Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microglial landscape and signaling in spinal cord injury

Abstract

Study design

An integrated bioinformatics data study.

Objectives

This study uses bioinformatics analysis to map the microglial landscape, investigate key signaling pathways, and reveal the molecular mechanisms that facilitate SCI recovery.

Setting

Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University.

Methods

In this study, we performed an integrative bioinformatics analysis of single-cell RNA sequencing (scRNA-seq), spatial transcriptomic (ST), and bulk RNA-seq datasets from the Gene Expression Omnibus (GEO), utilizing R packages (Seurat, DESeq2, limma, GSVA) and the Enrichr platform.

Results

Single-cell and spatial transcriptomic profiling uncovered dynamic shifts in the microglial landscape post-SCI, characterized by the suppression of innate microglial populations alongside the expansion of reactive microglial subsets. Mechanistically, the TGFβ signaling pathway was identified as a critical regulator of innate microglial migration, promoting functional recovery after SCI. Conversely, reactive microglia exhibiting heightened Trem2 expression were found to exacerbate neuroinflammatory responses and drive neural cell death.

Conclusions

These findings collectively indicate that targeting the dual regulatory axis of Trem2-mediated neuroinflammation and TGFβ-driven repair mechanisms may offer a synergistic therapeutic strategy to enhance functional recovery following spinal cord injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Innate microglial cells are replaced by reactive microglia in SCI.
Fig. 2: TGFβ signaling pathway regulate innate microglial cell migration to improve SCI recovery.
Fig. 3: Reactive microglia contribute to the neuroinflammatory response and positive regulate the neural cell death in SCI.

Similar content being viewed by others

Data availability

Data sources and handling are described in the Materials and Methods. The source code is proprietary but available upon request for non-commercial use by contacting Yifeng Sun at syf498054232@163.com.

References

  1. Tian T, Zhang S, Yang M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell. 2023;14:635–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ding W, Hu S, Wang P, Kang H, Peng R, Dong Y, et al. Spinal cord injury: the global incidence, prevalence, and disability from the global burden of disease study 2019. Spine (Phila Pa 1976). 2022;47:1532–40.

    Article  PubMed  Google Scholar 

  3. Orr MB, Gensel JC. Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics. 2018;15:541–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu W, Tang Y, Feng J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci. 2011;89:141–6.

    Article  CAS  PubMed  Google Scholar 

  5. Utz SG, See P, Mildenberger W, Thion MS, Silvin A, Lutz M, et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell. 2020;181:557–73.e518.

    Article  CAS  PubMed  Google Scholar 

  6. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kurpius D, Nolley EP, Dailey ME. Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus. Glia. 2007;55:873–84.

    Article  PubMed  Google Scholar 

  8. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mesquida-Veny F, Del Río JA, Hervera A. Macrophagic and microglial complexity after neuronal injury. Prog Neurobiol. 2021;200:101970.

    Article  CAS  PubMed  Google Scholar 

  10. Yeh FL, Hansen DV, Sheng M. TREM2, microglia, and neurodegenerative diseases. Trends Mol Med. 2017;23:512–33.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang C, Chen Z, Wang X, Zhang Y, Guo X, Fan H, et al. Curcumin-activated olfactory ensheathing cells improve functional recovery after spinal cord injury by modulating microglia polarization through APOE/TREM2/NF-κB signaling pathway. J Neuroimmune Pharmacol. 2023;18:476–94.

    Article  PubMed  PubMed Central  Google Scholar 

  12. David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. 2011;12:388–99.

    Article  CAS  PubMed  Google Scholar 

  13. Dai M, Pei X, Wang X-J. Accurate and fast cell marker gene identification with COSG. Brief Bioinform. 2022;23:bbab579.

    Article  PubMed  Google Scholar 

  14. Sun Y, Zhang C, Fang Q, Zhang W, Liu W. Abnormal signal pathways and tumor heterogeneity in osteosarcoma. J Transl Med. 2023;21:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hou J, Bi H, Ge Q, Teng H, Wan G, Yu B, et al. Heterogeneity analysis of astrocytes following spinal cord injury at single-cell resolution. FASEB J. 2022;36:e22442.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, He X, Kawaguchi R, Zhang Y, Wang Q, Monavarfeshani A, et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature. 2020;587:613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang R, Zhou R, Chen Z, Gao S, Zhou F. The glial cells respond to spinal cord injury. Front Neurol. 2022;13:844497.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010;7:483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O’Hare E, et al. Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci. 1998;18:2161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol. 2014;49:1422–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dibaj P, Nadrigny F, Steffens H, Scheller A, Hirrlinger J, Schomburg ED, et al. NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia. 2010;58:1133–44.

    Article  PubMed  Google Scholar 

  22. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.

    Article  CAS  PubMed  Google Scholar 

  23. Saber M, Kokiko-Cochran O, Puntambekar SS, Lathia JD, Lamb BT. Triggering receptor expressed on myeloid cells 2 deficiency alters acute macrophage distribution and improves recovery after traumatic brain injury. J Neurotrauma. 2017;34:423–35.

    Article  PubMed  Google Scholar 

  24. Kobayashi M, Konishi H, Sayo A, Takai T, Kiyama H. TREM2/DAP12 signal elicits proinflammatory response in microglia and exacerbates neuropathic pain. J Neurosci. 2016;36:11138–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.

    Article  CAS  PubMed  Google Scholar 

  26. Lodge PA, Sriram S. Regulation of microglial activation by TGF-β, IL-10, and CSF-1. J Leukoc Biol. 1996;60:502–8.

    Article  CAS  PubMed  Google Scholar 

  27. Baria MR, Miller MM, Burner T, Hake T, Kim D, Magnussen R, et al. Platelet-rich plasma content of active spinal cord injured patients: a controlled laboratory study. Am J Phys Med Rehabil. 2021;100:651–5.

    Article  PubMed  Google Scholar 

  28. McTigue DM, Popovich PG, Morgan TE, Stokes BT. Localization of transforming growth factor-beta1 and receptor mRNA after experimental spinal cord injury. Exp Neurol. 2000;163:220–30.

    Article  CAS  PubMed  Google Scholar 

  29. Kaiser J, Maibach M, Piovesana E, Salpeter I, Escher N, Ormen Y, et al. TGFβ1 induces axonal outgrowth via ALK5/PKA/SMURF1-mediated degradation of RhoA and stabilization of PAR6. eNeuro. 2020;7:ENEURO.0104-20.2020.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gao H, Di J, Clausen BH, Wang N, Zhu X, Zhao T, et al. Distinct myeloid population phenotypes dependent on TREM2 expression levels shape the pathology of traumatic versus demyelinating CNS disorders. Cell Rep. 2023;42:112629.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81702667). Beijing Tsinghua Changgung Hospital Fund (Grant No. 202510S004), China Postdoctoral Science Foundation (Grant No.8206300728).

Author information

Authors and Affiliations

Authors

Contributions

YS conceived the study and generated figures and wrote the manuscript, QZ collected and analysed the data, QF performed part of the data analysis and was responsible for manuscript revision, JL performed a part of data analysis. CZ and WL help to generated Figures. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Qiongxuan Fang or Yifeng Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This is a bioinformatic analysis; therefore, ethics approval and consent to participate are not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Liu, J., Fang, Q. et al. Microglial landscape and signaling in spinal cord injury. Spinal Cord 63, 418–425 (2025). https://doi.org/10.1038/s41393-025-01103-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41393-025-01103-y

Search

Quick links