPYRs (Y1, Y2, Y4,
and Y5) have been identified in humans, with PP acting as a
selective agonist for Y4.254

Functionally, PP has been found to inhibit appetite and islet cell
function.255,256 Y4, in particular, is known to suppress appetite and
reduce body weight, whereas Y1 and Y5 have the opposite
effect.257 Y4 also influences islet function, including β-cell mass
and the release of glucagon and somatostatin.258,259 Beyond its
role in the pancreas, PP is involved in the gut-brain axis,
collaborating with other hormones in the brain and pancreas to
maintain overall metabolic homeostasis.260 Thus, the main
physiological effects of PP include inhibiting gastric emptying
and appetite while enhancing energy expenditure.261

Pancreatic peptide signaling. However, pancreatic peptide (PP)
signaling has not been extensively studied, and there is limited
research on its mechanisms and effects. In pancreatic β cells, when
PP binds to its Gi protein-coupled receptor on the membrane, it
decreases cAMP levels, leading to the inhibition of PKA and
subsequent actions mediated by PKA, including the secretion of
glucagon and insulin.262 Further investigation is needed to
uncover additional signaling pathways and downstream effectors
of PP, to better understand its role in hormone regulation.

PANCREATIC EXOCRINE SIGNALING
Pancreatic exocrine components
The pancreatic exocrine part consists of acinar cells and ductal
cells.263 Pancreatic exocrine function is crucial for the gastro-
intestinal tract as it secretes digestive enzymes and bicarbonate
ions into the duodenum, aiding in food digestion.264 This complex
process is regulated by a network of hormonal and neural signals
that ensure proper enzyme secretion in response to food
intake.265

Acinar cells, which make up nearly 90% of the pancreas, are
essential for producing digestive enzymes. These enzymes include
amylase for carbohydrate digestion, lipase for breaking down fats,
and proteases, which are crucial for protein digestion.266 Ductal
cells, on the other hand, transport these enzymes and secrete
bicarbonate, which, along with digestive enzymes, forms pan-
creatic juice. This juice neutralizes gastric acid and provides the
appropriate pH in the duodenum for digestion.267,268

Exocrine signaling in secretion. Cytoplasmic Ca2+ is vital for the
release of digestive enzymes in pancreatic acinar cells.269

Stimulants such as acetylcholine and cholecystokinin (CCK) bind
to their respective receptors, activating Gq or Gi proteins, which
in turn activate phospholipase C (PLC). PLC breaks down
phosphatidylinositol-4,5-bisphosphate (PIP2) into inositol tripho-
sphate (IP3) and diacylglycerol (DAG).270 IP3 binds to receptors on
the endoplasmic reticulum, triggering Ca2+ release into the
cytoplasm from the endoplasmic reticulum.269 The increased
cytosolic Ca2+ concentration activates various Ca2+-dependent
proteases, promoting the secretion of pancreatic enzymes and
fluid.271–273

The cAMP/PKA pathway also plays a role in pancreatic secretion.
The secretin receptor, a class B GPCR, activates the Gs protein
upon binding with secretin, leading to the activation of cAMP and
subsequent activation of PKA.274 PKA phosphorylates several
critical enzymes and ion channel proteins, such as CFTR, which
facilitates Cl⁻ secretion and regulates pancreatic secretion.275

Ca2+ and cAMP/PKA signaling pathways often interact and
cooperate in regulating pancreatic exocrine function. Ca2+ can
enhance cAMP production through Ca2+-dependent phospholi-
pase, while PKA can regulate intracellular Ca2+ concentrations by
phosphorylating certain Ca2+ channels or pumps (Fig 4).276 This
cross-regulatory mechanism ensures precise control of pancreatic
exocrine secretion, with both pathways playing key roles in the
efficient secretion of digestive enzymes and electrolytes.

Regulation of exocrine function
Hormonal regulation. When food enters the duodenum, chole-
cystokinin (CCK) secreted by the small intestine stimulates acinar
cells to secrete digestive enzymes and fluid. Initially, the role of
CCK in directly stimulating acinar cells was questioned because
humans lack high-affinity CCK-A receptors.277,278 It was suggested
that CCK acts on vagal afferent fibers, indirectly mediating acinar
cell secretion through neurotransmitters.265 However, in 2008,
scientists discovered that CCK can bind to receptors on the
membrane, activating intracellular Ca2+ and subsequent Ca2+-
dependent exocytosis in acinar cells.279

When acidic chyme from the stomach enters the duodenum, S
cells in the duodenum secrete secretin, which is crucial for
bicarbonate secretion.280 Secretin acts on ductal cells, stimulating
fluid and bicarbonate secretion by increasing cAMP levels.281 The
pancreatic fluid, rich in various digestive enzymes secreted by
acinar cells, contains a small amount of NaCl. As Cl⁻ flows through
the interlobular ducts, it is absorbed by ductal cells, which then
secrete bicarbonate and water into the pancreatic ducts.282

Additionally, CCK also acts on ductal cells, enhancing fluid
secretion by potentiating the effects of secretin.283

Neural regulation. Pancreatic secretion is regulated by neural
pathways, including both the gut-brain axis and the intrapancrea-
tic system. The intrapancreatic network receives inputs from
preganglionic parasympathetic (vagal) fibers, postganglionic
sympathetic (splanchnic) fibers, and potentially other fibers
stemming from the gut wall. Various neurotransmitters are
involved in the neural regulation of exocrine function.282

Acetylcholine, released by parasympathetic nerves, acts on
pancreatic acinar and ductal cells to increase intracellular Ca2+

concentration, promoting the secretion of enzymes and fluids.284

Vasoactive intestinal peptide (VIP) and adenosine triphosphate
(ATP), also from parasympathetic nerves, stimulate pancreatic fluid
secretion.285,286 Neuropeptide Y (NPY) regulates blood flow and
inhibits pancreatic secretion. Additionally, substance P and
calcitonin gene-related peptide (CGRP) act as inhibitory agents,
reducing pancreatic secretion.287

ENDOCRINE-EXOCRINE CROSSTALK
It was previously believed that the endocrine and exocrine parts of
the pancreas are structurally and functionally independent of each
other. However, accumulating evidence has indicated that the
endocrine and exocrine pancreas have close communication and
interaction. And crosstalk between the two parts may play a
critical role in the pathogenesis of diseases. “Endocrine-exocrine
crosstalk” can be defined as the interaction of the two
components through paracrine signals or alteration in extracel-
lular contexts. For example, the exocrine pancreas can influence
the physical properties and function of the endocrine pancreas,
and vice versa.

Anatomic foundation for endocrine-exocrine crosstalk
Anatomy of the pancreas in both humans and rodents revealed
that arterial blood from the pancreas entered the pancreas via
branches of pancreaticoduodenal arteries (upper and lower) and
splenic arteries.288,289 These branches further divide into a
network of arterioles and capillaries, first entering the islets of
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the Langerhans.290 Blood flows out of the capillaries in the islets
and into the venules. The blood that flows from the islets
continues into a larger network of veins and capillaries, which
resupply the exocrine acinar cells and ductal cells of the
pancreas288,289(Fig. 5).
This blood supply route from the islets to the exocrine part

ensures that endocrine hormones (such as insulin and glucagon)
can directly affect the function of exocrine cells and coordinate
the overall function of the pancreas.
Handerson wrote in his essay that he observed all the endocrine

organs and found that all these organs were organized by
compact structure, only the endocrine pancreas islets were
scattered in the pancreas, connecting closely with the exocrine
pancreas in the physical distance.291 Since then, increasing activity
has focused on understanding various aspects of this unusual
anatomy. There are approximately 500 lobules within the rat
exocrine pancreas. And there are about 400 islets, equally
distributed within the lobules or between the tissue spaces along
the secretory ducts.288

The exocrine pancreas can be divided into two regions, juxta-
and tele-insular regions. In tele-insular regions away from the
islets, the acinar cells and their nucleus are smaller than the juxta-
insular regions which are in immediate proximity.292 Since
previous studies have found that insulin promotes secretion and
growth of acinar cells,293,294 it is reasonable to assume that the
blood vessels of the pancreas may play a role in transporting
hormones secreted by the islets to acinar cells in the juxta-region
first (Fig. 5). The scattered distribution of islets in the exocrine part
also makes people speculate that this phenomenon is caused by
paracrine action. While the presence of paracrine signaling within

the islets is acknowledged,295 whether paracrine signaling takes
part in the crosstalk between endocrine and exocrine pancreas
and the specific roles and underlying mechanisms remain unclear.
Understanding how insulin and other hormones influence acinar
and ductal cells through paracrine actions could reveal new
therapeutic targets.
Recent studies have highlighted the complex interactions

between acinar cells and pancreatic beta cells, revealing how
disruptions in this communication can impact β cell function. For
instance, excess pancreatic elastase, an enzyme produced by
acinar cells, has been shown to impair acinar-beta cell commu-
nication by disrupting mechano-signaling pathways. This disrup-
tion can lead to altered insulin secretion and contribute to beta
cell dysfunction, which is particularly relevant in the context of
pancreatitis and other pancreatic disorders.296

In healthy conditions, the specific tissue structure and distribu-
tion in the pancreas allow the endocrine and exocrine parts of the
pancreas to work together to maintain the overall balance of
hormonal and digestive functions in the body. However, under the
influences of certain endocrine and exocrine pancreatic diseases,
the pancreatic parenchyma including acini, ducts, and islets, as
well as surrounding tissues such as blood vessels are destroyed,
resulting in endocrine and exocrine dysfunction of the pancreas.
Understanding the mechanisms behind this tissue destruction and
dysfunction is crucial for developing therapeutic strategies aimed
at preserving pancreatic function or mitigating damage. Addi-
tionally, exploring how early detection and intervention might
prevent the progression of such diseases could lead to more
effective treatments, potentially preserving both endocrine and
exocrine functions before irreversible damage occurs.

Fig. 4 Pancreatic exocrine signaling. Two signaling pathways are involved in pancreatic exocrine function. Upon stimulation by acetylcholine
or cholecystokinin (CCK), Gq protein-coupled receptors activate phospholipase C (PLC), which hydrolyzes phosphatidylinositol 4,5-
bisphosphate (PIP2) into inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 binds to its receptors (IP3R) on the endoplasmic reticulum
(ER), triggering Ca2+ release into the cytoplasm. Increased intracellular Ca2+ concentration activates protein kinase C (PKC) and Ca2+-binding
proteins, promoting enzyme secretion. Secretin binding to its receptor activates adenylate cyclase via Gs protein, increasing cAMP levels and
activating protein kinase A (PKA), which also enhances enzyme secretion. This coordinated signaling ensures the efficient digestion of
nutrients. Created in BioRender.com
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Epidemiology of diseases with endocrine-exocrine crosstalk
From exocrine diseases to diabetes. Epidemiological studies have
shown that pancreatic exocrine diseases including PDAC, pan-
creatitis, and cystic fibrosis (CF), often co-exist with metabolic
disorders, such as diabetes mellitus, highlighting the significance
of the endocrine-exocrine crosstalk. These epidemiological studies
provide data support for the communication between the
endocrine and exocrine pancreas, from a perspective of pancreatic
diseases.
PDAC is one of the ten most common cancers in the world,

notorious for its dismal prognosis with a 5-year survival of 13%.297

PDAC is presently the third most common cause of cancer-related
mortality and is expected to rise to the second leading cause of
cancer deaths in the United States.298 Unluckily, a large number of
PDAC patients lost opportunities for surgical intervention,299 due
to its asymptomatic traits in the early stage and lack of specific
detection methods.300

PDAC and diabetes are closely related, and longstanding T2D is
a risk factor in the initiation of PDAC.2 However, new-onset
diabetes is thought to be more associated with the development
of PDAC,3 and is considered an early manifestation of PDAC. A
prospective study showed that 74%–88% of PDAC patients with
diabetes were diagnosed with diabetes within the last 24
months.301,302 And the diabetes subsided after pancreaticoduo-
denectomy in 57% of patients with new-onset diabetes. Another
retrospective study noted that 50% of PDAC patients with
diabetes were new-onset.303 This new-onset diabetes, named
PDAC-associated DM (PDAC-DM), is one of the type 3c diabetes
mellitus whose pathogenesis is unknown. Moreover, PDAC-DM is
not distinguished from other types of diabetes by clinical
manifestations and signs. Early detection of PDAC holds the most
promise in terms of improving long-term outcomes, and under-
standing the pathogenesis of PDAC-DM could help in obtaining
biomarkers for the early diagnosis of PDAC from the population
with new-onset diabetes.304

Acute and chronic pancreatitis is the third leading cause of
gastrointestinal-related hospitalization in the United States by

2021.305 Acute pancreatitis (AP) is caused by many factors. The
clinical symptom usually manifests acute abdominal pain and high
levels of serum amylase.306 AP leads to necrosis of pancreatic
parenchyma pathologically. And frequent AP onset can turn into
chronic pancreatitis (CP) characterized by chronic progressive
pancreatic inflammation and scarring with pancreatic parenchy-
mal calcifications, ultimately leading to pancreatic exocrine and
endocrine insufficiency.307,308

Individuals with CP face a higher risk of developing diabetes. A
prospective cohort study tracking 500 CP patients over an average
of 7 ± 6.8 years revealed that 25 years after CP onset, the
cumulative incidence of diabetes ranged from 79% to 87%.
Additionally, distal pancreatectomy was identified as an indepen-
dent risk factor for the development of diabetes.4 In addition to
that, a cohort study including 2011 patients with CP showed 564
patients developed diabetes during the follow-up period (median
duration of 22.0 years). The cumulative incidence of DM at 20 and
50 years after the onset of CP was 45.8% (95% CI, 41.8%–50.0%)
and 90.0% (95% CI, 75.4%–97.7%) respectively.309 It appears that
the longer the duration of CP, the higher the prevalence of CP-
related DM.
CF is an autosomal recessive disorder characterized by

mutations in the cystic fibrosis transmembrane conductance
regulator (CFTR) gene.310 Mutations in CFTR lead to altered
sodium and chloride permeability on the cellular epidermis,311,312

and abnormal mucus secretion.313 In the pancreas, this manifests
as blockage of the ducts by abnormal mucus secretion, limiting
the release of digestive enzymes and leading to dyspepsia.
Cystic fibrosis-related diabetes mellitus (CFRD), a major

complication of CF, is present in 2% of children, 19% of
adolescents, and 40%–50% of adult CF patients.314 The develop-
ment of diabetes is independently associated with CFTR.315

However, CFRD is not an autoimmune disease similar to T1D.316

The occurrence of macrovascular complications and consequent
death is extremely low. However, CFRD is strictly correlated with
decreased lung function in CF patients.317 And respiratory failure
is the main cause of death in CFRD patients.

Fig. 5 Structural organization and blood flow in the pancreas: 3D and 2D views. The pancreas comprises various cell types, including acinar
cells responsible for exocrine function and islet cells (α, β, δ, PP, and ε cells) responsible for endocrine function. Acinar cells are shown in
clusters forming acini, while islet cells are scattered within the pancreatic tissue. The blood flow direction is indicated, starting from the
branches of pancreaticoduodenal and splenic arteries entering the pancreas, first passing through the islets of Langerhans, and then flowing
into the exocrine acinar and ductal cells. Created in BioRender.com
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CFRD is not a type of autoimmune disease. But it is similar to
T1D with insufficient insulin secretion, which can develop at a
young age and is usually not associated with the presence of
metabolic syndrome (hypertension, abdominal obesity, hyperlipi-
demia). Although CFRD is less common before puberty, Yi et al.
found that abnormal glucose tolerance (AGT) was found in 39% of
infants and children with CF between the ages of 3 months and 5
years.318 These children with AGT were at greater risk of
progressing to CFRD. Even patients with CF who had normal
glucose tolerance (NGT) were found to have deficient insulin
secretion in the study.319 In a two-year follow-up of patients with
CF, CF patients preferentially exhibit impaired first-phase insulin
secretion, with insulin output showing a decreasing effect over
time in both oral and intravenous glucose tolerance tests.320,321

The progression of CFRD can progress sequentially through
glycemic uncertainty, impaired glucose tolerance, CFRD without
high fasting glucose, and CFRD with high fasting glucose.
Although these states may shift back and forth due to external
factors such as infections, the overall trend is toward diabetes.322

A better understanding of the pathophysiology and pathogenesis
of CFRD, and early prognosis of CFRD, play an important role in
the decline of pulmonary function and improve survival.314 In
recent years, there has been increasing clinical attention regarding
the treatment of CFRD, but there are still many problems with the
treatment. Since it is often misdiagnosed as T2D, it is extremely
important to develop appropriate diagnostic criteria. Compared
with T1D and T2D, the molecular mechanism of CFRD is still less
studied, and its pathogenesis is still not elucidated, making the
development of specific therapies very difficult.

From diabetes to PDAC. Diabetes is a group of diseases defined
by persistent hyperglycemia. As of 2021, there are 529 million
people diabetes patients worldwide, and the global age-
standardized total diabetes prevalence was 6.1%.323 Type 1
diabetes (T1D), accounting for 5%–10% of the total diabetes
cases worldwide,37 is characterized by absolute insulin deficiency.
T2D, the most common form of diabetes, initially arises from
reduced insulin sensitivity, followed by an insufficient compensa-
tory insulin response.324 While T2D is widespread, diabetes can
also result from other conditions, particularly those affecting the
exocrine pancreas.2 Historically termed pancreatogenic diabetes
mellitus, this form is now commonly referred to as type 3c
diabetes. The primary causes include chronic pancreatitis (79%),
pancreatic ductal adenocarcinoma (PDAC) (8%), hemochromatosis
(7%), cystic fibrosis (CF) (4%), and prior pancreatic surgery (2%).325

The prevalence of type 3c diabetes can be reasonably estimated at
1%–9%.326 However, some research also indicates that new-onset
diabetes may be a result of pancreatic exocrine diseases like PDAC
as a paraneoplastic outcome.3,327

Diabetes is one of the risk factors for PDAC, and extensive
research supports the notion that diabetes can increase the risk of
PDAC.328,329 A meta-analysis involving 2192 PDAC patients and
5113 controls, revealed a correlation between diabetes and a 1.8-
fold increased risk of PDAC [95% confidence interval
(CI)= 1.5–2.1].330 The risk of PDAC is negatively correlated with
the duration of diabetes.331 Patients diagnosed with diabetes for
less than one year have a significantly higher risk of PDAC
compared to other patients. A population-based cohort study
indicated that among 2122 diabetes patients aged over 50 years
old, 18 individuals (0.85%) were found to have PDAC within three
years of diabetes diagnosis, representing an eight-fold increase
compared to the expected PDAC incidence.332 Moreover, 10 cases
(56%) were discovered to have PDAC within the first six months of
the initial diabetes diagnosis. While the above-mentioned studies
suggest a potential association between newly diagnosed
diabetes and the onset of PDAC, the effectiveness of using new-
onset diabetes as an early marker for PDAC still requires further
research and exploration.

Mechanisms of exocrine diseases causing diabetes
Destruction of pancreas parenchyma. PDAC, pancreatitis, and CF
are all related to the destruction of pancreas parenchyma.
Pancreaticoduodenectomy directly resulted in the loss of islet
cells, although the remaining beta cells also appeared to be
dysfunctional.304,333 The inflammation and fibrosis associated with
CP cause a decrease in pancreatic volume and lead to the loss of β
cells.334 In fact, there is also inflammation-induced β cell
dedifferentiation in CP patients, which is one of the mechanisms
of CP-induced diabetes.335 Interestingly, α cells seem to maintain a
certain amount and volume in CP patients and may even
increase.336 The increased glucagon levels in CP patients may be
related to this and then promoted the development of CP-related
DM.337 However, the reason of maintaining in α cell amount needs
further investigation. As the pancreatitis progresses, it can lead to
extensive fibrosis and fatty infiltration of the pancreatic parench-
yma.338 In this process, pancreatic stellate cells (PSC) have taken a
critical part, which is activated by the pancreatic damage, and
then produce an extracellular matrix (ECM) in response to these
damages.339 Acute pancreatitis-induced diabetes is caused by β
cell damage and insufficient regeneration, and in mice with acute
pancreatitis, Krt5-positive cells can transdifferentiate to form β
cells, partially compensating for the loss.106 Interestingly, diabetes
was also common in patients with mild pancreatitis without
pancreatic necrosis.340 The reasons behind this are worth
exploring. In pancreatitis without pancreatic necrosis, chronic
inflammation is also likely to be present, and the release of
cytokines may be associated with insulin resistance. Besides, in the
absence of necrosis, pancreatitis may also lead to a stress
response and dysfunction of islet cells. This damage is not
sufficient to trigger necrosis but is sufficient to interfere with
insulin secretion. Some other possible mechanisms include
alterations in the pancreatic microenvironment, accumulation of
metabolites due to inflammation, or a hyper-autoimmune
response of the pancreas to mild pancreatitis.
In terms of CF, abnormal function of CFTR protein leads to

abnormal chloride and bicarbonate concentrations in pancreatic
tissues, accompanied by blockage of the pancreatic ducts and
damage to the pancreatic epithelium.341 Persistent pancreatic
ductal obstruction, inflammation, fibrosis, and fatty infiltration
lead to the destruction of the pancreatic parenchyma.342

Immunohistochemical analysis of pancreatic islets in patients with
CFRD has shown a marked reduction in both islet volume and β
cell numbers compared to those without CFRD.343,344 Glucagon
secretion was also suppressed in CFRD patients with impaired
exocrine secretion.345 The damage to β cells in CFRD patients
appears to be non-selective, with the exocrine function also being
compromised due to ongoing inflammation, fibrosis, and fatty
infiltration.346 β cell deficiency in children may lead to impaired
glucose tolerance and the later development of CFRD.347 In
addition to this, there are a number of possible factors that can
affect the preserved islet, and the remaining islet does not appear
to function well for insulin secretion due to distorted blood flow
with the rest of the body.322,348 Although diabetes usually
develops in advanced stages of CP,349 β cell dysfunction and
apoptosis have been found to precede the onset of DM,350 which
leads to speculation that the dysfunction of β cells is one of the
essential mechanisms in the pathogenesis of CP-related DM.

Inflammatory infiltration. The immune response within the
pancreas, particularly the inflammatory environment surrounding
islet cells, has a direct impact on islet cell function. Chronic
inflammation and excessive activation of the immune system can
lead to islet cell dysfunction and apoptosis.351 This is particularly
evident in T1D, where the immune system’s attack on β cells is a
major cause of insulin deficiency.352

PDAC is a highly aggressive tumor with inflammatory infiltration
of the pancreas. Inflammatory factors constitute a chronic
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inflammatory microenvironment that directly contributes to the
impairment of β cells.353 Macrophage migration inhibitory factor
(MIF) expression is upregulated in PDAC tissues, resulting in
impaired insulin secretion from β cells. Serum MIF levels were
markedly elevated in PDAC patients with new-onset diabetes
compared to controls, indicating that MIF could serve as a
potential biomarker for early PDAC detection.354 In addition to
this, acute inflammation may also be involved in the development
of PDAC-DM.
Gao et al. observed significantly elevated serum levels of the

inflammation marker CRP and the inflammatory mediator
TNFSF13 in patients with PDAC-DM, which notably decreased
after lesion resection.355 This finding suggests that acute
inflammation could be a potential target for diagnosing and
treating PDAC-DM.
In terms of pancreatitis, one of the early events in pancreatic

necroinflammation is known to be the upregulation of pro-
inflammatory cytokines.356 On the one hand, high expression of
the IL-1β and IL-1R are able to directly induce β-cell apoptosis,357

resulting in a reduction in β-cell number. Antagonists of IL-1β and
IL-1R were confirmed efficient against T2D in clinical trials.358 On
the other hand, changes in the internal environment of the
pancreas in CP caused by chronic inflammation lead to disordered
cellular crosstalk and signaling mechanisms, resulting in altered
cellular function.359 Perforin enables CD8+T cell priming β cell
apoptotic program, whereas CD4+T cell-mediated β cell destruc-
tion depends mainly on Fas/FasL, IFN-γ and TNF-α. In addition, IL-
1β can also promote insulin secretion. However, in the inflamma-
tory environment of CP, IL-1β can persistently interact with IFN-γ
and TNF-α, which induces persistent β cell destruction by
CD4+T cells.360 Th1 cells were found to be more abundant in
circulation and islets of CP diabetic patients than those without
diabetes and controls. It may be attributed to the immune
dysregulation caused by chronic inflammation environment.
Specifically, Th1 cells are able to secrete the IFN-γ, which is
capable of reducing the nuclear localization of Pdx1.361 Transcrip-
tion factors Pdx1 plays an essential role in the β cell development
and maturation, and Pdx1 can combine with regulatory elements
to regulate insulin gene expression.362 And the reduction of Pdx1
was confirmed to be related to β cell dysfunction.363 However the
molecular mechanisms underlying this remain to be investigated.
Adrenomedullin and vanin-1 are carried by exosomes in many
inflammatory responses, possibly taking part in β cell dysfunction
in CP-related DM and PDAC-DM.364–366 Pro-inflammatory cyto-
kines such as IL-10 and IL-12 need more studies to confirm their
functions in β cell dysfunction to better distinguish CP-related DM
from T1D and T2D. CP and DM are both known risk factors for
PDAC. The persistent inflammation and fibrosis of the pancreas
caused by CP not only destroy the function of islet cells, leading to
DM but also increase the risk of cancer by changing the
microenvironment.356 DM is considered to be one of the early
manifestations of PDAC.3,327 Research indicates that the chronic
inflammation seen in CP patients contributes to insulin resistance
and β cell dysfunction, raising the risk of diabetes. In turn, diabetes
fosters PDAC progression through metabolic imbalances and a
hyperglycemic environment.367

Inflammation is likewise involved in the process of CFRD.
Elevated IL-1β was found in CFRD and non-CF diabetic patients
compared to non-CF patients and may cause β cell apoptosis.368

Hart et al. found an increase in the inflammatory factors IL-6, IL-1β,
CXCL10, TNF-α, and IFN-γ in human CF islets, and these
inflammatory factors may cause damage to pancreatic islets in
CF patients.369 Sun et al. found that CFTR affects β-cell function
through paracrine secretion, a mechanism that involves paracrine
types of proinflammatory factors.370 Whether these inflammatory
factors target β cells or are simply part of systemic inflammation
remains unknown, but insulin resistance can be induced through
acute inflammation.371

Inflammation plays a key role in both endocrine and exocrine
diseases of the pancreas. Inflammatory factors such as TNF-α and
IL-1β not only play a role in the occurrence and progression of
pancreatitis,372 but also contribute to the development of
diabetes by inducing apoptosis and dysfunction of islet cells.357

For example, IL-1β increases the risk of diabetes by interacting
with insulin signaling pathways, resulting in insulin resistance.373

In addition, the persistent inflammatory environment caused by
chronic pancreatitis can activate oncogene and tumor suppressor
gene mutations, thereby promoting the development of PDAC.374

Metabolic disturbance. Amino acid dysregulation may be one of
the mechanisms contributing to the pathogenesis of CP-related
DM. Alterations at the amino acid level are present in CP patients.
On the one hand, alterations in the concentration of amino acids
may lead to disorders of gluconeogenesis and glycogen synthesis.
On the other hand, amino acids are an important regulator of the
liver-α cell axis, and hyperaminoacidemia can induce glucagon
secretion.375 Meanwhile, islet culture studies support a role in
selectively stimulating α cell proliferation by amino acids.376 The
presence of the liver-α cell axis, which allows hepatic glucagon
resistance to form hyperglucagonemia, promotes the production
of certain amino acids, and the produced amino acids, in turn,
promote α cells to secrete glucagon.377,378 However, significantly
lower levels of citrulline, GABA, taurine, and aspartate were
observed in CP patients, but no significantly elevated amino acids
were found.379 The relationship between disturbances in amino
acid metabolism and liver-α cell axis and α cell dysfunction in CP
patients needs further investigation.
Hormonal abnormalities also contribute to the metabolism

disturbance. Pancreatic polypeptide (PP) deficiency in the post-
prandial state in patients with CP has been confirmed by a
number of studies. There is no significant gap in fasting serum PP
levels between CP patients and controls.380 PP regulates hepatic
insulin receptor expression and utilization and can reverse the
decrease in insulin receptor utilization in CP,381 leading to
improved glucose tolerance. PP deficiency can cause abnormal
glucose metabolism, which may be associated with hepatic insulin
resistance.382 The phenomenon can be reversed by intravenous
PP injection,383 suggesting a possible role for PP in the
development of CP-related DM. Glucose stimulates PP secretion
within the islets of mice, and PP has the effect of inhibiting
glucagon release,259 thus PP deficiency may also be responsible
for glucagon elevation in CP patients. The function of PP in
glucose metabolism and its deficiency in CP patients highlights a
potential area of study. Investigating the mechanisms through
which PP regulates hepatic insulin receptor expression and its
interaction with glucagon could lead to novel approaches to
managing CP-DM.

CFTR. The effect of CFTR on the secretory role of β cells has
always been controversial. The likely explanation is that CFTR
expression varies across species, and its secretory functions differ
accordingly. Edlund et al. found that CFTR is involved in insulin
secretion from human and mouse pancreatic β cells.384 Guo et al.
found that CFTR is a regulator of insulin secretion from β cells and
that β cells with the F508del mutation (the most common
mutation in CF) can be rescued with the mutation correcting
agent VX- 809 rescue, increasing insulin secretion from mutant β
cells.385 However, the use of the corrector and activator
Lumacaftor/Ivacaftor in patients with the F508del mutation didn’t
improve their glucose tolerance and insulin secretion.386 Boom
et al. found that CFTR is expressed predominantly in α cells in
rats.387 Whereas it was found that the F508del elevation of
glucagon in mice.388 White et al. found that CFTR is expressed in
less than 1% of β cells in human pancreatic islets.389 However,
studies found that mutations in CFTR of CFRD patients do not lead
to β cell dysfunction, but are associated with islet loss and
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inflammatory infiltration.369,370 However, the precise molecular
pathways through which CFTR mutations lead to β-cell dysfunc-
tion in CFRD are not fully understood. Investigating the influences
of CFTR on β-cell function and the role of proinflammatory factors
in this process could provide insights into new treatment
strategies.

Paraneoplastic phenomenon. Alongside the various causes of β
cell impairment and decreased numbers mentioned above,
epidemiological, and clinical studies suggest that PDAC-DM is
possibly a paraneoplastic phenomenon mediated by DM-causing
substances.301 Insulin resistance has been implicated in the
pathogenesis of PDAC-DM, which is present in patients with
PDAC (normal fasting glucose levels) and disappears after surgical
resection.301 Islet amyloid polypeptide (IAPP) is believed to be
involved in this process. IAPP is secreted by islet cells and is
capable of causing insulin resistance in skeletal muscle cells.390

IAPP levels were significantly elevated in PDAC patients compared
to those with other cancers, diabetes, and healthy individuals.391

PDAC cells specifically promote islet cell secretion of IAPP.392,393

However, IAPP is not an ideal biomarker for the diagnosis and
identification of PDAC.394 Its molecular mechanism in the
development of PDAC-DM remains to be explored. PDAC-
derived S-100A8 induces insulin resistance in vitro experi-
ments.395,396 This suggests its potential as a biomarker for the
early detection of PDAC. And identifying other biomarkers for
early detection of PDAC-DM remains a critical area of research.

Mechanisms of endocrine diseases causing PDAC
Islet inflammation. Long-term T2D is often accompanied by
chronic inflammation. Hotamisiligil et al. found that TNF-α plays an
important role in diabetes and obesity-related insulin resistance,
and blocking TNF-α can improve insulin resistance.397 Inflamma-
tory markers CRP, IL-6, and leptin levels in diabetic patients were
significantly higher than in non-diabetic patients, while adipo-
nectin was lower than in non-diabetic patients.398 Increasing
evidence suggests that chronic inflammatory responses play a role
in the pathogenesis of insulin resistance, with adipose tissue being
an important source of pro-inflammatory cytokines.399 In pan-
creatic tissue, this is often manifested as cytokines, apoptotic cells,
immune cell infiltration, chronic inflammatory infiltration, and
amyloid protein deposition, ultimately leading to fibrotic chronic
inflammation. IL-1β plays a crucial role in this process.400 The
chronic inflammatory microenvironment in the pancreas may be
one of the reasons contributing to the occurrence and develop-
ment of PDAC. However, the involvement of inflammatory
mediators like IL-1β, TNF-α, and IFN-γ in pancreatic diseases and
their effect on β-cell dysfunction needs more in-depth study.
Specifically, how these mediators interact with pancreatic cells
and contribute to the progression of diseases such as PDAC and
pancreatitis warrants further research.

Obesity. Obesity is closely related to diabetes.401 Overweight or
obesity is a crucial predictor of diabetes. In one cohort study, the
risk of diabetes increased by 20.1 times when the Body Mass Index
(BMI) of women was in the range of 30.0–34.9 kg/m2, and when
BMI was ≥35 kg/m2, the risk increased by 38 times.402 For men
aged 25–49 years old with a BMI between 30.0 and 34.9 kg/m2, the
risk of diabetes was 10.1 times higher than that of normal-weight
men.403 However, more and more research suggests that an
increase in visceral fat measured by CT and MRI at any BMI level
will lead to an increased risk of diabetes.404 At the same time,
overweight and obesity are found to be closely related to an
elevated risk of PDAC and other cancers.405 Compared to lean
individuals, obese individuals have a 47% higher incidence of
PDAC.406 In a normal pancreas, obesity can induce inflammation
and fibrosis. In mice, adipocytes are able to secrete IL-1β, recruit
tumor-associated neutrophils, and induce the activation of PSC,

thereby promoting the proliferation of connective tissue, accel-
erating tumor growth, and weakening the therapeutic effect of
chemotherapy drugs.407

As an endocrine tissue, adipose tissue can secrete adipokines,
many of which can promote inflammation.408 While some
adipokines are produced due to immune cell infiltration in
adipose tissue, leptin, and adiponectin are adipose tissue-
specific adipokines, and they may be both involved in the
pathophysiological mechanisms of PDAC.409 Leptin is a product of
the obese gene expression and has been proven to be related to
various inflammatory and immune responses.410 Leptin partici-
pates in the pathophysiological mechanisms of obesity-related
diseases such as T2D and cancer by activating the PI3K/mTOR
pathway.411 Meanwhile, leptin may promote glucose metabolism
and cell proliferation in PDAC cells by activating the AKT
pathway.412 Fan et al. found that leptin triggered the migration
and invasion of PDAC by upregulating matrix metalloproteinase-
13 (MMP-13).413 Adiponectin is an adipokine that acts on various
tissues and participates in homeostatic regulation.414,415 Adipo-
nectin also inhibits PDAC cell apoptosis, increases PDAC cell
proliferation, and promotes migration through the activation of
the AMPK/Sirt1/PGC1-α signaling pathway.416

Antidiabetic drugs and PDAC. Metformin (which lowers glucose
and insulin levels), sulfonylureas (which promotes insulin secretion
from the pancreas), and insulin analogs (such as glargine insulin)
are therapeutic options for diabetes. A case-control study revealed
that metformin significantly lowered the risk of PDAC in diabetic
patients, whereas the use of insulin or insulin secretagogues was
linked to a higher PDAC risk in individuals with diabetes.417

A retrospective study found that metformin significantly
improves the two-year survival rate of PDAC patients with
diabetes.418 KisfalviK et al. discovered that in a mouse xenograft
model of PDAC, metformin significantly inhibits tumor growth.
This inhibition may be due to metformin disrupting the signaling
crosstalk between IR and GPCRs.419 Subsequently, they found that
this effect is dose-dependent, and oral administration of
metformin before and after tumor implantation significantly
inhibits the growth of PDAC xenografts.420 In genetically
engineered mice, intraperitoneal injection of metformin inhibits
the occurrence of PDAC by suppressing the NFκB/STAT3 signaling
pathway.421 In mice, metformin inhibits ADM and mouse
pancreatic intraepithelial neoplasia (mPanIN), thereby suppressing
pancreatic carcinogenesis.422 Meanwhile, Chang et al. found that
metformin inhibits KrasG12D-induced ADM, PanIN, hyperinsuline-
mia, and hyperleptinemia induced by a high-fat, high-calorie diet,
thereby inhibiting the occurrence of PDAC.423

Mechanistically, metformin’s anticancer effects may be both
direct, targeting PDAC cells, and indirect, via systemic impacts on
the pancreas.424 At the cellular level, activation of AMPK inhibits
mTOR, ERK activation, and DNA synthesis, and concurrently
inhibits YAP /TAZ to suppress PDAC development.425 Wang et al.
found that metformin inhibits PDAC metastasis by inhibiting the
SMAD4-HNF4G pathway.426 In addition, it exerts anti-tumor effects
by lowering glucose, insulin, and IGF levels and normalizing the
gut microbiota in diabetic/obese PDAC patients.
Chang et al. found that the use of glargine insulin increases the

risk of PDAC in male diabetic patients.427 A meta-analysis
identified a positive association between the use of insulin and
insulin analogs and the incidence of PDAC.428 Insulin acts as a
growth-promoting factor with a mitogenic effect on cells,
promoting cell proliferation in both normal and cancer cells.429,430

Possible reasons include the activation of IGF-1R and MAPK
pathways by insulin and insulin analogs.431 Wu et al. found that
insulin promotes PDAC cell proliferation and migration by
activating the PI3K/Akt pathway.136 In addition, insulin enhances
PDAC cell lines’ PANC-1 proliferation and invasion by stimulating
the HIF-1α pathway.432
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More basic and epidemiological research is needed to under-
stand the mechanisms between anti-diabetic drugs and PDAC.
This understanding can guide diabetic patients in rational drug
use, reducing the potential cancer risks associated with diabetes
treatment. Additionally, it contributes to the discovery of
molecular therapeutic targets for PDAC in diabetic patients.

Hyperglycaemia. A study indicated an increased risk of PDAC
associated with elevated fasting blood glucose levels.433 High
blood glucose induces the activation of p38 MAPK, mediating the
paracrine secretion of IL-6 and VEGF, thereby promoting the
proliferation and migration of PDAC cells.433 Glucose dosage
dependently increases the expression of glial cell line-derived
neurotrophic factor (GDNF) and its tyrosine kinase receptor (RET),
promoting the growth of PDAC cells.434 Prolonged hyperglycemia
leads to the accumulation of advanced glycation end products
(AGE). The binding of AGE to its receptor (RAGE) can stimulate the
secretion of pro-inflammatory factors, and generate oxidative
stress and reactive oxygen species, ultimately leading to the
activation of NF-κB and target genes, contributing to carcinogen-
esis.435 In KC mouse, the deletion of the RAGE inhibits the
occurrence and progression of PDAC and extends survival,436

suggesting that AGE and RAGE have the potential to serve as
therapeutic targets for PDAC. Further research is needed to
understand their precise roles and mechanisms in PDAC.

Hyperinsulinemia. Obesity and diabetes are often accompanied
by insulin resistance, manifested as increased levels of serum
insulin and decreased sensitivity of tissues to insulin. In this
condition, the liver’s uptake of glucose is reduced, and
peripheral tissues also exhibit decreased glucose uptake,
resulting in increased circulating glucose levels. This stimulates
β cells to secrete insulin, leading to compensatory hyperinsu-
linemia. Both hyperinsulinemia and hyperglycemia are consid-
ered risk factors for increased incidence and mortality of
PDAC.437 Bao et al. found that dietary insulin load was not
correlated with PDAC occurrence in healthy individuals, but a
high insulin-load diet might increase the cancer risk in
individuals with insulin resistance.438 Elevated insulin levels
may increase the replication rate of PDAC cells in the early
stages.439 Conversely, a diet with a low insulin load can reduce
the incidence of PDAC.440 In obese mice induced by a high-fat
diet, there is a significant increase in serum insulin secretion and
a marked increase in the proliferation of PDAC cells.441 Zhang
et al. suggest that endogenous insulin, independently of high
blood glucose, facilitates the progression of PanIN in a mouse
model of a high-fat diet.442

Insulin acts on the IR, and upon binding, it can activate
downstream MAPK and PI3K pathways, thereby promoting cell
proliferation.443 High concentrations of insulin can dose-
dependently stimulate the proliferation of PDAC cell lines.444

Insulin plays a potential role in promoting the proliferation and
survival of PDAC cell lines, more dependent on the RAF/Erk
signaling pathway.445 Recent studies indicate that insulin, in a
dose-dependent manner through the insulin receptor, increases
the secretion of pancreatic enzymes and the formation of ADM,
thereby promoting the development of PDAC.294 On the other
hand, the formation of PDAC is accompanied by fibrosis in
pancreatic stromal tissue. Insulin can promote the growth of PSC
and the occurrence of stromal fibrosis.446 Overexpression of
docking peptides observed in human PDAC tissues and cell lines
results in the activation of intracellular IR, IRS1, and IRS2, leading to
excessive activation of the PI3K signaling cascade.447–449 In PDAC,
IR has been found to undergo G protein-coupled receptor cross-
talk, activating mTOR, thereby stimulating cancer cell DNA
synthesis and proliferation.450 Additionally, it can stimulate YAP
localization through PI3K and PKD pathways, promoting the
growth of PDAC cells.451

IGF system. In T2D, increased insulin secretion leads to enhanced
bioavailability of IGF.452 Under physiological conditions, IGF is
secreted by the liver and acts on IGF-1R, playing a role in
inhibiting apoptosis and promoting proliferation.453,454 In patients
with PDAC, the expression of IGF-1R is upregulated and correlates
with higher tumor grades and shorter overall survival.455,456

Mutated Kras and downstream MAPK pathways, combined with
autocrine activation of IGF-1R by IGF-2, play a critical role in
triggering PI3K signaling and driving the proliferation of PDAC
cells.457 IGF-1 can also stimulate the proliferation of PDAC cells,
and this effect can be significantly suppressed by antibodies
against IGF-1R.458 However, clinical trial results with IGF-1R
antibodies have been less satisfactory.459 One possible reason is
the presence of IR in PDAC with a similar structure and function to
IGF-1R. They are both transmembrane receptor tyrosine kinases
from the same family. In normal tissues, IR is more involved in
glucose metabolism, while IGF-1R is more responsible for cell
proliferation and anti-apoptosis.120 IR also has two isoforms: IR-A,
mainly expressed in embryonic and adult brain tissues, and IR-B,
mainly expressed in well-differentiated adult tissues, enhancing
the effects of insulin. IR-A is overexpressed in tumor cells,
heightening their sensitivity to IGF-2 and insulin, and contributing
to tumorigenesis.120,460 In cancer tissues, hybrid receptors IR/IGF-
1R exist, especially IR-A/IGF-1R, which has a high affinity for IGF2,
enhancing cellular responses to mitogenic signals. All these
findings indicate that IR/IGFR could be a potential therapeutic
target in PDAC. Further research on the exact functions of IGF1R
and IR in PDAC, including their specific roles in cancer cell growth,
differentiation, and migration, will contribute to a more compre-
hensive understanding of their roles in disease development and
the development of related drugs.
Here we briefly describe the interaction between the endocrine

and exocrine pancreas from the perspective of disease develop-
ment. (Fig. 6) Mechanistically, pancreatic exocrine diseases can
impact islet cells through various pathways, contributing to the
dysfunction and reduction in the number of β cells, ultimately
leading to the development of diabetes. Conversely, diabetes can
influence the development of PDAC through factors such as islet
inflammation, obesity, hyperinsulinemia, and hyperglycemia. The
interaction between the endocrine and exocrine systems is
particularly important in pancreatic diseases. In the occurrence
and development of diseases such as pancreatitis and diabetes,
the interaction of endocrine and exocrine functions often suggests
the potential interaction between the endocrine and exocrine
pancreas. Such interactions not only reveal the complex
regulatory network of endocrine and exocrine but also hint at
the potential mechanisms by which these systems interact in
disease states. This crosstalk between pancreatic endocrine and
exocrine diseases provides a new perspective for us to understand
the full picture of pancreatic disease and may provide new targets
for clinical treatment. However, more studies are needed about
the inter- and intracellular crosstalk between the endocrine and
exocrine pancreas.

CLINICAL IMPLICATION AND THERAPEUTIC TARGETS
In recent years, advances in medical research have highlighted the
critical role of signaling pathways in health and diseases. Among
these pathways, the importance of pancreatic endocrine and
exocrine signaling pathways in a variety of diseases has become
increasingly prominent, providing new hope and direction for
clinical treatment. An in-depth understanding of its complex
regulatory mechanisms and potential therapeutic targets is of
great significance for clinical practice.

Diabetes
The insulin signaling pathway plays an important role in a variety
of metabolic and endocrine diseases. The abnormal function of
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insulin receptors and their subsequent signaling molecules is a
key pathological feature of T2D.461 Increasing evidence indicates
that mutations and dysregulation in key genes within the insulin
signaling pathway contribute to the development of diabetes. For
instance, mutations in the IR gene have been linked to various
severe insulin resistance conditions, such as Leprechaunism,
Rabson–Mendenhall syndrome, and Type A insulin resistance
syndrome.462 In cases of insulin resistance, the efficiency of insulin
signaling is reduced, resulting in decreased glucose uptake,
diminished glycogen synthesis in the liver, and increased lipolysis
in adipocytes, which subsequently triggers hyperglycemia and
other metabolic disorders. The required insulin levels in these
patients are a hundred times higher than those in typical diabetes
patients, and Nonsense or missense mutations have been
detected in either the extracellular insulin-binding domain or
the intracellular tyrosine kinase domain of their receptors.463

Mutations in the IRS1 gene are closely linked to insulin
resistance.464 In patients with T2D, the G972R polymorphism of
IRS-1 is observed with higher frequency, leading to reduced
insulin signaling, primarily due to decreased PI3K activity.465

Further studies have shown an association between IRS-1
mutations and SNPs in T2D.466 Mice with an Irs-1 gene knockout
exhibit growth retardation and insulin signaling defects.467

Phosphorylation site mutations in IRS1 can disrupt the interaction
with IR, thereby weakening PI3K activation, resulting in impaired
AKT signaling. This signaling impairment prevents insulin from
effectively promoting glucose uptake, leading to elevated blood
glucose levels, a condition particularly common in patients with
T2D.468

In addition to IRS1, mutations in the AKT gene are another
significant cause of insulin signaling pathway dysregulation. A rare
missense mutation (R274H) in AKT2 found in diabetes patients
results in the loss of kinase activity.469 Although other missense
mutations (such as R208K and R467W) do not cause a loss of
kinase activity in vitro,470 functional loss mutations in AKT can
impede the normal activation of its downstream targets, mTORC1
and GSK-3β, leading to reduced glycogen synthesis and impaired
glucose uptake.471 Furthermore, dysregulation of AKT signaling is
associated with increased lipolysis in adipocytes, which exacer-
bates insulin resistance and hyperglycemia.472

PI3K mutations are also key factors leading to insulin signaling
dysregulation. While activating mutations in the PI3K gene are
common in various metabolic diseases and cancers, which may
result in metabolic disorders, in the context of diabetes, its
dysfunction is often characterized by abnormally weakened
downstream AKT signaling. The M326I polymorphism of the
PI3K p85α regulatory subunit, identified in Pima Indian women, is
associated with a reduced incidence of T2D.473 However, this
mutation adversely affects insulin signaling by reducing the
binding of p85α to IRS-1 and increasing p85α degradation.474

Drugs such as insulin and its analogs that target insulin
receptors and their subsequent signaling molecules for the
treatment of diabetes have shown good anti-diabetic effects in
practical clinical applications.475 Although the mechanisms of
insulin signaling pathway dysregulation in diabetes have been
extensively studied, many details remain to be explored. In
particular, how to effectively restore key nodes in the insulin
signaling pathway to prevent or reverse the progression of

Fig. 6 Mechanisms of PDAC-DM, CP-related DM, and CFRD. Inflammatory microenvironment is present in PDAC, CP, and CF. These diseases
stimulate immune cells in the microenvironment to secrete various cytokines that act on β cells, causing β cell death or dysfunction. PDAC
cells act on β cells through exosomes or their own secretions, causing them to be dysfunctional. β cells can secrete IAPP, mediating insulin
resistance. CP can lead to amino acid disorders, resulting in abnormal numbers and dysfunction of β and α cells. CP can also mediate insulin
resistance by reducing PP production. Some amino acids secreted by the liver act on α cells to secrete glucagon. The abnormal number and
dysfunction of α and β cells is an important mechanism for the formation of diabetes mellitus. Created in BioRender.com
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diabetes continues to be a significant research focus. Targeting
key molecules within the insulin signaling pathway may offer new
opportunities for diabetes treatment. These therapeutic opportu-
nities depend on individualized genetic mutations, suggesting
that precision medicine strategies based on individual genetic
mutations could be an important direction for future diabetes
treatment.
The role of glucagon is more pronounced due to insufficient

insulin production. Glucagon activates a signaling pathway
through its receptors (expressed primarily in the liver) that
promotes glycogenolysis and gluconeogenesis, resulting in
elevated blood glucose levels.476 This is one of the important
mechanisms of hyperglycemia in diabetic patients. In T2D,
although insulin resistance is the main cause, glucagon secretion
is often abnormally increased, exacerbating the difficulty of blood
glucose control.477 Increasing evidence demonstrates that inhibit-
ing glucagon and its receptor can reduce hyperglycemia in both
animal models and humans, underscoring the pivotal role of
glucagon and GCGR in diabetes development.182,478 In GCGR
knockout (Gcgr−/−) mice, during complete insulin deficiency,
glucagon-inhibitory factors like somatostatin can suppress all
metabolic manifestations of diabetes, indicating that β-cell
destruction does not lead to diabetes.479 When streptozotocin
was used to destroy β-cells in Gcgr−/− mice and inhibit insulin
secretion, the animals did not develop hyperglycemia, indicating
that Gcgr−/− mice do not develop T1D, even without insulin.480

Temporary restoration of defective GCGR using an adenoviral
vector led to elevated blood glucose levels after β-cell destruc-
tion.481 In insulin tolerance tests, these knockout mice exhibited
enhanced glucose tolerance and insulin sensitivity.482 The
elevated blood glucose levels resulting from insulin deficiency
were normalized when glucagon was eliminated. This is an
unexpected result as it underscores the significant potential of
GCGR in diabetes treatment. Mechanistically, glucagon’s regula-
tion of blood glucose depends on β cells, as glucagon acts on β
cells to activate downstream molecules, leading to increased
cAMP production, which is closely related to insulin release by β
cells.483 In fact, mice lacking GCGR develop hyperinsulinemia and
compensatory hyperplasia of α-cells. This limits the role of GCGR
gene knockout in the treatment of diabetes in rodents, as it
triggers a range of other metabolic issues. GCGR is considered a
candidate gene in the pathogenesis of T2D. In a study of the
French diabetic population, the frequency of the Gly40Ser
mutation in the GCGR gene was found to be as high as 5%, far
exceeding that of other genes.484 An analysis of 64 diabetic
children in China suggested that the Gly40Ser mutation in the
GCGR gene may be associated with genetic susceptibility to
T2D,485 as it disrupts the binding of GCGR to glucagon.486 It is
hypothesized that the Gly40Ser mutation in GCGR may contribute
to β cell dysfunction and increase the risk of diabetes by
disrupting glucagon signaling and decreasing the sensitivity of
target tissues to glucagon.
Targeting GCGR with antagonists, including small molecule

inhibitors and monoclonal antibodies, has been suggested as a
potential therapeutic strategy for managing both T1D and
T2D.487–489 Several GCGR antagonists, such as MK-0893, MK-
3577, LY2409021, and LGD-697, have been developed to enhance
glucose tolerance, boost insulin secretion, and regulate blood
glucose levels in animal models, demonstrating considerable
efficacy in patients with T2D.490–493 GCGR monoclonal antibodies
(mAbs) exhibit high specificity and strong targeting capabilities,
making them relatively accessible. They not only normalize blood
glucose levels in insulin-naive T1D mice and patients but also
show potent hypoglycemic effects in T2D mice and mon-
keys.494–496 GCGRmAbs were also able to induce δ-cell prolifera-
tion and transdifferentiation into β cells along with ductal cells.497

Also, anti-GCGR antibodies were shown to promote β cell
proliferation and α cell transdifferentiation into β cells.498 The

underlying molecular mechanisms remain to be explored.
Pathologically, glucagon can induce β cell dedifferentiation,
leading to loss of function, while GCGR mAbs can reverse this
process by reducing FoxO1 expression.499

Non-alcoholic fatty liver disease
In non-alcoholic fatty liver disease (NAFLD), insulin resistance leads
to abnormal accumulation of fat in the liver, which further triggers
inflammation and liver cell damage, eventually leading to cirrhosis
and liver failure.500 The IR/PI3K/Akt signaling pathway is crucial for
the development of NAFLD. A genome-wide association meta-
analysis identified the INSR gene as being associated with
NAFLD.501 Polymorphisms in the INSR gene are significantly
correlated with the occurrence of NAFLD, with some INSR gene
polymorphisms exerting a protective effect against NAFLD. Mice
with liver-specific insulin receptor knockout exhibit marked insulin
resistance.502 Liver-IRKO mice display reduced levels of plasma
IGF-1, delayed early growth, and disruptions in fatty acid
metabolism, including lower expression of lipogenic enzymes
and plasma triglycerides.503 Mice with liver-specific Irs1/Irs2
double knockout (LIrs1/2DKO) show glucose intolerance, hyper-
insulinemia, and impaired regulation of hepatic glucose produc-
tion, while Irs2KO mice develop liver steatosis.504 While Akt1 is
vital for cell survival and growth, Akt2 plays a more crucial role in
the liver.113 Mice deficient in hepatic Akt1 and Akt2 display
abnormal glucose tolerance, insulin resistance, and impaired
transcriptional responses to feeding, including reduced expression
of lipogenic genes,505 which may trigger increased liver fat
production.
Liver-specific PTEN-knockout (LPTENKO) mice develop severe

hepatomegaly and steatohepatitis with triglyceride accumulation,
alongside elevated expression of lipogenic genes and increased
β-oxidation.506–508 Although an increased incidence of hepatocel-
lular carcinoma was also observed, LPTENKO mice not only
showed improved glucose tolerance but also enhanced systemic
insulin sensitivity due to the redistribution of fat from adipose
tissue to the liver and/or increased hepatic FGF21 production.
Profound alterations in hepatic lipid metabolism occur in the
context of insulin resistance.
In NAFLD, dysregulation of the glucagon signaling pathway is a

key pathological factor, especially in the context of insulin
resistance. This dysregulation is primarily manifested as hepatic
glucagon resistance. In NAFLD, despite elevated levels of glucagon
in the blood, the liver’s response to glucagon is diminished. This
glucagon resistance leads to disruptions in lipid and amino acid
metabolism, resulting in excessive fat accumulation in the liver,
increased oxidative stress in hepatocytes, and ultimately, the
progression of NAFLD.509 Therapeutic strategies targeting this
signaling pathway, such as the use of glucagon receptor
antagonists, may offer new treatment avenues for the manage-
ment of NAFLD. However, the specific mechanisms of glucagon
signaling dysregulation in NAFLD require further investigation,
particularly its precise role in hepatic lipid metabolism and
inflammatory responses. Understanding these mechanisms will
aid in the development of more effective therapeutic strategies
that target various aspects of the glucagon signaling pathway,
alleviating the hepatic burden in NAFLD patients and improving
disease outcomes.

Cancer
The role of insulin signaling in cancer has also received much
attention. High insulin levels and over-activation of IGF are
associated with the development and progression of certain
cancers, such as breast, colon, and prostate cancers, and may
promote tumor growth by promoting cell proliferation and
inhibiting apoptosis. Research indicates that hyperinsulinemia is
associated with an increased risk of certain types of cancer.510

Studies have demonstrated that overexpression of insulin
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resistance in certain tumor cell lines boosts their proliferative
response to insulin.511 Furthermore, insulin has the ability to
stimulate the elevated levels of many proliferation and differ-
entiation regulators, including IGF-1, cytokines, and growth factors
such as leptin, VEGF, and IL-6.512–514 These effects may drive
tumor progression, angiogenesis, and metastasis, explaining how
hyperinsulinemia and insulin resistance raise the risk of develop-
ing cancers like breast, colon, liver, pancreatic, and endometrial
cancers.515–517 Given these mechanisms, inhibitors targeting the
insulin receptor have been developed for the treatment of various
cancer.518 Several drugs targeting IR/IGF-1R signaling have shown
anti-tumor growth in tumor xenotransplantation models, but their
effectiveness in prostate cancer patients needs to be further
validated in clinical trials.519 Gene mutations in some key
molecules of the insulin receptor signaling pathway, such as
PI3K and PTEN, have been found to be closely related to cancer
development, as has been well-reviewed by several scien-
tists.520–522 Targeted drugs against these signaling molecules,
such as PI3K inhibitors, have shown some promising results in
clinical trials.520 However, due to the significant side effects and
poor solubility and permeability of these drugs, obtaining FDA
approval has been challenging. When developing new drugs,
designing highly specific drugs with fewer side effects based on
mutation sites is a major hurdle that needs to be addressed in the
current development of this class of therapeutics.
In many cancers, particularly neuroendocrine tumors, the

expression of SSTRs is significantly reduced.523 SSTR2 is the most
studied receptor, primarily inhibiting tumor growth by suppres-
sing cell proliferation signaling pathways (such as PI3K/AKT and
MAPK) and activating apoptotic pathways (such as p53). However,
in many cancers, the expression of SSTR2 is reduced or lost,
diminishing the antitumor effects of somatostatin.524,525 This
reduction leads to decreased efficacy of somatostatin and its
analogs in treatment. Even when SSTRs are expressed in cancer
cells, tumor cells may evade inhibition by altering downstream
signaling pathways.239 For instance, in some tumors, SSTR
activation may fail to effectively initiate inhibitory signals, or
downstream pathways such as PTP, PI3K/AKT, and MAPK may be
altered by other mutations or regulatory mechanisms, significantly
reducing the antiproliferative effects of SSTRs.243,526 Due to the
dysregulation of SSTR expression and function, therapeutic
strategies targeting these receptors (such as using octreotide,
lanreotide, and other SSTR analogs) are limited in effectiveness for
certain cancers. This dysregulation suggests the need for new
strategies, which may include combination therapies or the
development of drugs targeting other somatostatin receptor
subtypes.

Neurological disorders
Research shows that brain insulin resistance, or the disruption of
insulin signaling in the brain, is linked to cognitive decline and
Alzheimer’s disease (AD), making it a risk factor for sporadic AD
development. The hallmark AD pathologies, such as neurofibrillary
tangles (NFTs) and amyloid-beta plaques, may be connected to
insulin resistance.527 Insulin, along with IGF-1 and IGF-2, can
prevent neuronal apoptosis through the IR and regulate
neurobiological processes, including the degradation of amyloid-
beta.528,529 However, amyloid-beta can compete with insulin for IR
binding, reducing insulin’s affinity for IR and leading to insulin
resistance, which in turn worsens AD pathology.530 Increased
serine phosphorylation of IRS-1, dysfunction in the PI3K pathway,
and AKT inhibition activate GSK-3β and mTOR phosphorylation,
contributing to excessive tau protein phosphorylation. Addition-
ally, GSK-3β activation promotes amyloid-beta plaque buildup,
potentially triggering microglia-mediated neuroinflammation that
drives AD progression.531–533 Activation of the Ras-MAPK pathway
further enhances gene transcription related to neuronal survival,
synaptic plasticity, and tau phosphorylation, which is also linked to

amyloid-beta accumulation and NFT formation.534 The mechan-
isms outlined above provide potential therapeutic strategies for
targeting insulin signaling pathways in AD treatment. Future
research should continue to explore the specific roles of these
signaling pathways in AD and develop effective therapies
targeting these pathways.
Somatostatin also plays an important role in the nervous

system by regulating the release of neurotransmitters and the
excitability of nerve cells and is involved in the regulation of
various neural functions.535 In certain neurological disorders such
as Alzheimer’s disease abnormalities in somatostatin signaling
pathways may affect the progression of the disease and the
manifestation of symptoms.536,537 In AD, the reduced expression
of SSTR is associated with increased neuronal apoptosis and
cognitive decline. The loss of SST and SST-expressing neurons in
AD is a well-established event.538 The reduction in somatostatin
signaling may lead to decreased neuronal resistance to excito-
toxicity and oxidative stress, thereby accelerating the progression
of AD pathology. A unique feature of SST is its ability to enhance
the activity of Aβ-degrading enzymes in the brain through
receptor-mediated actions.539 Studies have shown that activation
of SSTR2 can inhibit the production and deposition of amyloid-
beta, suggesting that restoring SSTR2 function may have
protective effects against AD.536,540 Somatostatin-based thera-
peutic strategies could offer new approaches to slowing the
progression of AD. However, due to the complex pathology of
AD, treatments targeting a single pathway may have limited
efficacy. Future research could explore combining SSTR agonists
with other neuroprotective agents to achieve multifaceted
protective effects.

Digestive diseases
Somatostatin signaling plays an important role in digestive
diseases. Somatostatin regulates the digestive process by inhibit-
ing gastric acid secretion, pancreatic enzyme secretion, and
intestinal peristalsis. In acute pancreatitis, somatostatin helps
reduce inflammation and damage to the pancreas by reducing
pancreatic enzyme secretion and pancreatic load.541 Somatostatin,
as a pancreatic enzyme inhibitor, has been widely used in patients
with acute pancreatitis.541

The cholecystokinin (CCK) signaling pathway plays an important
role in a variety of digestive diseases. For example, abnormal
activation of calcium signaling pathways in acute pancreatitis
leads to premature activation of pancreatic enzymes and
digestion by the pancreas itself.542

In chronic pancreatitis, persistent activation of CCK signaling is
associated with pancreatic fibrosis and loss of acinar cells,
ultimately leading to reduced digestive enzymes and impaired
nutrient absorption.543

An antagonist targeting the CCK receptor has shown beneficial
effects in a Phase I clinical trial of pain management in patients
with chronic pancreatitis.544

CCK also plays a key role in cholelithiasis and gallbladder
diseases, affecting the emptying of the gallbladder and the
function of the biliary system through its effect on the smooth
muscle of the gallbladder.545 Thus, CCK receptor (primarily CCK1
receptor) antagonists are being investigated as potential agents
for the treatment of cholelithiasis, gallbladder disease, and certain
gastrointestinal disorders. These drugs can block the binding of
CCK to its receptors, thereby regulating the emptying of the
gallbladder and the function of the biliary system, and may have
certain effects on the treatment of the disease.
In functional gastrointestinal disorders such as indigestion and

irritable bowel syndrome,546 CCK signaling regulates the move-
ment and secretion of the gastrointestinal tract,547 and abnormal
CCK signaling may contribute to the symptoms of these disorders.
Thus, the CCK receptor may act as a potential therapeutic target of
these disorders.
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Cardiovascular disease
Insulin resistance is closely associated with atherosclerosis and
hypertension, accelerating arteriosclerosis and cardiovascular
events by triggering endothelial cell dysfunction and promoting
inflammatory responses.548 And the role of glucagon cannot be
ignored in cardiovascular disease. Through its receptors in the
heart and blood vessels, glucagon regulates myocardial contrac-
tility and vascular tone, affecting blood pressure and heart
function.549 Abnormal glucagon signaling may increase the risk
of atherosclerosis. However, endocrine signaling has not been
used as a therapeutic target for the treatment of cardiovascular
disease.
In conclusion, the exploration of pancreatic endocrine and

exocrine signaling pathways in the pancreas opens up new ways
to treat a variety of diseases. From metabolic diseases to tumors,
targeting pancreatic endocrine and exocrine signals offers
promising strategies for alleviating symptoms and improving
prognosis. Potential therapeutic targets for these diseases and
drugs in clinical trials are listed in table 1. As research further
reveals its complexity, the prospect of harnessing the pancreatic
endocrine and exocrine signaling pathways for therapy remains
an exciting new area in medical science.

CONCLUSION AND PERSPECTIVE
The dual functions of the pancreas encompass both endocrine
and exocrine functions, highlighting its critical role in maintaining

metabolic and digestive homeostasis. The complex signaling in
the endocrine and exocrine systems plays an important role in the
occurrence and progression of various diseases. This review
summarizes key historical milestones of pancreatic components,
embryonic development and phenotypic transformation, and the
signaling pathways involved in both health and disease states. By
elucidating the signaling and their regulatory of endocrine and
exocrine pancreas, we have gained a deeper understanding of the
complex regulatory networks within the pancreas. These insights
provide new directions for innovative treatments for endocrine
and exocrine dysfunction and offer new hope for patients with
various diseases.
However, current studies have often focused on one system in

isolation, which limits our understanding of how these systems
interact in disease contexts. Technical challenges, such as
difficulties in tracking real-time cellular interactions and limited
tools to study both endocrine and exocrine pathways concur-
rently, have hindered progress in this area. Another significant
challenge lies in the limitations of current research models. While
animal models, particularly in mice, have been useful in
uncovering the basic mechanisms of pancreatic development
and function, translating these findings to humans has proven
difficult due to species-specific differences in gene expression,
developmental timing, and cellular behavior. Furthermore, disease
heterogeneity is another major hurdle. Both PDAC and diabetes
exhibit significant variability not only between patients but also
within different regions of the same pancreas. This heterogeneity

Table 1. Clinical trials targeting endocrine and exocrine signaling across various disorders

Compound Therapeutic targets NCT number Phase Enrolled diseases Status

64Cu-DOTATATE SSTR NCT03673943 3 Neuroendocrine Tumors Completed

Pasireotide SSTR NCT01620138 2/3 Non-functioning Pituitary Adenomas, Prolactinomas Completed

Octreotide SSTR NCT00595140 4 Acromegaly Completed

Indium-111 pentetreotide SSTR NCT00442533 2/3 Neuroendocrine Tumors Completed

177Lu-edotreotide SSTR NCT05918302 3 Neuroendocrine Tumors, Lung Neuroendocrine Neoplasm,
Thymus Neoplasms

Recruiting

PP PP receptor NCT03854708 4 Hunger Completed

PP PP receptor NCT00791076 2 T1D Terminated

PP1420 PP receptor NCT02221765 2 Obesity Terminated

PP1420 PP receptor NCT02221765 1 Obesity Completed

RG1068 (Synthetic Human
Secretin)

Secretin receptor NCT00036231 3 Autism and gastrointestinal disorders Terminated

ChiRhoStim Secretin receptor NCT01087801 3 Pancreatic Disease Completed

Insulin IR NCT03899402 2/3 T1D Recruiting

Figitumumab IGF-1R NCT00977561 2 Small Cell Lung Carcinoma Terminated

Figitumumab IGF-1R NCT00927966 1 Sarcoma Solid Tumor Completed

Figitumumab IGF-1R NCT00147537 1/2 Advanced Lung Cancer Completed

MK0646 IGF-1R NCT00610129 2 Neuroendocrine Tumors, Metastatic Neuroendocrine
Tumors

Completed

MK0646 IGF-1R NCT00769483 1/2 Pancreatic Cancer Completed

MK0646 IGF-1R NCT00769483 1/2 Lung cancer Completed

AMG479 IGF-1R NCT01024387 2 Neuroendocrine Tumor, Carcinoid Tumor, Pancreatic
Neuroendocrine Tumor

Completed

IMC-A12 IGF-1R NCT00785538 1 Advanced Solid Tumors Completed

BIIB022 IGF-1R NCT00555724 1 Solid Tumors Completed

R1507 IGF-1R NCT00400361 1 Neoplasms Completed

LY2409021 Glucagon receptor NCT01606371 1 T2D Completed

PF-06293620 Glucagon receptor NCT02211261 1 T2D Completed

Dasiglucagon Glucagon receptor NCT03667053 3 Hypoglycemia Completed
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complicates efforts to identify consistent biomarkers or therapeu-
tic targets, as signaling pathways may behave differently
depending on the specific pathological context.
In addition, although these structural and functional features

suggest complex interactions between endocrine and exocrine
pancreas, these interactions have in fact been poorly studied. In
this review, the interaction of pancreatic endocrine and exocrine
diseases was discussed from the perspective of the pathogenesis
and development of pancreatic diseases. Especially in the process
of pancreatic diseases, whether the changes of endocrine and
exocrine functions will directly or indirectly affect each other is still
a field to be further studied. We need to learn more about the
interaction between the endocrine and exocrine pancreas,
especially the direct cell-cell interaction. And whether this
interaction can lead to the occurrence and development of
disease, remains to be explored. Regarding the signaling of
endocrine and exocrine pancreas, we know that these signals not
only regulate the function of the pancreas but also have many
other roles. However, whether there is crosstalk between
endocrine and exocrine signaling pathways and whether this
crosstalk mediates the occurrence of diseases is also an important
direction worthy of further exploration.
Emerging technologies such as advanced imaging, single-cell

RNA sequencing, and spatial transcriptomics offer promising
avenues for overcoming current limitations. These techniques
allow for the visualization of cellular interactions and the
identification of cellular heterogeneity within the pancreas,
potentially revealing novel therapeutic targets. Future studies
should continue to explore the molecular basis of both the intra-
and intercellular pathways of pancreatic interactions and to
explore the dynamic changes in the islets’ microenvironment
during PDAC, identify early biomarkers for alterations in hormones
of PDAC, and utilizing advanced imaging and single-cell
technologies to uncover cellular heterogeneity and plasticity
within the pancreas. Understanding how the microenvironment
within islets changes during disease progression may provide
early biomarkers for detecting pancreatic dysfunction before it
becomes symptomatic. Additionally, investigating the systemic
effects of pancreatic dysfunction on other organs could lead to a
more comprehensive understanding and treatment of pancreatic
diseases, broadening therapeutic approaches, and offering holistic
treatments for conditions like diabetes and pancreatic cancer.
Overall, exploring the crosstalk between endocrine and exocrine
of the pancreas and their role in diseases will provide novel
insights, help better understand the pathogenesis of various
diseases, and provide a theoretical basis for future research and
treatment strategies.
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