Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroregenerative and neuroprotective effects of bioengineered scaffolds in spinal cord injury: a systematic review of preclinical and early phase clinical studies

Abstract

Study design

Systematic Review

Objectives

To systematically examine the use of bioengineered scaffolds, with/without bioactive agents, drugs, or cellular transplants in preclinical animal models and human studies of spinal cord injury (SCI).

Setting

Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences

Methods

A systematic review and meta-analysis was conducted following PRISMA guidelines and registered in PROSPERO (ID: CRD42023437266). A comprehensive search in MEDLINE and Embase on 8/27/2023 identified studies on scaffolds as neuroregenerative and neuroprotective treatments for SCI. Human studies were assessed using ROBINS-I, and meta-analysis focused on clinical outcomes.

Results

Of 4561 articles screened, 931 studies were included: in-vivo (82%), in-vitro (16%), and human studies (1%). Various biomaterials (N = 82; natural: 38%; synthetic: 62%), cell types (N = 27; NSCs: 24%, Schwann cells: 13%, NPCs: 12%), bioactive agents (N = 38; NT-3: 32%, BDNF: 25%, FGF: 24%), and pharmacological agents (N = 88; chABC: 12%, heparin: 11%, taxels: 10%) were analyzed. Fourteen human studies included acute and chronic SCI patients, with cervical (36%) and thoracic SCI (64%). Clinical trials demonstrated moderate to low quality (ROBINS-I). Our meta-analysis indicated that the pooled 2-scale AIS conversion rate was 30.59% (p = 0.005) ranging from 33.46% (p = 0.036) in acute to 28.35% (p = 0.084) in chronic SCI. Furthermore, the pooled 1-scale AIS conversion rate was 11.79% (p = 0.011), spanning from 17.31% (p = 0.131) in acute to 7.44% (p = 0.081) in chronic SCI.

Conclusion

Scaffold implantation shows promising neuroregenerative potential, evidenced by AIS grade improvement in human studies. Scaffolds are advancing rapidly from laboratory research to clinical trials, expanding treatment options for SCI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6: AIS conversion rates and assessment of publication bias in human studies of implantation.

Similar content being viewed by others

References

  1. Fehlings MG, Tetreault LA, Hachem L, Evaniew N, Ganau M, McKenna SL, et al. An update of a clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the role and timing of decompressive surgery. Glob Spine J. 2024;14:174S–86S.

    Article  Google Scholar 

  2. Kwon BK, Tetreault LA, Martin AR, Arnold PM, Marco RA, Newcombe VF, et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on hemodynamic management. Glob Spine J. 2024;14:187S–211S.

    Article  Google Scholar 

  3. Eraifej J, Nnadi C, Ganau M. Early and ultra-early surgical decompression for acute spinal cord injury: bracing for the winds of change. Eur Spine J. 2022;31:1691–2.

    Article  PubMed  Google Scholar 

  4. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018.

    Article  PubMed  Google Scholar 

  5. Tator CH. Strategies for recovery and regeneration after brain and spinal cord injury. Inj Prev. 2002;8:iv33–iv6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Patek M, Stewart M. Spinal cord injury. Anaest Intens Care M. 2023;24:406–11.

    Article  Google Scholar 

  7. Hachem LD, Fehlings MG. Pathophysiology of spinal cord injury. Neurosurg Clin. 2021;32:305–13.

    Article  Google Scholar 

  8. Butler DL, Goldstein SA, Guldberg RE, Guo XE, Kamm R, Laurencin CT, et al. The impact of biomechanics in tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2009;15:477–84.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen K, Yu W, Zheng G, Xu Z, Yang C, Wang Y, et al. Biomaterial-based regenerative therapeutic strategies for spinal cord injury. NPG Asia Mater. 2024;16:5.

    Article  CAS  Google Scholar 

  10. Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, et al. Strategies for biomaterial-based spinal cord injury repair via the TLR4-NF-ΚB signaling pathway. Front Bioeng Biotechnol. 2022;9:813169.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li X, Zhang J, Zhao R, Zhou J, Ying MF, Zhao YZ, et al. Biomaterial scaffolds for delivering neurotrophic factors in spinal cord injury treatment. Available at SSRN 4695200.

  12. Han Q, Sun W, Lin H, Zhao W, Gao Y, Zhao Y, et al. Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats. Tissue Eng Part A. 2009;15:2927–35.

    Article  CAS  PubMed  Google Scholar 

  13. Kourgiantaki A, Tzeranis DS, Karali K, Georgelou K, Bampoula E, Psilodimitrakopoulos S, et al. Neural stem cell delivery via porous collagen scaffolds promotes neuronal differentiation and locomotion recovery in spinal cord injury. NPJ Regen Med. 2020;5:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen LH, Gao M, Lin J, Wu W, Wang J, Chew SY. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci Rep. 2017;7:42212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group* t. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.

    Article  PubMed  Google Scholar 

  16. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cheng H, Liao KK, Liao SF, Chuang TY, Shih YH. Spinal cord repair with acidic fibroblast growth factor as a treatment for a patient with chronic paraplegia. Spine. 2004;29:E284–8.

    Article  PubMed  Google Scholar 

  18. Amr SM, Gouda A, Koptan WT, Galal AA, Abdel-Fattah DS, Rashed LA, et al. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients. J Spinal Cord Med. 2014;37:54–71.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim KD, Lee KS, Coric D, Chang JJ, Harrop JS, Theodore N, et al. A study of probable benefit of a bioresorbable polymer scaffold for safety and neurological recovery in patients with complete thoracic spinal cord injury: 6-month results from the INSPIRE study. J Neurosurg Spine. 2021;34:808–17.

    Article  PubMed  Google Scholar 

  20. Kim KD, Lee KS, Coric D, Harrop JS, Theodore N, Toselli RM. Acute implantation of a bioresorbable polymer scaffold in patients with complete thoracic spinal cord injury: 24-month follow-up from the INSPIRE study. Neurosurgery. 2022;90:668–75.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, et al. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res. 2020;15:1686–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu JC, Huang WC, Tsai YA, Chen YC, Cheng H. Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary phase I clinical study. J Neurosurg Spine. 2008;8:208–14.

    Article  PubMed  Google Scholar 

  23. Tang F, Tang J, Zhao Y, Zhang J, Xiao Z, Chen B, et al. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. Sci China Life Sci. 2022;65:909–26.

    Article  CAS  PubMed  Google Scholar 

  24. Ammar AS, Osman Y, Hendam AT, Hasen MA, Al Rubaish FA, Al Nujaidi DY, et al. A method for reconstruction of severely damaged spinal cord using autologous hematopoietic stem cells and platelet-rich protein as a biological scaffold. Asian J Neurosurg. 2017;12:681–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Iwatsuki K, Tajima F, Ohnishi Y, Nakamura T, Ishihara M, Hosomi K, et al. A pilot clinical study of olfactory mucosa autograft for chronic complete spinal cord injury. Neurol Med Chir. 2016;56:285–92.

    Article  Google Scholar 

  26. Curcio M, Bradke F. Axon regeneration in the central nervous system: facing the challenges from the inside. Annu Rev Cell Dev Biol. 2018;34:495–521.

    Article  CAS  PubMed  Google Scholar 

  27. Greenhalgh AD, Zarruk JG, Healy LM, Baskar Jesudasan SJ, Jhelum P, Salmon CK, et al. Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS Biol. 2018;16:e2005264.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Momenzadeh S, Jami M-S. Remyelination in PNS and CNS: current and upcoming cellular and molecular strategies to treat disabling neuropathies. Mol Biol Rep. 2021;48:8097–110.

    Article  CAS  PubMed  Google Scholar 

  29. Hamid OA, Eltaher HM, Sottile V, Yang J. 3D bioprinting of a stem cell-laden, multi-material tubular composite: an approach for spinal cord repair. Mater Sci Eng C Mater Biol Appl. 2021;120:111707.

    Article  CAS  PubMed  Google Scholar 

  30. Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater. 2021;6:4141–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tian L, Prabhakaran MP, Ramakrishna S. Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen Biomater. 2015;2:31–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T. Current concepts of biomaterial scaffolds and regenerative therapy for spinal cord injury. Int J Mol Sci. 2023;24:2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ganau M. Tackling gliomas with nanoformulated antineoplastic drugs: suitability of hyaluronic acid nanoparticles. Clin Transl Oncol. 2014;16:220–3.

    Article  CAS  PubMed  Google Scholar 

  34. Chelyshev YA, Kabdesh IM, Mukhamedshina YO. Extracellular matrix in neural plasticity and regeneration. Cell Mol Neurobiol. 2022;42:647–64.

    Article  CAS  PubMed  Google Scholar 

  35. Grimpe B, Silver J. The extracellular matrix in axon regeneration. Prog Brain Res. 2002;137:333–49.

    Article  CAS  PubMed  Google Scholar 

  36. Liu S, Yu J-M, Gan Y-C, Qiu X-Z, Gao Z-C, Wang H, et al. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res. 2023;10:16.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ashraf R, Sofi HS, Beigh MA, Majeed S, Arjamand S, Sheikh FA. Prospects of natural polymeric scaffolds in peripheral nerve tissue-regeneration. Adv Exp Med Biol. 2018;1077:501–25.

    Article  CAS  PubMed  Google Scholar 

  38. Fan C, Li X, Xiao Z, Zhao Y, Liang H, Wang B, et al. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater. 2017;51:304–16.

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Dai J. Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair. Biomater Sci. 2018;6:265–71.

    Article  CAS  PubMed  Google Scholar 

  40. Gunatillake PA, Adhikari R, Gadegaard N. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16.

    Article  CAS  PubMed  Google Scholar 

  41. Tang X, Thankappan SK, Lee P, Fard SE, Harmon MD, Tran K, et al. Polymeric biomaterials in tissue engineering and regenerative medicine. Nat Synth Biomed Polym. 2014:351–71. https://www.sciencedirect.com/science/article/abs/pii/B9780123969835000223

  42. Zeller SL, Stein A, Frid I, Carpenter AB, Soldozy S, Rawanduzy C, et al. Critical care of spinal cord injury. Curr Neurol Neurosci Rep. 2024;24:355–63.

    Article  PubMed  Google Scholar 

  43. Xiao Z, Tang F, Zhao Y, Han G, Yin N, Li X, et al. Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells. Cell Transplant. 2018;27:907–15.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, et al. NeuroRegen scaffolds combined with autologous bone marrow mononuclear cells for the repair of acute complete spinal cord injury: A 3-year clinical study. Cell Transplant. 2020;29:963689720950637.

    Article  PubMed  Google Scholar 

  45. Pan Z, Ding J. Poly (lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus. 2012;2:366–77.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Santhosh KT, Alizadeh A, Karimi-Abdolrezaee S. Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury. J Control Release. 2017;261:147–62.

    Article  CAS  PubMed  Google Scholar 

  47. Lu Y, Cheng D, Niu B, Wang X, Wu X, Wang A. Properties of poly (lactic-co-glycolic acid) and progress of poly (lactic-co-glycolic acid)-based biodegradable materials in biomedical research. Pharmaceuticals. 2023;16:454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zeraatpisheh Z, Mirzaei E, Nami M, Alipour H, Mahdavipour M, Sarkoohi P, et al. Local delivery of fingolimod through PLGA nanoparticles and PuraMatrix‐embedded neural precursor cells promote motor function recovery and tissue repair in spinal cord injury. Eur J Neurosci. 2021;54:5620–37.

    Article  CAS  PubMed  Google Scholar 

  49. Rajabi N, Rezaei A, Kharaziha M, Bakhsheshi-Rad HR, Luo H, RamaKrishna S, et al. Recent advances on bioprinted gelatin methacrylate-based hydrogels for tissue repair. Tissue Eng Part A. 2021;27:679–702.

    Article  CAS  PubMed  Google Scholar 

  50. Kubinová Š, Horak D, Hejčl A, Plichta Z, Kotek J, Sykova E. Highly superporous cholesterol‐modified poly (2‐hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. J Biomed Mater Res A. 2011;99:618–29.

    Article  PubMed  Google Scholar 

  51. Livingston JM, Gilbert EA, Gao D, Morshead CM Neural stem cells, differentiation, and migration. Neurodevelopmental pediatrics: genetic and environmental influences. Springer; 2023. p. 39–54.

  52. Guo W, Zhang X, Zhai J, Xue J. The roles and applications of neural stem cells in spinal cord injury repair. Front Bioeng Biotechnol. 2022;10:966866.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xue W, Fan C, Chen B, Zhao Y, Xiao Z, Dai J. Direct neuronal differentiation of neural stem cells for spinal cord injury repair. Stem Cells. 2021;39:1025–32.

    Article  PubMed  Google Scholar 

  54. Schuh CM, Sandoval-Castellanos AM, De Gregorio C, Contreras-Kallens P, Haycock JW The role of schwann cells in peripheral nerve function, injury, and repair. Cell Eng Regen. 2020:215-36. https://link.springer.com/rwe/10.1007/978-3-319-08831-0_5

  55. Kanno H, Pearse DD, Ozawa H, Itoi E, Bunge MB. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus. Rev Neurosci. 2015;26:121–8.

    Article  CAS  PubMed  Google Scholar 

  56. Wiliams RR, Bunge MB. Schwann cell transplantation: a repair strategy for spinal cord injury? Prog Brain Res. 2012;201:295–312.

    Article  PubMed  Google Scholar 

  57. Collins MN, Zamboni F, Serafin A, Escobar A, Stepanian R, Culebras M, et al. Emerging scaffold-and cellular-based strategies for brain tissue regeneration and imaging. In Vitro Model. 2022;1:129–50.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Keefe KM, Sheikh IS, Smith GM. Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int J Mol Sci. 2017;18:548.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen T, He X, Wang J, Du D, Xu Y. NT-3 combined with TGF-β signaling pathway enhance the repair of spinal cord injury by inhibiting glial scar formation and promoting axonal regeneration. Mol Biotechnol. 2024;66:1484–95.

    Article  CAS  PubMed  Google Scholar 

  60. Cong Y, Wang C, Wang J, Li H, Li Q. NT-3 promotes oligodendrocyte proliferation and nerve function recovery after spinal cord injury by inhibiting autophagy pathway. J Surg Res. 2020;247:128–35.

    Article  CAS  PubMed  Google Scholar 

  61. Hanna A, Thompson DL, Hellenbrand DJ, Lee JS, Madura CJ, Wesley MG, et al. Sustained release of neurotrophin‐3 via calcium phosphate‐coated sutures promotes axonal regeneration after spinal cord injury. J Neurosci Res. 2016;94:645–52.

    Article  CAS  PubMed  Google Scholar 

  62. Garraway SM, Huie JR. Spinal plasticity and behavior: BDNF‐induced neuromodulation in uninjured and injured spinal cord. Neural Plast. 2016;2016:9857201.

    Article  PubMed  PubMed Central  Google Scholar 

  63. He J, Cai H, Wang Y, Yan J, Fan C. Matrix-metalloproteinase-responsive brain-derived neurotrophic factor for spinal cord injury repair. Processes. 2024;12:1510.

    Article  CAS  Google Scholar 

  64. Shamsnia HS, Peyrovinasab A, Amirlou D, Sirouskabiri S, Rostamian F, Basiri N, et al. BDNF-TrkB signaling pathway in spinal cord injury: insights and implications. Mol Neurobiol. 2024;62:1904–44.

    Article  PubMed  Google Scholar 

  65. Poorirani S, Taheri SL, Mostafavi SA. Scaffolds: a biomaterial engineering in targeted drug delivery for osteoporosis. Osteoporos Int. 2023;34:255–67.

    Article  PubMed  Google Scholar 

  66. Barritt A, Davies M, Marchand F, Hartley R, Grist J, Yip P, et al. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci. 2006;26:10856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khalil AS, Hellenbrand D, Reichl K, Umhoefer J, Filipp M, Choe J, et al. A localized materials‐based strategy to non‐virally deliver chondroitinase ABC mRNA improves hindlimb function in a rat spinal cord injury model. Adv Healthc Mater. 2022;11:2200206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ito S, Ozaki T, Morozumi M, Imagama S, Kadomatsu K, Sakamoto K. Enoxaparin promotes functional recovery after spinal cord injury by antagonizing PTPRσ. Exp Neurol. 2021;340:113679.

    Article  CAS  PubMed  Google Scholar 

  69. Deng W-S, Yang K, Liang B, Liu Y-F, Chen X-Y, Zhang S. Collagen/heparin sulfate scaffold combined with mesenchymal stem cells treatment for canines with spinal cord injury: a pilot feasibility study. J Orthop Surg. 2021;29:23094990211012293.

    Article  Google Scholar 

  70. Li Z, Zhou T, Bao Z, Wu M, Mao Y. The porous SilMA hydrogel scaffolds carrying dual-sensitive paclitaxel nanoparticles promote neuronal differentiation for spinal cord injury repair. Tissue Eng Regen Med. 2024;21:809–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang Y, Lv H-Q, Chao X, Xu W-X, Liu Y, Ling G-X, et al. Multimodal therapy strategies based on hydrogels for the repair of spinal cord injury. Mil Med Res. 2022;9:16.

    PubMed  PubMed Central  Google Scholar 

  72. Sultan I, Lamba N, Liew A, Doung P, Tewarie I, Amamoo JJ, et al. The safety and efficacy of steroid treatment for acute spinal cord injury: a systematic review and meta-analysis. Heliyon. 2020;6:e03414.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mueller G, Berlowitz DJ, Raab AM, Postma K, Gobets D, Huber B, et al. Incidence and risk factors of pneumonia in individuals with acute spinal cord injury: a multi-national, multi-center, prospective cohort study. Arch Phys Med Rehabil. 2024;105:884–91.

    Article  PubMed  Google Scholar 

  74. Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, Shahsavarani H, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther. 2019;10:341.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, et al. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer. 2023;22:189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sugai K, Sumida M, Shofuda T, Yamaguchi R, Tamura T, Kohzuki T, et al. First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: study protocol. Regen Ther. 2021;18:321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao Y, Tang F, Xiao Z, Han G, Wang N, Yin N, et al. Clinical study of NeuroRegen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant. 2017;26:891–900.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Theodore N, Hlubek R, Danielson J, Neff K, Vaickus L, Ulich TR, et al. First human implantation of a bioresorbable polymer scaffold for acute traumatic spinal cord injury: a clinical pilot study for safety and feasibility. Neurosurgery. 2016;79:E305–12.

    Article  PubMed  Google Scholar 

  79. Xiao Z, Tang F, Tang J, Yang H, Zhao Y, Chen B, et al. One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci. 2016;59:647–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.G.’s contribution to this article was made in the context of the Oxford Global Neurosurgery Initiative.

Author information

Authors and Affiliations

Authors

Contributions

AKh and NS conducted independent screenings of the titles and abstracts to assess eligibility, with ZR providing final approval in cases of discrepancies. Data extraction was performed independently by three pairs: EKh and MH, MM and KR, and ME and AE, with TM consulted for final approval in cases of discrepancies. AKh and MS performed data analysis and visualization. AKh wrote the manuscript, while AKh, MS, and ZH contributed to the conceptualization of the study. Supervision was provided by MGF, MG, ASH, and MS Project administration was led by MS. All authors reviewed and provided critical feedback on the manuscript.

Corresponding author

Correspondence to Mahdi Sharif-Alhoseini.

Ethics declarations

Competing interests

(Dr. Michael Fehlings as Editor-in-Chief of Spinal Cord had no role in the peer review or adjudication of this manuscript).

Ethical consideration

This study was reviewed and approved by the Ethics Committee of Tehran University of Medical Sciences, with the approval code.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khavandegar, A., Safari Dehnavi, N., Ganau, M. et al. Neuroregenerative and neuroprotective effects of bioengineered scaffolds in spinal cord injury: a systematic review of preclinical and early phase clinical studies. Spinal Cord 63, 451–469 (2025). https://doi.org/10.1038/s41393-025-01114-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41393-025-01114-9

Search

Quick links