Signal Transduction and Targeted Therapy

REVIEW ARTICLE

www.nature.com/sigtrans

q

Check for
updates

CAR-T cell therapy for cancer: current challenges and future
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Chimeric antigen receptor T (CAR-T) cell therapies have transformed the treatment of relapsed/refractory (R/R) B-cell malignancies
and multiple myeloma by redirecting activated T cells to CD19- or BCMA-expressing tumor cells. However, this approach has yet to
be approved for acute myeloid leukemia (AML), the most common acute leukemia in adults and the elderly. Simultaneously, CAR-T
cell therapies continue to face significant challenges in the treatment of solid tumors. The primary challenge in developing CAR-T
cell therapies for AML is the absence of an ideal target antigen that is both effective and safe, as AML cells share most surface
antigens with healthy hematopoietic stem and progenitor cells (HSPCs). Simultaneously targeting antigen expression on both AML
cells and HSPCs may result in life-threatening on-target/off-tumor toxicities such as prolonged myeloablation. In addition, the
immunosuppressive nature of the AML tumor microenvironment has a detrimental effect on the immune response. This review
begins with a comprehensive overview of CAR-T cell therapy for cancer, covering the structure of CAR-T cells and the history of their
clinical application. It then explores the current landscape of CAR-T cell therapy in both hematologic malignancies and solid tumors.
Finally, the review delves into the specific challenges of applying CAR-T cell therapy to AML, highlights ongoing global clinical trials,
and outlines potential future directions for developing effective CAR-T cell-based treatments for relapsed/refractory AML.
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INTRODUCTION
Acute myeloid leukemia (AML) is the predominant form of
leukemia in adults, with a median age at diagnosis of 68 years.'?
It is primarily characterized by a high degree of complex clonal
heterogeneity.>* For patients eligible for high-dose chemother-
apy, treatment typically involves a combination of cytarabine and
daunorubicin or idarubicin. Additionally, for those classified as
intermediate or high risk according to the European Leukemia Net
2022 (ELN22)® risk stratification, allogeneic hematopoietic stem
cell transplantation (alloHSCT) is often performed following initial
chemotherapy. However, elderly patients or those with comorbid-
ities who are ineligible for alloHSCT are typically treated with low-
intensity regimens.® These regimens include venetoclax combined
with hypomethylating agents (HMAs),®” low-dose cytarabine,®® or
targeted molecules such as FLT3-directed tyrosine kinase inhibi-
tors,'%"" as well as HMAs with IDH1/2 inhibitors.'*'3

Despite the great efforts that have been made in recent years
and the approval of new targeted therapies, relapsed/refractory
(R/R) AML remains the leading cause of treatment failure. This
challenging scenario occurs in 40-50% of patients younger than 60
years of age®'* and in up to 80% of patients older than 65 years,
many of whom are ineligible for alloHSCT or intensive chemother-
apy.”>"” There is currently no standardized treatment protocol for
these patients, and the 5-year overall survival (OS) rate is below
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20%."® Therefore, R/R AML remains an unmet clinical need, and
further investigation is urgent. For patients who meet eligibility
criteria, alloHSCT is the only potentially curative option in this
setting.

The success of alloHSCT and other cell therapy-based strategies,
such as donor lymphocyte infusion (DLI), relies on the capacity of
T and natural killer (NK) cells to target and eliminate leukemic
cells, underscoring the sensitivity of AML to immunotherapy.'®
This has prompted interest in novel immunotherapeutic
approaches, which are currently being explored.?® For example,
some clinical trials have tested immune checkpoint blockade
strategies, including the anti-TIM3 monoclonal antibody (mAb)
sabatolimab (NCT04266301), with limited results,>' or antibodies
targeting CD47 (e.g., magrolimab, lemzoparlimab).?? A clinical trial
is currently underway (NCT03113643) testing a recombinant
protein consisting of interleukin (IL)-3 fused to a truncated
diphtheria toxin payload that targets CD123 (tagraxofusp).”
Additional ongoing strategies include the use of menin inhibitors
targeting the HOX/MEIS1 transcriptional program, in combination
with chemotherapy, for KMT2A rearranged- or NPM1-mutated
AML, with encouraging results.2**

However, despite the excellent clinical outcomes observed with
several chimeric antigen receptor T (CAR-T) cell products targeting
CD19 or BCMA in the treatment of R/R B-cell malignancies and R/R
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Structure of CARs. First-generation CARs consist of a ligand or scFv ectodomain and a CD3{ TCR-type intracellular signal. Second-

generation CARs contain a scFv extracellular domain and a co-stimulatory domain, 4-1BB or CD28. Third-generation CARs contain two co-
stimulatory domains (usually 4-1BB and CD28). Fourth-generation CARs (TRUCKSs) contain a domain encoding a specific cytokine or signal
blocker/inducer. Fifth-generation CARs contain three synergistic co-stimulatory signals. This figure was created using Biorender.com

multiple myeloma (MM), no CAR-T cell product has yet received
regulatory approval for AML. This review offers an overview of the
current development of CAR-T cell therapies for both hematologic
and solid tumors, while examining the challenges associated with
their application in AML, ongoing clinical trials, and future
directions for optimizing CAR-T cell therapy in the treatment
of AML.

CAR-T CELL STRUCTURE
CARs are engineered receptors consisting of a combination of an
endodomain, an anchoring transmembrane domain, and an
ectodomain.?®?” The latter is a ligand-specific extracellular domain
consisting of a single-chain variable-fragment (scFv) region and a
hinge.?® The scFv is a fusion protein of the variable regions of the
light and heavy chains of immunoglobulins linked by a short
flexible peptide linker.?® The hinge, also known as a spacer,
separates the binding units from the transmembrane domain.>
Most CAR-T cells are designed with immunoglobulin-like domain
hinges, which provide flexibility in accessing the target anti-
gen.2'?? The endodomain may consist of the intracellular T cell
activation domain of CD3( as a single entity or by one or more
intracellular co-stimulatory (or activation) domains.3® While the
scFv provides antigen specificity, the co-stimulatory domains are
key to the activation of effector T cells.3* CAR-T cells are classified
into five generations based on the endodomain (Fig. 1).3°7’
The first-generation CAR-T cells comprised a single fragment
derived from the CD3{ chain3**° These cells depended on
exogenous cytokine production, exhibited insufficient persistence
and T cell activation, and consequently, did not achieve the
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desired results in most studies.”’™* Accordingly, first-generation
CARs have been superseded by second-generation CARs, which
feature an intracellular signaling domain comprising a variety of
co-stimulatory protein receptors situated within the cytoplasmic
tail of the CARs, such as CD28 or CD137 (4-1BB).**™* These co-
stimulatory proteins can enhance proliferation, cytotoxicity, and
prolong persistence.

Third-generation CARs integrate multiple signaling domains,
including CD28, 4-1BB, ICOS, and/or 0X40.>°> Fourth-generation
CAR-T cells, also known as “T cells redirected for universal
cytokine-mediated killing” or “TRUCKs"** are engineered to release
cytokines into the tumor microenvironment (TME). They may also
express additional proteins such as chemokine receptors, switch
receptors, bispecific T cell engagers (BiTEs), and blockers/inducers
of specific signaling pathways.>*™’

In this context, next-generation CAR-T cells are currently
underway. The fifth-generation differs from the previous versions
by integrating an additional membrane receptor. Several
approaches are being explored, with one of the most promising
involving the incorporation of IL-2 receptor signaling to enable
antigen-dependent JAK/STAT pathway activation.’®™®' This signal-
ing not only sustains CAR-T cell activity and promotes memory T
cell formation but also reactivates and stimulates the broader
immune system.

Modifying T cells to express CARs typically involves transducing
the cells with viral vectors containing the transgene, which leads
to the semi-random integration of DNA into the T-cell genome.
Interestingly, some fifth-generation strategies use specific site-
integrations that provide additional features, which can be
achieved through CRISPR mediated editing. One example is the
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Fig. 2 The timeline of milestones in CAR-T cell development. The first reports published in scientific journals or conference abstracts,
excluding patent applications, are highlighted. The efficacy of CD19 CAR-T cells was reported in patients with B-NHL in 2010, CLL in 2011, and

B-ALL in 2013. The figure was created using Biorender.com

insertion of the CAR into the TRAC locus (T cell receptor alpha
constant). The TRAC locus is a constant region within the T cell
receptor (TCR) alpha chain gene. This genetic editing allows the
suppression of the expression of the endogenous TCR to ensure
specific antigen recognition while avoiding potential interference
from the natural TCR. By integrating TRAC, fifth-generation CAR-
T cells maintain greater stability and identity over time, improving
their ability to recognize and eliminate cancer cells. This genetic
modification reduces the risk of T-cell exhaustion, graft-versus-
host effect, and enhances the overall efficacy of CAR-T therapies,
offering a more durable and potent treatment option.®® In line
with this, an additional innovative strategy has integrated the CAR
cassette into the PDCD1 gene locus demonstrating a superior
ability to eradicate cancer cells both in vitro and in xenograft
models.®>54

All six of the currently approved CAR-T cell constructs are
second-generation CARs. Axicabtagene ciloleucel (Yescarta®) and
brexucabtagene autoleucel (Tecartus®) are CD28-based,®® whereas
the remaining approved constructs are 4-1BB-based. Most
approved products employ a murine scFv except for ciltacabta-
gene autoleucel (Carvykti®), which utilizes a camelid binding
domain.®® As exposed in the following sections, to further improve
the efficacy of CAR-T cell therapy, the different CAR components
have been engineered, resulting in constructs with enhanced
properties,>867:68

CAR-T CELL IN CANCER: CURRENT LANDSCAPE

History of CAR-T cell implementation

Modern CAR-T cell therapy is the culmination of decades of
groundbreaking immunology and genetic engineering research.
Here, we provide a brief overview of the key contributions that
paved the way for its first approvals and subsequent use in
thousands of patients worldwide (Fig. 2).

The remarkable success of CAR-T cell therapy would not have
been possible without foundational discoveries in immunology.
The identification of T cell origin,%®’° and the pioneering work of
Dr. Eva and Dr. George Klein, who demonstrated that immune
cells can eradicate cancer,”’ were crucial milestones. In subse-
quent years, significant contributions were made by Dr. Steven
Rosenberg at the National Cancer Institute (NClI), who pioneered
the use of tumor-infiltrating lymphocytes (TILs) to treat selected
solid tumors in patients.”>”* While Rosenberg and colleagues
highlighted the undeniable potential of cytotoxic T cells to
combat cancer, TIL therapy faced challenges, including low
reproducibility in TIL expansion and the restriction of its use to
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immunogenic tumors due to major histocompatibility complex
(MHC) dependency. These limitations spurred researchers to
address these challenges and explore ways to harness the
anticancer potential of T cells across a broader range of
malignancies, including poorly immunogenic tumors. This led to
the groundbreaking concept of reprogramming T cells for
enhanced specificity.

The concept of CARs originated from two groundbreaking
studies conducted in the late 1980s. In 1987, Dr. Yoshikazu
Kurosawa and colleagues engineered modified cells expressing T
cell receptors (TCRs) with their variable regions replaced by the
antigen-binding site of an antibody, creating receptors that
functioned independently of MHC interaction.”” Similarly, in
1989, Dr. Zelig Eshhar and his team developed analogous
constructs.”® They successfully generated “T-bodies,” functional
chimeric receptors that recognized a hapten, confirmed by their
ability to kill target-expressing tumor cells and produce cytokines
(Fig. 2). Notably, Eshhar and colleagues proposed for the first time
the potential use of CAR-modified T cells to combat cancer, laying
the groundwork for subsequent innovations. A few years later, the
same team introduced pivotal constructs of what are now
considered first-generation CARs (Fig. 1). These early receptors,
containing an anti-hapten antibody-derived scFv linked to the
intracellular CD3( chain, were successfully expressed in murine
cytotoxic T lymphocyte (CTL) hybridoma cells.”” However, these
first-generation CAR-T cells exhibited limited proliferation and
killing capacities.****’® Moreover, their introduction to murine
cells highlighted the need for optimized CAR-T production
protocols, particularly to effectively modify and expand human
T cells ex vivo. At this time, Dr. Michel Sadelain at Memorial Sloan
Kettering Cancer Center (MSKCC) made significant advancements
in T-cell engineering by improving retroviral modification
methods.”® Sadelain’s work on CAR design included the introduc-
tion of the CD28 co-stimulatory domain, which enhanced CAR T
cell persistence and survival.2° These advances were influenced by
earlier research led by Dr. Carl June at Children’s Hospital of
Philadelphia (CHOP), whose pivotal study a decade earlier
established the critical role of CD28 co-stimulation in T cell
proliferation and  cytokine  production, complementing
CD3 signaling.?’ Collectively, the tremendous efforts of scientists
in the late 20th century provided the foundational knowledge and
technical advancements necessary for the eventual clinical
implementation of CAR-T cell therapy.

In the early 2000s, Sadelain’s team emerged as a leader in
advancing CAR-T cell research. A pivotal breakthrough came with
Maher et al.#? who introduced second-generation CARs to primary
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human T cells (Fig. 1). Although this was not the first report of
CARs incorporating the CD28 co-stimulatory domain upstream of
the CD3( chain® Maher and colleagues were the first to
demonstrate successful modification of primary human T cells to
express second-generation CARs targeting prostate-specific mem-
brane antigen (PSMA). These anti-PSMA CAR-T cells exhibited
sustained proliferation and responsiveness to repeated stimula-
tion by PSMA-expressing cancer cells, achieving the first fully
effective CAR-T product.

Just one year later, researchers from MSKCC delivered another
transformative milestone in immunotherapy. While early CAR-T
development primarily focused on optimizing signaling constructs
to enhance proliferation and persistence, selecting an ideal
antigen to target became equally critical. Initial preclinical studies
with first- and second-generation CARs targeted solid tumor-
associated antigens, including disialogangliosides (GD2, GD3),
carcinoembryonic antigen (CEA), and PSMA.>° However, Sadelain
and his team shifted their focus to hematological malignancies,
proposing CD19 as a promising antigen nearly 15 years before its
clinical implementation in CAR-T therapy®® In a landmark
2003 study, the MSKCC team demonstrated the feasibility of
expanding CAR-T cells ex vivo using artificial antigen-presenting
cells and IL-15. These CD19-targeted CAR-T cells achieved
sustained persistence in immunodeficient murine models with
established B-cell tumors. Around the same time, other research
groups in the US—at institutions such as the National Cancer
Institute (NCI), CHOP, and Baylor College of Medicine—also
identified CD19 as a highly promising tumor-associated anti-
gen.**8>87 These efforts collectively focused on treating B-cell-
derived malignancies, including B-cell acute lymphoblastic leuke-
mia (B-ALL), chronic lymphocytic leukemia (CLL), and B-cell non-
Hodgkin lymphoma (B-NHL), which uniformly express CD19 on
their surfaces (Fig. 2). This concerted effort to target CD19
revolutionized the field and set the stage for CAR-T therapy’'s
transformative impact on hematologic cancers.

After CD19 was identified as the optimal target for immu-
notherapy, a critical milestone was the development of scalable
manufacturing protocols for clinical-grade CAR-T cells. Until 2010,
the efficacy of CD19 CAR-T cells had been primarily evaluated
in vitro and in murine models, which required relatively small
numbers of effector cells. However, preparing CAR-T cells for
clinical use demanded protocols capable of large-scale produc-
tion. In 2009, Hollyman et al.?® described a process for autologous
T cell activation, transduction, and expansion in bioreactors,
enabling the generation of sufficient cell numbers for clinical
applications. This advancement opened new opportunities for
future clinical trials. By May 2010, nine independent single-center
clinical trials were registered across the US, with three more under
regulatory review.®® Investigators published data from individual
case studies before collective clinical trial results were available.
The first report of CD19 CAR-T therapy in a patient came from
Rosenberg’s group at the NCI, detailing a case of relapsed B-NHL.*°
This study used autologous T cells engineered with a second-
generation CAR construct incorporating anti-CD19 scFv (anti-
FMC63 epitope), a CD28 co-stimulatory domain, and a CD3(
signaling chain.”® In the following months, additional studies
reported the use of CD19 CAR-T cells in patients with B-cell-
derived malignancies. The first clinical results from the CHOP
described treating CLL,%"?% while researchers at MSKCC reported
outcomes for adult B-ALL.7>** Notably, the CHOP trials utilized
CD19 CAR-T cells designed with the 4-1BB co-stimulatory domain
(CD19-BB-z), a construct initially introduced by Dr. Dario Campana
and Dr. Chihaya Imai at St. Jude Children’s Research Hospital.*’
These early clinical studies established the foundation for the
rapid progression of CAR-T therapy from experimental models to
transformative cancer treatments (Fig. 2).

While early CD19 CAR-T cell clinical trials primarily enrolled R/R
adult patients, a groundbreaking milestone was achieved in 2012
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when physicians and scientists from CHOP administered CD19
CAR-T therapy to the first pediatric patient with B-ALL. The
treatment garnered worldwide attention as the patient achieved
morphologic remission within a month of CAR-T cell infusion.”
Remarkably, as of 2024, this patient remains cancer-free after 12
years, highlighting the life-saving potential of CAR-T therapy.”®
The treatment, however, was not devoid of high-grade adverse
effects and severe cytokine release syndrome (CRS), which was
manifested by high IL-6 levels. Fortunately, the CHOP team, led by
Dr. Carl June, obtained permission for the “off-label” use of
tocilizumab—a humanized monoclonal antibody targeting the IL-
6 receptor—originally approved for treating rheumatoid arthritis.
The successful management of CRS with tocilizumab was a pivotal
moment in CAR-T therapy, and IL-6 receptor antagonists are now
the standard of care for CRS management in CAR-T-treated
patients,””*® even prophylactically. This case showcased CAR-T
cells’ efficacy in pediatric cancer?®'® It underscored the
importance of effective strategies to manage treatment-
associated toxicities, paving the way for safer and more accessible
CAR-T therapies.'®

In the subsequent years, additional results from single-center
trials demonstrated sustained remissions in patients treated with
CD19 CAR-T, including adults and children with B-ALL'?"192 and
adults with B-NHL or CLL.'%*'%* The successful responses in these
pivotal trials prompted collaborations between scientists, clin-
icians, and biopharma companies to further develop and
implement this treatment, ultimately acquiring the necessary
regulatory approvals. Notably, June's team at CHOP partnered
with Novartis,'® Rosenberg’s team at NCI collaborated with Kite
Pharma,'® and researchers from MSKCC, Seattle Children’s
Research Institute, and Fred Hutchinson Cancer Research Center
founded Juno Therapeutics.'” As a result, CD19 CAR-T received
breakthrough therapy designation from the FDA in 2014, and the
global multi-center trials culminated in the first approvals in 2017.
Specifically, Kymriah® (CD19-BB-z) became the first approved cell-
based therapy for R/R B-ALL in patients under 25 years old, while
Yescarta® (CD19-28-z) was approved for adult R/R B-NHL, based on
the ELIANA,'%% and and ZUMA-1""° trials, respectively.

These landmark approvals resulted from over 30 years of
groundbreaking research and the dedicated efforts of scientists
and clinicians. Despite the success of these CAR-T therapies,
challenges remain in gaining approval for their use in all blood
cancers and solid tumors. In the following sections, we will present
an overview of the current role of CAR-T cells in hematologic
malignancies with a major focus on AML and solid tumors,
followed by the key difficulties involved in implementing adoptive
cell therapies for patients with AML.

CAR-T therapies for hematologic malignancies and solid tumors:
current scenario
The US Food and Drug Administration (FDA) has approved six
CAR-T cell therapies for the treatment of various hematologic
malignancies. Kymriah®, a second-generation CAR-T cell therapy
targeting the B cell antigen CD19, was the first CAR-T cell therapy
to receive approval by the FDA and the European Medicines
Agency (EMA) for the treatment of children and young adults with
ALL.'%9"112 The FDA and EMA have subsequently approved
three additional CAR-T cell therapies targeting the CD19 antigen:
Yescarta®,'"*™""> Tecartus®®>'"® and lisocabtagene maraleucel
(Breyanzi®).''®'"” |n addition, two B cell maturation antigen
(BCMA) CAR-T cell products have been approved for the treatment
of R/R MM, idecabtagene vicleucel (Abecma®)''® in March 2021
and Carvykti® in February 2022.55'1912% Cyrrently, several clinical
trials are ongoing testing these six CAR-T cells for further
indications (Table 1).

CAR-T therapy has been a breakthrough treatment for
hematologic cancers, but its effectiveness in solid malignancies
has been limited. To date, no CAR-T cell therapy has been granted
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FDA or EMA approval for solid tumors (Table 1), highlighting a
critical need for progress in this context. Several factors may
contribute to the limited effectiveness of CAR-T cells in solid
malignancies, such as the antigen heterogeneity and the tumor
microenvironment (TME). The TME is characterized for being
highly immunosuppressive, hypoxic, and fibrotic, thus creating a
physical and biological barrier that prevent CAR-T cells from
accessing the tumor cells. Moreover, several studies have shown
limited CAR-T cell expansion and shorter persistence in patients
with solid tumors.'*'~"3

A clinical case report indicates a response to multiple doses of
intracranial IL-13Ra-targeted CAR therapy in a patient with
recurrent multifocal glioblastoma, which was sustained for 7.5
months after starting treatment.'** Some evidence regarding
GD2-specific CAR-T cells in four pediatric patients with H3K27M-
mutated glioma has also been reported, with three of four
patients exhibiting clinical and radiographic improvement.'?

Recent studies with larger cohorts in the solid tumor field have
demonstrated significant antitumor effects. Notably, a clau-
din18.2-targeted CAR has proven effective in treating gastro-
intestinal tumors in a study including 37 patients (NCT04196413),
with an overall response rate (ORR) and disease control rate (DCR)
of 48.6% and 73.0%, respectively.'?® Moreover, a GD2-specific CAR
has shown strong results in 27 children with heavily pretreated
neuroblastoma (NCT03373097). In this study, ORR was 63%; 9
patients had a complete response, and 8 had a partial response.
Among those patients who received the recommended dose, the
3-year overall survival and event-free survival were 60% and 36%,
respectively. The security profile was reasonable.'?’

While CAR-T cell therapies are not yet approved for solid
tumors, other T lymphocyte-based treatments have recently been
authorized. One of them is the gp100 peptide-MHC/CD3 bispecific
T-cell engager (TCE) tebentafusp which was approved for uveal
melanoma in 2022."?® Moreover, an autologous TCR T cell therapy
named afami-cel is currently being tested in heavily pre-treated
patients with HLA-A*02 and MAGE-A4-expressing synovial sar-
coma. The phase 2 trial (NCT04044768) resulted in an ORR of 37%
and durable responses.'?® Other cellular therapies have also
shown promising responses in treating certain solid tumors like
HPV-associated cancers.'307132

Collectively our understanding of the underlying reasons for the
humbile clinical activity observed in CAR-T cell trials involving solid
tumors remains under investigation. In the following pages, we
will examine the current application of CAR-T cells in the
treatment of another disease, which, similar to solid tumors,
remains challenging for CAR-T cell therapy: acute myeloid
leukemia (AML).

CAR-T CELL-ASSOCIATED CHALLENGES IN AML

The experience gained from treating R/R B-cell malignancies and R/
R MM with CAR-T cell therapy has identified several characteristics
associated with promising outcomes. These include the CAR
molecular structure and co-stimulatory domains, the targeted
antigen, the method of transduction, the lymphodepletion regi-
men prior to cell infusion, the infused cell doses, the heterogeneity
of the patient population, and the intrinsic features of the tumor
cells, among others. The primary challenges in the AML setting are
three-fold: i) the clonal heterogeneity of the disease, ii) the highly
immunosuppressive bone marrow (BM) microenvironment, and iii)
the lack of tumor-specific target antigens (Fig. 3).2%'3313*

AML heterogeneity

Nowadays, acute myeloid leukemia (AML) is a broad category that
encompasses various diseases, each with distinct molecular and
cytogenetic abnormalities.’>>™"3” This molecular and cytogenetic
heterogeneity is reflected in the current diagnostic reality, where
there are three major international classifications: the WHO

SPRINGERNATURE

2022,'* which defines 11 AML groups based on genetic
abnormalities; the ELN 2022,"*° which is based on the previous
one, but identifies 14 AML groups and is focused on prognosis
and management; and the ICC 2022,"° which recognizes 18
entities. While new risk-stratifying molecular subgroups of AML
may emerge over time, not all gene expression subtypes correlate
well with disease-associated gene fusions or mutations.'"’

This heterogeneity arises from multiple factors influencing
disease presentation, progression, and response to treatment.
AML is characterized by a diverse array of genetic mutations that
affect key pathways, including signal transduction (FLT3), epige-
netic regulation (DNMT3A, IDH1/2, EZH2), and apoptosis (TP53).*
These mutations drive distinct transcriptional programs, contri-
buting to variability in disease behavior and drug sensitivity.'*
Additionally, chromosomal translocations (e.g. t(8;21), inv(16),
t(15;17)) further influence AML prognosis and treatment strategies.
Another layer of complexity comes from the clonal evolution of
AML, where subclones with distinct genetic profiles contribute to
intratumoral heterogeneity."*® These molecular and cytogenetic
alterations serve as the foundation for prognostic classifications, as
they are crucial factors influencing treatment outcomes and
survival. For instance, AML with a complex or monosomal
karyotype, structural abnormalities involving chromosome 3,
TP53 mutations, high allelic ratio FLT3 mutations, or mutations in
ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and ZRSR2
(classified as AML with myelodysplasia-related gene mutations),'*
are associated with treatment resistance and relapse, placing it in
the ELN 2022 adverse prognostic group.'®

AML is thought to mirror normal hematopoiesis, with leukemia
stem cells (LSCs) sustaining the disease by driving the production
of differentiated blasts.'** First described in the 1960s, LSCs are
characterized by low cycling or quiescence, self-renewal capacity,
and transcriptional or epigenetic signatures similar to hemato-
poietic stem cells (HSCs) and normal multipotent hematopoietic
progenitors. LSCs exhibit therapy resistance due to their quiescent
state and self-renewal potential.'* They originate from the
sequential accumulation of somatic mutations in HSCs or HSPCs,
or even more differentiated cells, where early mutations enhance
self-renewal and impair differentiation, leading to the expansion of
pre-leukemic clones. Common early mutations involve genes
regulating epigenetics (DNMT3A, TET2, IDH1/2, ASXL1) and TP53,
while later mutations, such as those in FLT3, drive proliferation,
block differentiation, and ultimately lead to AML blast formation.'*

This developmental hierarchy is even more complex at relapse,
comprising distinct subclones of leukemia cells with disparate
phenotypic, genetic and epigenetic features coexisting within a
single patient.*'*"'*” This complexity may impede CAR-T cell
development by facilitating antigen escape.'’

BM microenvironment

AML blasts and LSCs present immune evasion mechanisms, in
addition to remodeling of the BM microenvironment, which
collectively drives disease progression.'®'*® While these factors
were once considered to have a limited role, recent studies have
highlighted their crucial contribution to the advancement of the
disease.

First, among the intrinsic factors directly related with the
myeloid blast, mutations in NPM1 and FLT3 have been linked to
alterations in immune response.*”'*® Furthermore, the effects of
mutant IDH1/2 and the subsequent increase of the oncometabo-
lite R-2-hydroxyglutarate (R2-HG) have been associated with the
augment of regulatory T cells (Tregs) in AML."*%'>! 7P53 mutations
have also been shown to impede immune surveillance.'>* '
Other intrinsic features described in AML include downregulation
of HLA molecules, leading to defective antigen presenta-
tion'>>"'>7; and alterations in cytokine balance.'>®'%°

Secondly, it is well documented that the highly immunosup-
pressive BM microenvironment deleteriously affects immune
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Fig. 3 Challenges in CAR-T cell generation for AML: manufacturing, bone marrow niche and tumor heterogeneity role (a). Current strategies
being tested in clinical trials targeting CD123, CD33, CLL-1 and CD7 antigens (b). This figure was created with Biorender.com

responses and T cell fitness.'®’ On one hand, metabolic products
within the TME play a significant role in immune suppression,
limiting the effectiveness of immunotherapies. AML cells exhibit
altered metabolism, producing lactate, adenosine, and

Signal Transduction and Targeted Therapy (2025)10:210

kynurenine, which contribute to a hostile microenvironment that
impedes the function of CAR-T cells.’®*"'%* Elevated lactate levels,
resulting from rapid glycolysis in AML blasts, can acidify the TME,
suppressing T cell activation and proliferation. This acidic
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environment not only limits the effector functions of CAR-T cells
but also promotes the accumulation of Tregs and myeloid-derived
suppressor cells (MDSCs, pathologically activated neutrophils and
monocytes with potent immunosuppressive activity'®>~'®’), both
of which further dampen immune responses.'*> Additionally,
adenosine, often elevated in the TME, binds to receptors on CAR-T
cells, leading to immune suppression and exhaustion.'®®'%?
Similarly, kynurenine, generated through tryptophan catabolism
by AML cells, also inhibits T cell function and promotes an
immunosuppressive setting.'”°

On the other hand, AML is characterized by an increase in the
number of T cells that infiltrate the BM compared to those
observed in healthy individuals.'”' These T cells exhibit an
increase in the frequency of immune inhibitory and activating
co-receptor expression, particularly in R/R AML.'7>'”> This
includes the expression of PD-1,'7%'7 0X40,'”® TIM3, and
LAG3."7° Overall, T cells display insufficient potency, persistence,
and functionality in this context.'® This T cell exhaustion, which
may be present in the apheresis-derived T cells or emerge during
the CAR-T cell manufacturing process,'®"'82 is typically not only
characterized by high expression of inhibitory receptors,'®® but
also is related to extensive transcriptional and epigenetic
alterations, defective cytokine production, increased chemokine
expression, and a shift from T cell to NK-like T cell
phenotypes.175’184’185

In third place, in addition to intrinsic factors directly associated
with the myeloid blast, its metabolism and other factors related to
T cells, the expansion of M2 macrophages has also been shown to
enhance AML immune escape.'®*'®” Moreover, poor immune
synapse function'® and impaired NK cell function have been
identified as mechanisms involved in this process.'® % Finally, it
is also important to consider the role that the bone marrow
structure may play beyond the cellular components. BM vascular
remodeling may hinder anti-AML immune responses by reducing
cell migration and inducing hypoxia.'®"'?2

Target antigen

The identification of an appropriate target for CAR-T cell therapy in
AML is crucial. A suitable target should be an HLA-unrestricted
antigen/protein expressed on the cell surface of malignant cells
with a high expression level. Nonetheless, some preliminary
evidence suggests that lower expression levels might be sufficient
to direct CART cells.?? Ideally, the antigen should also be
expressed on LSCs to ensure complete disease eradication and
minimize early relapses.'”® Importantly, it must be absent in
healthy tissues to prevent potentially fatal on-target/off-tumor
toxicities.'”® To date, no optimal target for CAR-T cell therapy in
AML has been identified. AML neoantigens are relatively
uncommon and are known to be mainly intracellular, requiring
HLA presentation.’®*

One of the earliest demonstrations of the potential of CAR-T
cells for AML was a construct developed by Ritchie and colleagues
that targeted the Lewis Y (LeY) antigen.'®> This CAR-T was tested
in a Phase 1 clinical trial, demonstrating a favorable safety profile
and durable in vivo persistence. However, the efficacy of this
approach was limited, and all patients relapsed with the detection
of LeY-positive AML blasts. In current clinical practice, CD33 and
CD123 represent the most utilized molecules for CAR-T cell
engineering'®® (Table 2, Fig. 4).

CD123. (CD123, also known as the alpha chain of the IL-3
receptor (IL-3Ra), is a membrane protein highly expressed in AML
(~90% of cases),'®”'% CD123 has also been identified in other
myeloid malignancies, such as myelodysplastic syndrome, chronic
myelomonocytic leukemia, chronic myeloid leukemia, and mye-
loproliferative neoplasms,'®® CD123 is involved in the JAK, MAPK,
and PI3K/AKT signaling pathways, which regulate cell proliferation
and differentiation.?®°

SPRINGERNATURE

Overexpression of CD123 has been identified in up to 95% of
LSCs and AML blast cells.®' About on-target/off-tumor toxicities,
there is controversy over its expression in healthy HSCs. Some
reports have identified low CD123 expression patterns on HSCs,'®°
while other preclinical studies have described a myeloablative
effect of CD123-directed CAR-T cells.>°? A significant concern is
the potential extra-hematologic toxicities, as CD123 is expressed
in endothelial cells, which could result in capillary leak
syndrome. 203204

Several unconjugated monoclonal antibodies (mAbs), including
the CD123-directed mAbs CSL360 and CSL362 (talacotuzumab),
have demonstrated limited efficacy in the treatment of R/R
AML.2%2% Consequently, current strategies predominantly entail
the use of toxin-conjugated constructs or Bi-specific T-cell
engagers (BiTEs). In this line, various agents targeting CD123
have been developed, including tagraxofusp, a recombinant
protein comprising a truncated diphtheria toxin fused to IL-3,
which has been approved for the treatment of blastic plasmacy-
toid dendritic cell neoplasm (BPDCN).2°*?” Tagraxofusp has
demonstrated preliminary clinical activity in the context of
AML?% Additional strategies targeting CD123, including BiTEs
such as pivekimab sunirine (PVK, IMGN632),°°'° vibecotamab?"’
and flotetuzumab?'??'3; as well as other strategies such as JNJ-
63709178, MGD024,2' and APV0436,2'> are currently under
investigation, with promising results (Fig. 4).

CD33. (D33 is a transmembrane receptor stimulated by sialic
acid residues that is expressed in approximately 85% of AML
cases.”’® CD33 undergoes internalization and dimerization upon
binding, making it an attractive therapy and drug delivery target.
Its primary role is related to the downregulation of cytokine
production and monocyte activation.?’*'® It is known to be
present in over 85% of LSCs, with relatively low expression in
HSCs.2'

The humanized anti-CD33 antibody drug-conjugated gemtuzu-
mab ozogamicin is EMA and FDA-approved for first line use in
combination with intensive chemotherapy in treatment-naive
AML2"722% The primary toxicities reported are persistent throm-
bocytopenia and veno-occlusive disease (VOD).??> The latter was
initially associated with CD33 expression in Kupffer cells within
hepatic sinusoids following FDA approval in 2000.>2° Upon
reapproval in 2017 for administration in a fractionated dosing
schedule, VOD was less frequent and was subsequently reported
to be associated with the direct hepatotoxicity of the conjugated
drug (calicheamicin).?**

In line with the evidence reported with anti-CD123 unconju-
gated molecules, mAbs and antibody-drug conjugates directed
against CD33 (lintuzumab,??”72%° SGN-CD33A,%3° and IMGN779%")
have failed to demonstrate relevant antileukemic activity to date.
Notably, several CD33 x CD3 BiTEs have shown promising results
with an acceptable toxicity profile in clinical trials for R/R AML
(AMG 330,*?* AMG 673,** GEM333, JINJ-67571244, and
SAR440234) (Fig. 4).

CLL-1. CLL-1, also known as CLEC12A, myeloid inhibitory c-type
lectin-like receptor,®®> dendritic cell-associated C-type lectin 2
(DCAL-2),2° or CD371, is a C-type lectin-like type Il transmem-
brane receptor with a role in cell adhesion and cell-to-cell
signaling.2"2* It is expressed in over 85% of patients with AML,
both in blasts and LSCs.?**2*° Furthermore, it is expressed
exclusively in myeloid lineage cells'® and is absent in
granulocyte-macrophage progenitors. In addition, CLL-1 does
not show relevant expression on HSCs or extra-hematological
tissues,*>2*12*2 |imiting potential on-target/off-tumor risks and
making it an exciting target for investigation.'*®

NKG2D. Natural killer group 2 member D (NKG2D) is a highly
conserved activating receptor of NK cells and T lymphocytes that
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plays a pivotal role in immune recognition of tumoral cells
through the engagement with a group of ligands, namely MICA,
MICB, and the UL16-binding proteins.>**72* NKG2D ligands are
induced in response to DNA damage, inflammation, and
malignant transformation.>*¢™2*° Expression of NKG2D ligands
has been documented in different hematologic malignancies,
including AML, whereas expression is generally absent in healthy
tissues.>%%" Consequently, there is growing interest in NKG2D
and NKG2D ligands as potential targets for CAR-T cell therapy.'*®

Reference
624,625
626

CD7. (D7 is a transmembrane protein essential for T cell and T
cell/B cell interactions in early lymphoid development.****3 It is
among the earliest T cell-associated antigens expressed during
T-lymphocyte maturation and is aberrantly present in approxi-
mately 30-40% of adult AML patients.®>*?*> An important
consideration is that CD7, present on T cells, requires CD7-
directed CAR-T cells with CD7 gene-knockout strategies to prevent
effector T cell fratricide*®™*° Some strategies have been
successful in preliminary studies, mainly for T cell leukemia/
lymphoma.>>>*%° Consequently, CD7 may represent a viable
target for CD7 + AML.2>32382%9
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CD38. (D38 is a surface glycoprotein that plays a role in cell
adhesion, migration, and intracellular calcium mobilization.?%'-2%
It is known to be expressed in plasma cells but is also expressed
heterogeneously in myeloid cells.?** Combinations of the huma-
nized mAb targeting CD38, daratumumab, with other drugs, have
demonstrated efficacy in the treatment of AML and T-ALL in
clinical trials (NCT03067571 and NCT03384654), with no significant
cytopenia reported.?®®> Similarly, another CD38 mAb, isatuxi-
mab,?%®?%” has been employed in a second-stage study
(NCT03860844), investigating its use in combination with standard
salvage chemotherapy in children with R/R ALL or AML in first or
second relapse. No unexpected safety issues were observed, and
complete response (or complete response with incomplete
peripheral blood count recovery) was observed in 50% of patients
in the AML cohort.?®® Then, targeting CD38 presents a promising
strategy that mazl additionally hold potential benefits for a variety
of malignancies.®®®
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Xuzhou Medical University
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|
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|

CD44v6. (D44, or the receptor for hyaluronic acid, is a cell
surface adhesive molecule implicated in the aggregation, migra-
tion, activation, and malignant transformation of leukocytes.?”~%"2
It is expressed on multiple tissue types, although some splice
isoforms of CD44 are relatively tumor-restricted. For example, the
splice site variant CD44v6 is present in over 60% of AML samples
and is not shared by non-tumoral cells?”® or HSCs, indicating that
this antigen is a promising target. The available data demonstrate
promising results in in vitro and in vivo mouse models.?’3727>

CD70. CD70, or the tumor necrosis factor receptor ligand, is
expressed on antigen-presenting cells and is upregulated to
promote an effector CD8 + T cell response and downregulate Th17
function. Reports have identified CD70 expression in 45% of AML
blasts and in 30% of LSCs,>’® or even lower.?”” Other studies
suggest its expression in up to 75% of AML LSCs.'® The targeting
of CD70 with a mAb (cusatuzumab) has been demonstrated to
successfully eliminate AML-LSCs when combined with HMAs,
making it an exciting target for CAR-T cell therapy.’’® The
preclinical evidence for CAR-T cells targeting CD70 is
encouraging.?’’?7°

patients with hematopoietic and lymphoid malignancies.

of CAR-T cells therapy in R/R AML

CD123 in patients with R/R AML
NCT03473457 The prospective, multi-center and single-arm clinical study NA

Study Summary
therapy for AML

R/R AML
NCT05995041 Universal CAR-T cells targeting CLL-1, CD33, CD38 and

NCT06125652 Administration of anti-Tim-3/CD123 CAR-T cell therapy in
NCT03222674 Multi-center Phase 1/2 clinical trial of multi-CAR T cell
NCT04010877 Multiple CAR-T cell therapy targeting AML

NCT05513612 Safety and efficacy of novel autologous CAR-T cells in

trial.gov
Identifier

Clinical

FLT3. FLT3 is a very well-characterized receptor ligand for HSCs
maintenance and differentiation. It is implicated in 30% of patients
with AML (approximately 24% involving FLT3-ITD and 7-10%
involving FLT3-TKD?®%). Some FLT3 inhibitors have already
received FDA approval (midostaurin, gilteritinib) with an accep-
table safety profile®®' Additional FLT3 inhibitors under

continued

Data from https://clinicaltrials.gov as of September 04 2024. R recruiting, NYR not yet recruiting, ANR active not recruiting, T terminated, WD withdrawn, UN unknown, R/R AML relapse/refractory AML, BPDCN

Blastic plasmacytoid dendritic neoplasm, HR-MDS High Risk Myelodysplastic Syndrome

CD38 or CD123
CD33, CD38,
CD56, CD123,
CD56 or CD123

CLL-1
CD123 or CD33

Target Antigen
Tim-3/CD123
CLL-1, CD33,
CD117, CD133,
CD34 or Muc1
Muc1/CLL1/
CD33/CD38/
CcD19

BCMA

Table 2.
CD123
CcDh7
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Fig. 4 Main characteristics of the most common antigens targeted with current directed therapies for AML and relevant clinical trials.
Antibody-drug conjugates (ADC) targeting CD123 shown are Tagraxofusp in monotherapy (208); Tagraxofusp + Azacitidine + Venetoclax
(209); IMGN63 (210); IMGN63 +Venetoclax + Azacitidine (211). Biespecific T-cell Engagers (BiTE) targeting CD123 exposed are Vibecotamab
(212); Flotetuzumab (213); JNJ-63709178 (214); and MGD024 (215). Monoclonal Antibodies (mAb) targeting CD38 are isatuximab in
combination with chemotherapy (268). BiTE targeting CD33 are AMG330 (233) and AMG673 (235). AZA Azacitidine, Ven Venetoclax, CT
chemotherapy, CR complete response, CRi complete response with incomplete hematologic recovery, PR partial response, ND new diagnosed,
R/R refractory/relapsed, ORR Overall Response Rate, SD stable disease, This figure was created with Biorender.com
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investigation include quizartini sorafeni and crenola-
nib.>®* To date, most data regarding CAR-T cell therapy is
preclinical,?®*?%” and significant concerns have been raised
regarding FLT3 expression in HSCs. In this context, some
constructs in development include safety switches (described in
the following sections) to reduce myeloablation.?®®

Other potential targets currently under investigation include
CD19,%° ADGRE2,'***° and ILT3.”" However, there is limited
data available regarding their efficacy and safety.

CURRENT STRATEGIES IMPLEMENTED IN CLINICAL TRIALS
Currently, there are 75 registered clinical trials of CAR-T cell
therapy for AML (Table 2), of which 53 (71%) are Phase 1 or early
Phase 1 trials, with CD33 and CD123 being the most frequently
targeted antigens (Fig. 4). Most of these trials recruit patients from
China and the US. Past and ongoing clinical trials of CAR-T cells for
treating AML are discussed below.

CD123-CAR-T cells in clinical trials

In 2020, a German group testing CAR-T cell therapy directed to
CD123 reported the preclinical efficacy of UniCAR-T-CD123,%%? a
two-component, rapidly switchable and second-generation CAR-T.
The construct carries a CD28 co-stimulatory domain that, by itself,
does not recognize any surface antigen apart from a soluble
adaptor named targeting module (TM), which is included in the
second component.?>?%* The TM is administered intravenously
and confers specificity against the antigen of choice. In this case,
the TM included a scFv directed to the CD123 antigen (Fig. 3). Due
to the brief half-life of the TM, the interruption of its continuous
intravenous administration rapidly deactivates T cell activity,
which mitigates the associated toxicities.

This strategy is currently being investigated in a Phase 1a trial in
R/R AML (NCT04230265), with early promising results and an
acceptable toxicity profile. Indeed, the trial was modified to include
a prolonged schedule of TM administration. To date, 19 patients
who have undergone extensive prior treatment have received
UniCAR-T-CD123, including 12 with previous alloHSCT. CRS was
observed in 12 patients, mainly grade 1 or 2. No prolonged
myelosuppression was observed, and therefore rescue alloHSCT
was not required. The ORR for the R/R AML population was 53%.%
The same group developed the world’s first CRISPR-engineered
switchable allogeneic CAR-T designed to circumvent graft-versus-
host disease (GvHD) and cell rejection. The trial is currently in
progress and is registered as Phase 1 (NCT05949125).2%

A multicentric clinical trial (NCT03190278) conducted in the US
has evaluated the efficacy of universal CD123-directed CAR-T cells.
This approach involved gene-editing technology to modify
allogeneic T cells to express a second-generation CAR targeting
CD123 (comprising CD123 scFv-4-1BB-CD3().>*” The TCR af was
inactivated by targeting the TRAC gene using TALEN® nucleases,
which helps to reduce the risk of GvHD. Furthermore, a “safety
switch” was incorporated by including an RQR8 deletion ligand
containing epitopes from CD34 and CD20 antigens, thereby
conferring susceptibility to rituximab on the modified cells.

The CAR-T cell product demonstrated potent antitumor activity
in vitro and long-term disease-free survival in a subset of primary
patient-derived BPDCN xenograft (PDX) mouse models.?*® Con-
cerns arose during the transition to the clinic when the first
patient treated (UCART123; NCT03203369) died after developing
severe CRS and pulmonary capillary leak syndrome.?*° The trial
was discontinued and later reopened for R/R AML, with the
addition of a CD52 knockout, dose reduction, and an upper age
limit (AMELI-01; a Phase 1 open-label dose-escalation trial testing
UCART123v1.2), which is still recruiting (NCT03190278,
NCT04106076). Preliminary data presented at ASH (American
Society of Hematology) 2022 congress indicated that the addition
of alemtuzumab to the fludarabine and cyclophosphamide
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lymphodepletion regimen resulted in more robust and greater
UCART123v1.2 expansion, which was an essential concern in an
allogeneic context. Moreover, the expansion of UCART123v1.2
correlated with a reduction in tumor burden.*®® CRS occurred in
100% of the cohort, with some cases being severe, and therefore,
systematic tocilizumab is planned to be administered for future
stages.

Alternative approaches consider CAR-T cell treatment in the
context of a bridge to alloHSCT. One example is the CATCHAML
trial (NCT04318678) for pediatric R/R AML. This involves a second-
generation CD28 co-stimulated CAR that incorporates a
CD20 safety switch (Fig. 3). To date, preliminary data from 12
patients enrolled in the trial report the absence of grade >2 CRS or
neurotoxicity despite the heterogeneous nature of the responses
observed. A phenotypic analysis conducted by the researchers
revealed that CD123-CAR-T cell products were predominantly
effector memory cells. Accordingly, the next generation of CD123-
CAR T-cell products will be manufactured in the presence of
dasatinib, with the objective of limiting T cell differentiation and
exhaustion.>”"

Several ongoing trials are employing additional approaches
targeting CD123. There is compelling preclinical evidence from a
soluble tumor-targeting protein (SPRX002) that exclusively binds
to AML cells expressing CD123, thereby enabling their destruction
by T cells transduced ex vivo. These are known as Antigen
Receptor Complex (ARC) T cells3*? A Phase 1 clinical trial
(NCT05457010) is currently enrolling and is projected to conclude
in November 2025. A strategy involving the electroporation of
anti-CD123-CAR mRNA into “biodegradable” T cells in patients
with R/R AML (NCT02623582) was terminated due to an absence
of an anti-tumor effect.>*® Finally, a case report from a pivotal trial
testing a fourth-generation, apoptosis-inducible lentiviral CAR
targeting CD123 has been published,?®® but there is no further
evidence of this construct.

More conventional strategies such as CD123CAR (autologous
CD123CAR-CD28-CD3(-EGFRt) have demonstrated antileukemic
efficacy with acceptable toxicities in seven patients with R/R AML
who had undergone prior alloHSCT (NCT02159495),394395

CD33-CAR-T cells in clinical trials

A second-generation CD33-directed CAR construct comprising
lintuzumab-CD28/CD3¢3°® has demonstrated promising outcomes
in a Phase 1/2 dose-escalation interim analysis of children,
adolescents, and young adults with R/R AML (NCT03971799). This
construct includes a combination of a targeting motif derived from
lintuzumab (HuM195, SGN-33; an antibody that targets the distal
CD33 IgV domain) linked to CD28/CD3. The rationale was based on
the observation that the rs12459419 C>T single nucleotide
polymorphism, associated with decreased CD33 surface expres-
sion, is present in more than 50% of AML patients.3”~3%° The
lintuzumab-enhanced CD33 CAR-T cells are capable of recognizing
low-antigen-density AML.

A total of 24 subjects were enrolled in the trial, of whom 12 had
undergone prior alloHSCT. CD33-CAR-T products were successfully
manufactured for 23 patients and subsequently infused into 19,
primarily due to the progression of the disease. Four patients
experienced CRS grade 3 or 4, which was successfully managed.
Responses were reported in those who achieved the highest dose
level. Based on the rapid clinical efficacy observed at dose level 4,
enrollment has resumed in Phase 2.3'° The authors highlight that
despite the considerable inter-patient heterogeneity of apheresis
products, the centralized manufacturing of CD33-CAR-T cells was
feasible for the 6 participant centers.>'" Notably, the authors did
not report sinusoidal obstruction syndrome, a complication that
has been previously associated with gemtuzumab.

A Phase 1 clinical trial conducted at MD Anderson Cancer
Center evaluated the efficacy of a 4-1BB and CD3( endodomain
co-expressed with a truncated human epidermal growth factor

SPRINGER NATURE

29



CAR-T cell therapy for cancer: current challenges and future directions
Zugasti et al.

30

receptor but failed to demonstrate an anti-leukemic effect
(NCT03126864). The researchers encountered difficulties regard-
ing the efficiency of transduction and the complexity of the
clinical setting, given the 2-4 weeks required for production (risk
of AML progression and other clinical complications such as
infections). As a consequence of this, the trial was closed after the
enrollment of 11 patients.>'? The current focus of research is on
the development of a platform that will facilitate more rapid
production and in vivo expansion of a product referred to as
PRGN-3006 or UltraCAR-T. The preliminary responses were
encouraging,®'® reason why the product gained the fast-track
designation by the FDA. The UltraCAR-T is based on a non-viral
Sleeping Beauty system to express the CAR, as well as a
membrane-bound IL-15 for stronger in vivo expansion and
persistence. Furthermore, the construct contains a safety switch
that can conditionally eliminate CAR-T cells, thereby improving
the toxicity profile (Fig. 3).

The addition of a potentiating molecule linked to human
CD33 scFv via a self-cleaving P2A peptide has been reported to
functionally enhance CD33-CAR-T cells and render them safe.
Furthermore, this approach has demonstrated anti-leukemic
efficacy, as revealed in a preliminary report at ASCO 20243
(NCT04835519). An intriguing strategy comprising a combination
of VCAR33 (allogenic CARs with a lintuzumab-derived binding
domain and a CD28 co-stimulatory domain) is currently enrolling
patients in a Phase 1/2 study®'® (NCT04849910), with the
possibility of subsequent CD33-deleted alloHSCT consolidation.

An additional conceptually appealing approach may be the
drug-induced dimerization of split CAR designs, which allow for
cycles of tumor killing interspersed with periods of myeloid
recovery. These strategies may permit physicians to modulate CAR
activity based on clinical needs. In this context, a CD33-targeted
dimerizing agent-regulated immunoreceptor complex (DARIC) is
currently being evaluated.?”> The platform comprises separate
antigen targeting and T cell signaling components, with
embedded extracellular rapamycin-dependent heterodimerizing
domains (Fig. 3). The targeting and signaling components
undergo dimerization in the presence of rapamycin, thereby
eliciting antigen-responsive T cell activation. Appelbaum et al.
reported evidence of in vitro and in vivo antitumor activity against
established CD33+ human tumor xenografts in NSG (NOD scid
gamma) mouse models.>'® However, the Phase 1, PLAT-08 trial of
SC-DARIC33 in pediatric patients with AML was put on hold by the
FDA following a severe grade 5 adverse event report.

Finally, an interesting study performed multiplexed base editing
to remove TCR, CD52, and the shared AML/T lineage antigen CD7
from T cells, which enabled the generation of universal donor
CAR-T cells (BE-CAR33, BE-CAR7) for combinational use. Preclinical
data demonstrated the robust activity of BE-CAR33 alone and in
combination with BE-CAR7 against human CD7 + CD33 + AML
cells in a PDX model from a KIT-mutated AML patient3'’
Preliminary results from other early clinical trials of CAR-T cell
strategies targeting CD33 have shown promising results with
acceptable safety profiles.'*313318

CLL1-CAR-T cells in clinical trials

A second-generation murine anti-CLL-1 scFv with an intracellular
domain of CD28 and OX40 and a PD-1 silencing shRNA sequence,
to strengthen CAR-T function, has been tested in a Phase 1 trial.
Two patients who had previously undergone anti-CD38 CAR-T cell
therapy and experienced treatment failure achieved a complete
response, although no further follow-up has been provided.?” In a
similar strategy, the CB-012 platform has been engineered with
next-generation Cas12a CRISPR hybrid RNA-DNA (chRDNA)
genome-editing technology to target both checkpoint function
and immunomodulation, which has the potential to improve
antitumor activity (AMpLify Phase 1 clinical trial®**®) (Fig. 3). In
other preliminary studies, CAR-T cells directed against the CLL1
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antigen have also been reported to be safe and provide a
promising response rate in heavily pretreated patients®?'322

Other targets in clinical trials

CD38 has been targeted in a Phase 1/2 CD38-CAR-T cell therapy in
six patients with R/R AML post-alloHSCT (NCT04351022). CD38-
CAR-T cells were manufactured without incident, with four
products derived from an autologous source and two from a
donor source. Four weeks after the infusion of CD38-CAR-T cells,
the ORR was 66.7% (4/6 patients) including one patient who
achieved complete remission (CR) and three patients who
achieved complete remission with incomplete count recovery
(CRi) and full donor chimerism. The 6-month OS and leukemia-free
survival rates were both 50%, with a median of 7.9 and 6.4 months,
respectively. Toxicities were considered acceptable. 3%

Some interesting strategies are being explored that target CD7.
A recent study involving seven patients with R/R AML suggested
that sequential treatment with CD7-CAR-T cells followed by
haploidentical HSCT may be both safe and effective, leading to
durable responses>?* Other strategies include autologous
nanobody-derived fratricide-resistant CD7-CAR-T cells. Notably,
an off-target CD7 blockade strategy was developed employing a
tandem CD7 nanobody VHH6 coupled with an endoplasmic
reticulum/Golgi-retention motif peptide, effectively sequestering
the CD7 surface marker intracellularly®® (Fig. 3).

A Phase 1 dose-escalation study was conducted to evaluate the
efficacy of NKG2D-CAR-T cells for R/R AML and high-risk
myelodysplastic syndrome without lymphodepletion conditioning
(NCT02203825). However, no notable expansion or objective
clinical efficacy was observed. The possible explanations for the
observed results include the lack of a costimulatory domain in the
CAR construct, heterogeneous NKG2D ligand expression in the
patients, and the conserved nature of NKG2D, which may be
related to the lack of immunogenicity.>2¢3?’

Finally, a Phase 1 trial is currently evaluating a bispecific CLL1-
CD33-CAR with two complete CAR constructs connected by a P2A
cleavable linker (NCT03795779). Nine patients were treated until
September 2019; eight treatments were manufactured from
autologous cells, while a ninth was derived from an HLA-
matched sibling donor. Two patients experienced grade 3 or 4
CRS, four patients experienced immune effector cell-associated
neurotoxicity syndrome (in 3 cases, grade 3 or more), and all
patients experienced grade four pancytopenia. On disease re-
evaluation at four weeks post-CAR-T cell infusion, seven out of
nine patients were negative for minimal residual disease by flow
cytometry, and two patients had no response 3%

FUTURE DIRECTIONS

Manufacturing

The primary elements of the CAR-T cell manufacturing process
have largely been standardized. They can be divided into four
main stages: isolation and enrichment of T cells, activation and
expansion of T cells, gene transfer of a CAR vector, and ex vivo
CAR-T cell expansion and cryopreservation.**

In the first stage, PBMCs (Peripheral Blood Mononuclear Cells)
are isolated from peripheral blood by density gradient centrifuga-
tion to remove granulocytes, red blood cells, and platelets. In this
initial phase, the patient with R/R AML may experience prolonged
cytopenia, which could impede the success of apheresis. Notably,
the cellular composition at the outset of production can impact the
phenotype of the CAR-T cells. At this stage, it should be considered
that patients with R/R AML may present with low numbers of
effector T cells, besides an activated circulating cytokine profile, as
reported in other hematological cancers at advanced stages.>*°

An alternative approach in this context is the selection of
CD3 +T cells using magnetic bead-based systems, such as the
CliniMACS® system. This enables T cell expansion and
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Fig. 5 Automated CAR-T cell manufacturing process including leukapheresis and cryopreservation (1), T-cell activation and transduction (2),
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administration of the final cell product, ensuring a properly
defined CD4:CD8 ratio®*' 33 (Fig. 5).

T cell activation is typically initiated by unconjugated mAbs,
most commonly anti-CD3/anti-CD28 antibody-coated magnetic
beads.>* Afterward, the method of delivery of the CAR transgene
can significantly impact its expression level. At present, all FDA-
and EMA-approved CAR-T cell products employ lentiviral or
retroviral transduction to achieve CAR transgene integration. Still,
several alternative non-viral gene delivery methods have been
investigated, with promising results.>

It is important to note that production delays may prove fatal
for this highly aggressive disease. Using donor-derived CAR-T cells,
also known as allogeneic CAR-T, universal CAR-T (UCART), or off-
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the-shelf CAR-T*3%*3” could expand this strategy by being
immediately available. Some of the currently engineered CAR-T
cells, such as BE-CAR33 or BE-CAR7, are already based on this
strategy and have shown efficacy in PDX models and are currently
being tested in the CARAML clinical trial (NCT05942599).3"7

Furthermore, the optimal lymphodepleting therapy remains to
be determined. Some evidence supports the use of HMAs
concomitantly with the lymphodepleting regimen, which have
been demonstrated to augment CD123 and other antigen
expression on AML blast surfaces. Recent findings also suggest
that combining CAR-T cells with cytokine signaling inhibitors
could enhance immunotherapy efficacy in the specific AML
context (NCT03766126).'®°
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Finally, selecting eligible AML patients may require a more
cautious approach than that employed in CAR-T cell therapy for
other hematological malignancies. In the event of myeloid aplasia,
the patient may require a rescue alloHSCT. Accordingly, a
meticulous and multidisciplinary clinical strategy, including the
identification of HSCT donors prior to CAR-T infusion, may be
considered.

Strategies to circumvent antigen heterogeneity

Given the molecular and cytogenetic heterogeneity of AML, a
promising approach for effective CAR-T cell therapy with
increased specificity might be to target two different antigens
using tandem or bicistronic CARs. These strategies are still in the
early stages of clinical development, with limited available
information. Related to this, the emergence of antigen-low
expression clones evading effector cell-mediated killing may
constitute one mechanism of disease escape during AML
evolution."®® In this context, both modifying the binding affinity
and avidity of the scFv, and selecting appropriate costimulatory
domains, can be used to enhance CAR sensitivity.

The scFv determines the antigen-binding affinity and specificity
of CAR-T cells.®*® A high affinity scFv enhances the binding
strength to the tumor antigen, improving tumor recognition and
cytotoxicity. Additionally, the multivalent nature of CAR constructs
facilitates a high-avidity effect, increasing overall binding effi-
ciency and T cell activation, even in the presence of antigen
heterogeneity. Optimizing both affinity and avidity can lead to
more effective and sensitive CAR-T therapies, enabling better
tumor targeting and improved clinical outcomes. However,
achieving the right balance of affinity and specificity is complex.
The affinity must be strong enough for the CAR-T cells to
recognize tumor antigens and induce T cell-mediated destruction,
but excessively high affinity may lead to off-target binding to
healthy tissues.33%%° Furthermore, high-affinity CAR-T cells may
exhibit reduced persistence in vivo due to activation-induced T
cell exhaustion and apoptosis.>*'

Costimulatory elements may also influence CAR sensitivity.
CD28 CARs typically exhibit a reduced requirement for target
antigen density,>*? as well as enhanced and accelerated expan-
sion.*** These features make CD28 an interesting co-stimulator
domain for the treatment of AML. Indeed, most strategies
currently being tested in early clinical stages (discussed in this
review) have selected the CD28 co-stimulator domain. Conversely,
4-1BB CARs typically exhibit more remarkable persistence, in part
due to the reduction in T cell exhaustion induced by prolonged
CAR signaling.>** This attribute may be particularly advantageous
in contexts where an alloHSCT rescue is not anticipated as a
component of the therapeutic strategy.

Additionally, the signaling machinery can be enhanced by
modifying the multimeric CD3 complex (CD3 complex-based
receptors). This CD3 complex plays a pivotal role in TCR-mediated
antigen recognition.>*>3%¢ Regarding this, preclinical evidence
indicates that the substitution of chimeric V|—Ca and V4-Cp chains
for the endogenous TCR may improve sensitivity.>*” This is the
case of HIT receptors, STAR receptors,>*®** TCAR, antibody-TCR
(AbTCR), TCR fusion constructs (TRuC),**° and T cell antigen
coupler (TAC) receptors. Specifically, STAR-T cells have demon-
strated superior killing in low neoantigen density context and
improved tumor control in mouse models in comparison with
conventional CAR-T strategies.>*'>? However, in contrast to CAR-
T cells, most TCR-engineered T cells can only recognize
intracellular tumor antigens presented by MHC molecules.>>33>*
Of note, CAR antigen sensitivity may also be enhanced without a
structural modification by amplifying downstream activation
signaling.®>®

The complexity of AML treatment may necessitate innovative
strategies such as epitope-editing (Fig. 6). Early efforts in epitope-
editing included CRISPR/Cas9-mediated CD33 knock-out in CD33-
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positive tumor cells and primary HSPCs, demonstrating its
feasiblility.3*>® More recent advancements, such as the work
led by Casirati et al., successfully performed epitope engineering
of donor CD34+ HSPCs to confer resistance to CAR-T cells
targeting FLT3, CD123, and KIT antigens.>*° The authors confirmed
the resistance of epitope-edited hematopoiesis and the subse-
quent eradication of PDXs after CAR-T cell treatment. In the case
of CD123, these results have been validated by other groups.*®°
Similarly, Wellhausen et al. generated CRISPR epitope-edited
CD45-CAR-T cells to evade CAR-T cell recognition. These
epitope-edited CD45-CAR-T cells exhibited fratricide resistance
and efficacy against PDX AML.*®" Thus, ex vivo epitope editing in
HSCs and T cells could revolutionize CAR-T cell therapies for AML,
offering a promising strategy to enhance treatment effectiveness
and durability.

When considering bispecific and complex editing approaches, it
is crucial to control over cell killing to mitigate potential on-target/
off-tumor toxicities, particularly in the context of AML (Fig. 7). One
of the earliest strategies proposed to regulate toxicity is the use of
switchable CAR-T cells. This approach involves introducing genes
encoding surface proteins, antigens or intracellular effectors into
the CAR-T cells. Upon gene expression, CAR-T cells become
responsive to specific drugs, enabling the controlled cessation of
their activity.>°**%* An illustrative example is incorporating a
truncated epidermal growth factor receptor (EGFRt) into CAR-T
cells. The administration of cetuximab can target EGFRt, which
could lead to the elimination of active CAR-T cells through
antibody-dependent cellular cytotoxicity.>®*

A novel strategy recently published by He et al.?** involves the
isolation of multiple nanobodies (heavy-chain-only antibodies
with a small single variable domain) that bind to various epitopes.
By employing a sequentially tumor-selected antibody and antigen
retrieval (STAR) system, the researchers developed a bispecific and
split CAR (BissCAR) targeting CD13 and TIM3. The BissCAR-T cells
effectively eradicated patient-derived AML in murine and PDX
models with limited toxicity to normal HSPCs.

Other relevant platforms currently in development include a
split, universal, and programmable (SUPRA) CAR system, which is
designed to improve specificity and controllability,*®®> and the
RevCAR-T platform, which employs an “AND” logic gate to target
CD33 and CD123 in a versatile manner.®® In this context, the
incorporation of the “OR” or “AND” logic gate strategies could also
prove beneficial in reducing off-tumor side effects, as the tumor
with both antigens will be selectively eliminated compared with
tumors with a single antigen. 3”370

The “OR” logic gate is based on two completely independent
CAR molecules able to recognize the presence of a single antigen
or both antigens simultaneously.’® The SUPRA CAR system
employs an AND or NOT logic gate design to target CD33 and
FLT3. The construct comprises of a universal chimeric receptor
expressed on the T cell, zipCAR, coupled to a soluble antigen-
binding adapter, zipFv, which contains a leucine zipper and
scFv.3”° The “AND” logic gate would only achieve full activation
status upon binding their cognate antigens simultaneously. Two
distinct CARs are co-expressed on a single T cell, each with
complementary signaling domains. However, the CAR-T cell
attains full activation only when both of its receptors bind to
their respective antigens simultaneously. For example, the use of
synthetic Notch (synNotch) receptors in a dual CAR-T system
enables synergistic and selective binding, minimizing on-target/
off-tumor toxicity.?”'7* Upon recognition of the antigen by the
first receptor, a transcription factor is activated, which in turn
induces the expression of a second CAR. This subsequently binds
to the secondary antigen.>®

In addition to these two concepts, “NOT” gates are also
noteworthy for their ability to turn off CAR-T cell activity upon
encountering unintended target cells. For example, the “NOT"-
gate CD93-CAR-T is an inhibitory CAR strategy designed to
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Fig. 6 Epitope engineering of Hematopoietic Stem Progenitor Cells (HSPCs) (a) to confer resistance to CAR-T cells targeting (b). The
complexity of AML treatment may require innovative strategies, including recently implemented approaches such as epitope editing through
epitope mutagenesis, prime editing, and base editing. LSCs, Leukemia Stem Cells. Figure created with Biorender.com

CAR-engaging antigen A performs better in the presence of
antigen B) are also under investigation.>*’

Using different logic gate CAR-T designs could also mitigate
AML relapse.>’® Traditional CAR-T therapies can be limited by the

mitigate endothelial toxicity generated by CD93-CAR-T cells,
which eliminates AML but exerts on-target/off-tumor toxicity to
endothelial cells.>”> “IF-THEN” gates (which allow spatiotemporal
regulation of CAR expression) and “IF-BETTER” gates (in which a
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heterogeneous nature of AML, where tumor cells may down-
regulate or lose expression of the targeted antigen, leading to
relapse. By employing logic gate circuits, these therapies can be
adapted to recognize more complex antigen expression patterns
specific to AML.>"7378 For example, incorporating “OR"-gate CARs
- where two independent antigen recognition domains enable
targeting multiple antigens — can enhance tumor recognition and
reduce the likelihood of escape. Additionally, integrating a “safety
switch” that responds to both tumor-associated markers and
inhibitory signals from the TME can improve CAR-T cell
persistence while minimizing off-target toxicity issue.>® Further-
more, optimizing costimulatory domains is essential to ensure
adequate CAR-T cell proliferation and persistence, which are
strongly correlated with durable leukemia remission.>”® This multi-
layered approach holds significant potential for reducing relapse
rates and improving long-term outcomes in AML.

New antigens under development

The major challenge encountered in CAR-T cell development for
AML has been the inability to identify a specific targetable
antigen. Further efforts are needed in whole-genome sequencing,
surfaceome profiling of AML LSCs, and proteomic and transcrip-
tomic studies comparing antigen expression in LSCs and healthy
stem cells.'”"'*®38% Some antigens that have been the subject of
early directed and promising strategies are shown in Fig. 8.

In a notable advance, Lynn et al.*®" developed an FRB-specific
CAR construct, supported by compelling preclinical evidence,
targeted to a folate receptor (FR). The FR is expressed on
approximately 70% of primary AML blasts.>®? FRa and FR@ are cell
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surface-bound proteins through glycosyl-phosphatidylinositol
linkages. This receptor is an attractive target because its
expression is limited in normal tissue and can be upregulated
by all-trans retinoic acid,*®* a drug approved for acute promye-
locytic leukemia.

Additionally, Rafiq et al.>®* successfully developed and tested
WT1-CAR-T cells, demonstrating efficacy against cell lines in an
in vitro model. Wilms tumor 1 (WT1) is an oncogenic zinc-finger
transcription factor with low expression in the BM and notable
overexpression in various hematological malignancies (AML and
CLL), as well as in several solid tumors (such as glioblastoma,
mesothelioma, and ovarian cancer).*®

Moreover, LILRB4, a leukocytic immunoglobulin-like receptor
belonging to the LILRB family,*®-8° has shown promising results
in preclinical studies.*® The LILRB family is expressed on AML cells
and has been reported to be uniquely expressed on normal
monocytic cells at the promonocyte stage of development.3*° An
interesting first-in-human study presented at the last ASH
congress (San Diego, December 2024) demonstrated that LILRB4
STAR-T therapy is a promising approach in LILRB4 -positive R/R
AML patients.**' Further data from the Phase Il trial is eagerly
awaited. Additionally, exciting findings were reported on a
humanized IgG1 monoclonal antibody with high affinity and
specificity for LILRB4, tested in combination with azacytidine for
CMML. This combination appears to be well tolerated, with
preliminary efficacy outcomes showing superiority over azacyti-
dine alone, leading to rapid and sustained responses.>*?

Similarly, a potential new target for developing CAR-T cells in
AML is CD84, an immunoreceptor belonging to the SLAM family
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(SLAMF53933%%) (D84 is overexpressed on AML cells while
displaying comparatively low expression in CD34+ HSCs and
absent in other tissues. Perez-Amill et al3%® developed a CD84-
CAR-T therapy with promising in vitro and in vivo results.

Siglec-6 is expressed in primary AML blasts but is absent in
normal HSCs.3%°3%” Building on this finding, Jetani et al3%’
engineered a Siglec-6 CAR-T cell therapy utilizing a targeting
domain derived from the mAb JML-1. Subsequent in vitro and
in vivo studies demonstrated its remarkable efficacy against AML
blasts while preserving regular HSCs activity. A similarly featured
antigen is TIM-3 (T-cell immunoglobulin mucin-3), which is
expressed in LSCs in almost all types of AML but not in
HSCs.39874%° TIM3-CAR-T cells exhibited robust antileukemia
activity in xenograft models, accompanied by the production of
IFN-y, granzyme B, and perforin.?*

Furthermore, tumor cells are known to express cancer-specific
surface protein conformations that are difficult to detect using
standard technologies assessing gene or protein expression.
However, these unique conformations can be identified and
selectively targeted. In this context, recent studies have applied
structural surfaceomics to AML, integrating cross-linking mass
spectrometry with glycoprotein surface capture. Although still an
emerging field, preliminary findings suggests that AML exhibits a
distinct conformational signature involving various proteins,
including integrin 2, which has been proposed as a potential
target for CAR-T therapy.*"’

Another emerging approach that could circumvent the
challenges in AML treatment is the combination of antibodies
and cell-based therapies, known as STAb (Secreting T-cell-
engaging Antibody). This strategy is based on the endogenous
secretion of T cell-redirecting bispecific antibodies (bsAbs).**
STAb immunotherapies involve genetically modifying T cells with
nucleic acids or viral vectors to encode bsAbs. This approach not
only offers therapeutic potential similar to CAR-T cells but also
enables the secreted bispecific antibodies to bind and activate
bystander T cells. As a result, all circulating T cells are effectively
“converted” into CAR-T-like cells, enhancing overall efficacy.**>4%*
The ability to recruit and activate bystander T cells amplifies the
immune response, making STAbs a promising strategy for
targeting cancer and other diseases by broadening immune
activation beyond the directly engineered T cells.

This T cells engineered to produce bsAbs have demonstrated
antitumor activity in preclinical models.*®> For example, CD1a-,
CD19-, and BCMA-STAb T cells have been tested in PDX models of
cortical T-ALL, B-ALL and MM, respectively, showing higher efficacy
than their respective second-generation CAR-based therapies.**®
Similarly, dual-targeted STAb-T cells secreting BCMA TCE and CD19
TCE have been effectively tested in in vitro models of B-cell
malignancies.*®” This platform has also been studied in B-ALL, with
promising results. An interesting example is a dual-target strategy
based on T cells expressing an anti-CD22-CAR and also secreting an
anti-CD19 T-cell engager antibody. This approach was compared
with a previously validated anti-CD19/CD22 tandem CAR therapy,
demonstrating that STAb-T cells exhibited an enhanced and faster
in vitro cytotoxic activity.*°® Given its ability to recruit bystander
T cells, this innovative therapy is particularly promising for
aggressive diseases prone to relapse with low effector T cells
counts, such as AML. Indeed, some preliminary studies in AML have
reported encouraging results.****'°

There is mounting interest in gamma-delta (y6) T cell-based
products for adoptive immunotherapy.''™*'* Specifically, Delta One
T (DOT) cells (V61 +yS T cells) have been identified as a promising
avenue for cancer immunotherapy due to their reduced suscept-
ibility to activation-induced cell death and their capacity to persist
as tumor-reactive lymphocytes over extended periods (Fig. 9).*"
Preclinical studies have demonstrated the safety and efficacy of this
approach,*'®*'” and it is undergoing testing in a Phase 1 clinical
trial (NCT05015426) as a single infusion following alloHSCT.
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Modulating the tumor microenvironment

Given the T cell-inhibiting role of MDSCs,*'®*?" concomitant
administration of CAR-T cells with small molecules capable of
depleting the MDSC population may be synergistic.*** Several
strategies that enhance CAR-T cell efficacy in the context of B-cell
malignancies may also be relevant in AML. These include the
upregulation of IL-15 expression or the IL-18 transgene (TRUCKSs)
and the addition of exogenous IL-7, IL-15, and/or IL-21 cytokines
during the ex vivo expansion of CAR-T cells**>~?° (Fig. 9).

Because of the low mutational burden of AML and the
correspondingly low frequency of AML-reactive T cells,*?” CAR-T
cell combinations with checkpoint inhibitors (e.g. anti-PD-1 or
anti-CTLA-4 antibodies) might be an interesting future strat-
egy*®®4?? as it may also overcome T cell exhaustion and enhance
CAR-T cell efficacy. This could be achieved either through
exogenously administered inhibitors or genetic engineering,
enabling the CAR-T cell to synthesize these antibodies.”** For
example, the combination of immune checkpoint inhibitor PD-1/
PD-L1 monoclonal antibodies and CAR-T cells has effectively
prevented immune suppression and enhanced the anti-tumor
activity of CAR-T cells.**" Similarly, novel strategies have been
explored, such as the incorporation a Fc-mutant TIM3 receptor
decoy to counteract inhibitory signals originating from the blasts
or the TME in R/R B-ALL>" In addition to TIM3, other immune
checkpoint receptors, such as PD1, CLTA-4 and LAG3, can also be
targeted as decoys to further disrupt these inhibitory signaling
pathways. The flexibility to choose from a variety of inhibitory
pathways to adapt this platform to different diseases offers a
promising avenue for improving the overall efficacy and durability
of CAR-based therapies.

The combined use of apoptosis-regulating drugs, such as BCL-2
inhibitors, can lower the threshold for CAR-T cells to trigger tumor
cell killing through pathways like death receptors. This strategy
helps overcome tumor cell resistance to therapy, thereby enhan-
cing the overall effectiveness of the treatment.**>*** Moreover,
combination with cytoreductive chemotherapy or epigenetic
modulators such as HMA (e.g., azacitidine or decitabine) can reduce
the tumor burden and modulate the immune microenvironment.
There are several clinical trials ongoing testing the synergistic
function of epigenetic drugs and immunotherapy.*”** Indeed, it has
been proven that CAR-T cells treated with methylation inhibitors
such as low-dose decitabine during CAR T cell manufacturing
present stronger antitumour effector function, proliferation, mem-
ory phenotype maintenance, cytokine release capacities and a
lower exhaustion-associated gene expression under tumor cell
stimulation in vivo and in vitro.**> These epigenetic agents before
CAR-T cell infusion may enhance CAR-T efficacy by reducing
immunosuppressive cells or increasing antigen expression on AML
blasts.””**> Moreover, some studies have used histone, DNA, and
miRNA modifications to downregulate inhibitory molecules such as
PD1, CTLA-3, TIM2 and LAGS3 resulting in T cell-intrinsic upregula-
tion.**¢~*38 Additionally, the combination with immunomodulators
like lenalidomide or TGF-f inhibitors can promote a more favorable
microenvironment for CAR-T activity.*3%%4

Combining CAR-T cells with metabolic modulators also repre-
sents a promising strategy, as metabolic pathways are integral to
T cells’ function, persistence, and efficacy. CAR-T cells, require
robust metabolic activity to support their proliferation, survival,
and effector functions. Within the TME, however, metabolic
stressors such as hypoxia, nutrient deprivation, and the accumula-
tion of immunosuppressive metabolites can lead to CAR-T cell
exhaustion and dysfunction.**’ In this context, there is some
preclinical evidence of the combination of metabolic modulators
with CAR-T cell therapy. For instance, increasing L-arginine levels
(crucial for CAR-T cell proliferation and cytotoxicity) by modulating
PRODH2 enzyme seems a preclinical exciting strategy.**?*** A
study modified CAR-T cells to overexpress kynureninase, increas-
ing their cytotoxicity in the TME.*** Further publications combined
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IDO1 inhibitors (a key enzyme in kynurenine synthesis) with CAR-
T cells.

CONCLUSIONS AND PERSPECTIVES

Modern CAR-T cell therapy represents the culmination of decades
of immunology and genetic engineering research. Foundational
discoveries, such as the identification of T cells and the
demonstration of immune-mediated cancer eradication, as well
as the early efforts led by Dr. Steven Rosenberg highlighting the
potential of TILs, paved the way for advancements in adoptive cell
therapy.

The first FDA-approved CAR-T therapies, Kymriah® and Yes-
carta®, revolutionized treatment for B-cell malignancies. Despite
these successes, challenges remain, particularly in extending CAR-
T therapy to solid tumors and certain hematological malignancies
such as AML.

Regarding solid tumors, the tumor microenvironment, antigen
heterogeneity, and limited CAR-T cell persistence present
significant obstacles. This review describes that while no CAR-T
therapy has received FDA approval for solid malignancies, certain
strategies such as intracranial IL-13Ra-targeted CAR therapy
(multifocal glioblastoma'?¥), and ongoing clinical trials with
Claudin18.2 (gastrointestinal tumors'?®) and GD2 (H3K27M-
mutated glioma'?®; and neuroblastoma'?’) show promise.

Additionally, other T cell-based approaches, including ongoing
trials targeting antigens like bispecific TCE and TCR-T therapies,
are being explored in this specific solid tumor setting. For
instance, the gp100 peptide-MHC/CD3 bispecific T-cell engager
(TCE) tebentafusp, which was approved for uveal melanoma in
2022,"% is one strategy that holds great promise. In line with this,
further approaches described in this review that are being
currently tested show strong potential, such an autologous TCR
T-cell therapy named afami-cel for synovial sarcoma,'?® and other
cellular therapies for HPV-associated cancers.'*°"'*2 While sig-
nificant challenges remain, the evolving landscape of CAR-T cell
therapy offers promising avenues for expanding its impact
beyond hematologic malignancies.

Furthermore, CAR-T cell therapy holds great promise for the
treatment of AML. However, several challenges must be addressed
to fully realize its therapeutic potential. AML presents a highly
heterogeneous landscape, driven by diverse genetic, cytogenetic,
and epigenetic alterations that influence disease presentation,
progression, and treatment response. The complexity of AML
remains a challenge, particularly due to the presence of LSCs and
clonal evolution mechanisms that contribute to therapy resistance
and relapse.

Additionally, as exposed in this work, the AML bone marrow
microenvironment further exacerbates these challenges by
fostering immune evasion, metabolic suppression, and a highly
immunosuppressive setting that impairs immune-based therapies.
The BM microenvironment in AML is characterized by metabolic
byproducts such as lactate, adenosine, and kynurenine, which
inhibit T cell function and drive immune exhaustion. Furthermore,
the presence of myeloid-derived suppressor cells (MDSCs), T
regulatory cells (Tregs), and inhibitory checkpoints, such as PD-1,
TIM-3, and LAG-3, contributes to T cell dysfunction. These
immunosuppressive factors not only hinder the effectiveness of
conventional therapies but also pose significant obstacles to CAR-
T cell therapy, which has demonstrated limited success in AML
compared to its applications in B-cell malignancies.

Moreover, a major limitation described in this review still to be
faced in the development of CAR-T cell therapies for AML is the
lack of an optimal target antigen. An ideal target should be highly
expressed on AML blasts and LSCs while being absent in normal
hematopoietic and extra-hematopoietic tissues to minimize on-
target/off-tumor toxicity. Current CAR-T cell targets under
investigation include CD123, CD33, CLL-1, NKG2D, CD7, CD38,
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CD44ve, CD70, and FLT3. Each of these antigens presents unique
advantages and challenges, including concerns related to
myeloablation, endothelial toxicity, and antigen escape mechan-
isms. Among these targets, CD123 and CD33 have been
extensively studied, with various CAR-T cell constructs in
preclinical and early clinical phases. However, toxicity concerns,
particularly myelosuppression, remain a significant challenge.
Emerging targets such as CLL-1 and NKG2D offer promising
avenues due to their selective expression in AML while sparing
normal HSCs. Additionally, strategies such as bispecific CARs,
safety switches, and combinatorial approaches with immune
checkpoint inhibitors or metabolic modulators are being explored
to enhance CAR-T cell efficacy and safety.

Overall, while significant progress has been made in under-
standing AML heterogeneity and immune evasion, further
research is required to optimize CAR-T cell strategies and
overcome the inherent challenges of AML treatment. The
integration of multi-targeting approaches, improved manufactur-
ing techniques, and a deeper understanding of the BM micro-
environment may ultimately enhance the therapeutic potential of
CAR-T cells in AML.

Additionally, certain concerns regarding CAR-T cell therapy
must be carefully evaluated in the context of AML. For instance,
reports have highlighted potential long-term side effects, includ-
ing the incidence of secondary myeloid neoplasms following
CD19-CAR-T cell therapy.**>**¢ Studies estimate the incidence to
range from 1% to 10%,**”~**° which is comparable to the risk of
therapy-related myeloid neoplasms observed after chemotherapy
or autologous HSCT in patients with NHL. Furthermore, the FDA
had raised concerns following the diagnosis of 22 cases of T cell
malignancies within two years of CAR-T infusion.**” While these
findings warrant attention, further studies and long-term follow-
up are necessary to draw definitive conclusions regarding the risks
associated with CAR-T cell therapy.**®
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