Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoformulated fingolimod attenuates NLRP3 inflammasome activation and promotes functional recovery in a rat model of spinal cord injury

Abstract

Study Design

Animal study.

Objectives

The NLRP3 inflammasome is a key mediator in secondary cascade of spinal cord injury (SCI), making it a potential therapeutic target. This study aimed to develop a nanoformulated version of fingolimod and investigate its effects on neuroinflammation, NLRP3 inflammasome activity, glial activation, lesion volume, and functional outcomes in a rat model of moderate contusive SCI.

Setting

Experimental animal research laboratory, AlSafwa University College, Karbala, Iraq.

Methods

Fingolimod-loaded PLGA nanoparticles were synthesized using the emulsion solvent evaporation method and characterized for size, morphology, and drug release. Adult male Wistar rats underwent a standardized contusion SCI at T9 and were randomized into three groups (n = 13): Sham, SCI + Vehicle, and SCI + Nano-Fingolimod (10 ng/ml). Behavioral assessments using the BBB locomotor test were performed on days 1, 3, 5, 7, 10, 12, and 14 post-injuries. Histological analysis quantified lesion volume and inflammatory cell infiltration. Immunofluorescence (IF) and Western blotting were used to evaluate the expression of NLRP3, ASC, cleaved caspase-1, IL-1β, GFAP, and Iba-1.

Results

Nano-fingolimod significantly improved BBB locomotor scores compared to the SCI group (p < 0.0001), indicating enhanced motor recovery. Histological examination revealed reduced lesion volume and inflammatory cell density in the treatment group. IF and Western blot analyses showed marked suppression of NLRP3 inflammasome signaling components (NLRP3, ASC, cleaved caspase-1, and IL-1β) and reduced glial activation (GFAP, Iba-1).

Conclusion

Nanoformulated fingolimod provides neuroprotection and improves functional recovery after SCI by attenuating NLRP3 inflammasome activation and glial reactivity. Targeted nanodelivery enhances its CNS bioavailability and reduces toxicity, positioning it as a promising candidate for SCI therapy.

Sponsorship

None.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization and therapeutic effects of Fingolimod-loaded nanoparticles in a rat model of spinal cord injury (SCI).
Fig. 2: Nano-Fingolimod improves locomotor recovery and attenuates lesion severity and inflammatory infiltration following spinal cord injury.
Fig. 3: Nano-Fingolimod attenuates glial activation and NLRP3 inflammasome signaling following spinal cord injury (SCI).

Similar content being viewed by others

Data availability

The datasets generated analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Norimatsu Y, Ohmori T, Kimura A, Madoiwa S, Mimuro J, Seichi A, et al. FTY720 improves functional recovery after spinal cord injury by primarily nonimmunomodulatory mechanisms. Am J Pathol. 2012;180:1625–35.

    Article  CAS  PubMed  Google Scholar 

  2. Lee KD, Chow WN, Sato-Bigbee C, Graf MR, Graham RS, Colello RJ, et al. FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. J Neurotrauma. 2009;26:2335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen Y, Liu R, Cai W, Jiang L, Chen K, Shi J, et al. Davunetide promotes structural and functional recovery of the injured spinal cord by promoting autophagy. Neural Regen Res. 2025;1:10–4103.

  4. Zhang H, He K, Zhao Y, Peng Y, Feng D, Wang J, et al. fNIRS biomarkers for stratifying poststroke cognitive impairment: Evidence from frontal and temporal cortex activation. Stroke. 2025;56:3245–56.

    Article  CAS  PubMed  Google Scholar 

  5. Xu G, Huo C, Yin J, Zhong Y, Sun G, Fan Y, et al. Test-retest reliability of fNIRS in resting-state cortical activity and brain network assessment in stroke patients. Biomed Opt Express. 2023;14:4217–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shirzad S, Riyahi Rad M, Rezaei M, Tayaranian Marvian M, Abroumand Gholami A, Forouzanfar F, et al. Effect of pretreatment with Devil’s Claw on locomotor activity, infarct volume, and neuronal density in focal cerebral ischemia in rats. Avicenna J Phytomedicine. 2024;14:485–95.

    Google Scholar 

  7. Forghani N, Hosseinian S, Akhoond-Ali Z, Gholami AA, Assaran-Darban R, Vafaee F. Effect of acute and chronic stress on memory impairment and hippocampal oxidative stress following global cerebral ischemia in adult male rats. Res Pharm Sci. 2024;19:436–46.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Asadi-Pooya AA, Malekpour M, Taherifard E, Mallahzadeh A, Kouhanjani MF. Coexistence of temporal lobe epilepsy and idiopathic generalized epilepsy. Epilepsy Behav. 2024;151:109602.

    Article  PubMed  Google Scholar 

  9. Malekpour M, Jafari A, Kashkooli M, Salarikia SR, Negahdaripour M. A systems biology approach for discovering the cellular and molecular aspects of psychogenic non-epileptic seizure. Front Psychiatry. 2023;14:1116892.

    Article  PubMed  PubMed Central  Google Scholar 

  10. WHO. WHO. 2024. https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury.

  11. Abroumand Gholami A, Tahmasebi F, Haghir H, Babaloo H. Targeting JAK/STAT signaling pathway by curcumin: Implications for spinal cord injury neuroprotection. Inflammopharmacology. 2025;33:1–19.

  12. Jin Y, Song Y, Lin J, Liu T, Li G, Lai B, et al. Role of inflammation in neurological damage and regeneration following spinal cord injury and its therapeutic implications. Burn Trauma. 2023;11:tkac054.

    Article  Google Scholar 

  13. Bhatt M, Sharma M, Das B. The role of inflammatory cascade and reactive astrogliosis in glial scar formation post-spinal cord injury. Cell Mol Neurobiol. 2024;44:1–18.

    Article  Google Scholar 

  14. Shirzad S, Tayaranian Marvian M, Abroumand Gholami A, Gharehbaghi M, Marefati N, Salmani H, et al. Unveiling the effects of left hemispheric intracerebral hemorrhage on long-term potentiation and inflammation in the bilateral hippocampus: A preclinical study. J Stroke Cerebrovasc Dis [Internet]. 2024;33:107523. Available from: https://www.sciencedirect.com/science/article/pii/S105230572300544X.

  15. Lukacova N, Kisucka A, Kiss Bimbova K, Bacova M, Ileninova M, Kuruc T, et al. Glial-neuronal interactions in pathogenesis and treatment of spinal cord injury. Int J Mol Sci. 2021;22:13577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu S, Wang J, Jiang J, Song J, Zhu W, Zhang F, et al. TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis. 2020;11:693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abroumand Gholami A, Gheybi F, Molavi AM, Tahmasebi F, Papi A, Babaloo H. Effect of polycaprolactone/carbon nanotube scaffold implantation along with liposomal ellagic acid in hippocampal synaptogenesis after spinal cord injury. Nanomedicine J [Internet]. 2023;10:197–209. Available from: https://nmj.mums.ac.ir/article_22560.html.

    Google Scholar 

  18. Babaloo H, Barati S, Haghir H, Gholami AA, Moharreri P, Fallahnezhad S, et al. The effect of PU/MWCNT nanofiber scaffolds containing hesperidin nanoparticles and mesenchymal stem cells on the microglia and astrocyte phenotype in the spinal cord injury model. Neuroscience. 2025;583:53–62.

    Article  CAS  PubMed  Google Scholar 

  19. Wu W, Lee SY, Wu X, Tyler JY, Wang H, Ouyang Z, et al. Neuroprotective ferulic acid (FA)–glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials. 2014;35:2355–64.

    Article  CAS  PubMed  Google Scholar 

  20. Zou GJ, Chen ZR, Wang XQ, Cui YH, Li F, Li CQ, et al. Microglial activation in the medial prefrontal cortex after remote fear recall participates in the regulation of auditory fear extinction. Eur J Pharmacol [Internet]. 2024;978:176759. Available from: https://www.sciencedirect.com/science/article/pii/S0014299924004473.

    Article  CAS  PubMed  Google Scholar 

  21. Zeng WJ, Zhang L, Cao H, Li D, Zhang H, Xia Z, et al. A novel inflammation-related lncRNAs prognostic signature identifies LINC00346 in promoting proliferation, migration, and immune infiltration of glioma. Front Immunol. 2022;13:810572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A. Inflammasome: its role in traumatic brain and spinal cord injury. J Cell Physiol. 2018;233:5160–9.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang W, Li M, He F, Zhou S, Zhu L. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation. 2017;14:1–12.

    Article  Google Scholar 

  24. Mankan AK, Dau T, Jenne D, Hornung V. The NLRP3/ASC/Caspase‐1 axis regulates IL‐1β processing in neutrophils. Eur J Immunol. 2012;42:710–5.

    Article  CAS  PubMed  Google Scholar 

  25. Luo J, Li X, Zhang L, Deng M, Zhao J, Zhang J, et al. 5-deoxy-rutaecarpine protects against LPS-induced acute lung injury via inhibiting NLRP3 inflammasome-related inflammation. Front Pharmacol. 2025;16:1522146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dominic A, Le NT, Takahashi M. Loop between NLRP3 inflammasome and reactive oxygen species. Antioxid Redox Signal. 2022;36:784–96.

    Article  CAS  PubMed  Google Scholar 

  27. Doyle TM, Chen Z, Durante M, Salvemini D. Activation of sphingosine-1-phosphate receptor 1 in the spinal cord produces mechanohypersensitivity through the activation of inflammasome and IL-1β pathway. J pain. 2019;20:956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bascuñana P, Möhle L, Brackhan M, Pahnke J. Fingolimod as a treatment in neurologic disorders beyond multiple sclerosis. Drugs R D. 2020;20:197–207.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Malhotra S, Hurtado-Navarro L, Pappolla A, Villar LMM, Río J, Montalban X, et al. Increased NLRP3 inflammasome activation and pyroptosis in patients with multiple sclerosis with fingolimod treatment failure. Neurol Neuroimmunol Neuroinflammation. 2023;10:e200100.

    Article  Google Scholar 

  31. Leo A, Citraro R, Marra R, Palma E, Donato Di Paola E, Constanti A, et al. The sphingosine 1-phosphate signaling pathway in epilepsy: A possible role for the immunomodulator drug fingolimod in epilepsy treatment. CNS Neurol Disord Targets-CNS Neurol Disord. 2017;16:311–25.

    Article  CAS  Google Scholar 

  32. Doolen S, Iannitti T, Donahue RR, Shaw BC, Grachen CM, Taylor BK. Fingolimod reduces neuropathic pain behaviors in a mouse model of multiple sclerosis by a sphingosine-1 phosphate receptor 1-dependent inhibition of central sensitization in the dorsal horn. Pain. 2018;159:224–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poormoghadam D, Shiadeh BR, Azedi F, Tavakol H, Rezayat SM, Tavakol S. Fingolimod nanoemulsions at different particle sizes define the fate of spinal cord injury recovery. Biomed Res Int. 2022;2022:5703426.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Chen Y, Hu X, Ouyang F, Li J, Huang J, et al. Fingolimod (FTY720) hinders Interferon-γ-mediated fibrotic scar formation and facilitates neurological recovery after spinal cord injury. J Neurotrauma. 2023;40:2580–95.

    Article  PubMed  Google Scholar 

  35. Zeraatpisheh Z, Mirzaei E, Nami M, Alipour H, Mahdavipour M, Sarkoohi P, et al. Local delivery of fingolimod through PLGA nanoparticles and PuraMatrix‐embedded neural precursor cells promote motor function recovery and tissue repair in spinal cord injury. Eur J Neurosci. 2021;54:5620–37.

    Article  CAS  PubMed  Google Scholar 

  36. Gillespie ER, Ruitenberg MJ. Neuroinflammation after SCI: current insights and therapeutic potential of intravenous immunoglobulin. J Neurotrauma. 2022;39:320–32.

    Article  PubMed  Google Scholar 

  37. Efstathopoulos P, Kourgiantaki A, Karali K, Sidiropoulou K, Margioris AN, Gravanis A, et al. Fingolimod induces neurogenesis in adult mouse hippocampus and improves contextual fear memory. Transl Psychiatry. 2015;5:e685–e685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kong W, Qi Z, Xia P, Chang Y, Li H, Qu Y, et al. Local delivery of FTY720 and NSCs on electrospun PLGA scaffolds improves functional recovery after spinal cord injury. RSC Adv. 2019;9:17801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miranda RR, Ferreira NN, de Souza EE, Lins PMP, Ferreira LMB, Kruger A, et al. Modulating Fingolimod (FTY720) anti-SARS-CoV-2 activity using a PLGA-based drug delivery system. ACS Appl Bio Mater. 2022;5:3371–83.

    Article  CAS  PubMed  Google Scholar 

  40. Alipour H, Alizadeh A, Azarpira N, Saudi A, Alavi O, Tanideh N, et al. Incorporating fingolimod through poly (lactic‐co‐glycolic acid) nanoparticles in electrospun polyurethane/polycaprolactone/gelatin scaffold: An in vitro study for nerve tissue engineering. Polym Adv Technol. 2022;33:2589–600.

    Article  CAS  Google Scholar 

  41. Sun J, Chen Q, Zhuang C, Li X, Yu L, Jin W. Mechanistic insights into synergistic effects using coupled PK-PD modeling. Sci Rep. 2025;15:15631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He R, He F, Hu Z, He Y, Zeng X, Liu Y, et al. Analysis of potential mechanism of herbal formula Taohong Siwu decoction against vascular dementia based on network Pharmacology and molecular docking. Biomed Res Int. 2023;2023:1235552.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shi Q, Hu T, Xu L, Fu J, Fang Y, Lan Y, et al. Fingolimod suppresses NLRP3 inflammasome activation and alleviates oxidative stress in traumatic brain injury-Induced acute lung injury. J Inflamm Res. 2025;18:2229–45.

  44. Guo Y, Gan X, Zhou H, Zhou H, Pu S, Long X, et al. Fingolimod suppressed the chronic unpredictable mild stress-induced depressive-like behaviors via affecting microglial and NLRP3 inflammasome activation. Life Sci. 2020;263:118582.

    Article  CAS  PubMed  Google Scholar 

  45. Bahari Javan N, Rezaie Shirmard L, Jafary Omid N, Akbari Javar H, Rafiee Tehrani M, Abedin Dorkoosh F. Preparation, statistical optimisation and in vitro characterisation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (lactic-co-glycolic acid) blend nanoparticles for prolonged delivery of teriparatide. J Microencapsul. 2016;33:460–74.

    Article  CAS  PubMed  Google Scholar 

  46. Khuyagbaatar B, Kim K, Kim YH. Conversion equation between the drop height in the New York University impactor and the impact force in the infinite horizon impactor in the contusion spinal cord injury model. J Neurotrauma. 2015;32:1987–93.

    Article  PubMed  Google Scholar 

  47. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1–21.

    Article  CAS  PubMed  Google Scholar 

  48. Stirling DP, Liu S, Kubes P, Yong VW. Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J Neurosci Off J Soc Neurosci. 2009;29:753–64.

    Article  CAS  Google Scholar 

  49. Unal B, Kaplan S, Odaci E, Aslan H, Aksak S, Unal D, et al. Neuroprotective effects of methylprednisolone and hypothermia after experimental spinal cord injury: A histopathological and stereological study. Eurasian J Med. 2009;41:169–74.

    PubMed  PubMed Central  Google Scholar 

  50. Ramadan WS, Abdel-Hamid GA, Al-Karim S, Abbas AT. Histological, immunohistochemical and ultrastructural study of secondary compressed spinal cord injury in a rat model. Folia Histochem Cytobiol. 2017;55:11–20.

    Article  CAS  PubMed  Google Scholar 

  51. Ulndreaj A, Tzekou A, Mothe AJ, Siddiqui AM, Dragas R, Tator CH, et al. Characterization of the antibody response after cervical spinal cord injury. J Neurotrauma. 2017;34:1209–26.

    Article  PubMed  Google Scholar 

  52. Shi W, Sun Y, Wang J, Tang Y, Zhou S, Xu Z, et al. Trem1 mediates neuronal apoptosis via interaction with SYK after spinal cord ischemia-reperfusion injury. Am J Transl Res. 2021;13:6117.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Andrabi SS, Yang J, Gao Y, Kuang Y, Labhasetwar V. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction. J Control Release. 2020;317:300–11.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang M, Bai Y, Xu C, Lin J, Jin J, Xu A, et al. Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats. Drug Deliv. 2021;28:2548–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moharreri P, Molavi AM, Abroumand Gholami A, Rahmani S, Mokhtari T, Gheybi F, et al. In vitro evaluation of bioactive PCL/alginate fibers with controlled liposomal silymarin release for mesenchymal stem cell transplantation. Sci Rep. 2025;15:35738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abroumand Gholami A, Molavi AM, Omrannezhad M, Mokhtari T, Rahmani S, Moharreri P, et al. Enhancing neural stem cell proliferation using Polyurethane/CNT scaffolds functionalized with liposomal hesperidin for neural tissue engineering. Nano Sel. 2025;7:e70103.

  57. Rad AR, Mokhtari T, Amirazodi E, Molavi AM, Moghadam FM, Oskuee RK, et al. Hippocampal synaptic markers and cognitive recovery in spinal cord injury: the therapeutic potential of neural stem cell-laden carbon nanotube-based fiber scaffolds with liposomal hesperidin. Res Pharm Sci [Internet]. 2025;20. Available from: https://journals.lww.com/rips/fulltext/2025/09000/hippocampal_synaptic_markers_and_cognitive.10.aspx.

  58. Hong Q, Song H, Chi NTL, Brindhadevi K. Numerous nanoparticles as drug delivery system to control secondary immune response and promote spinal cord injury regeneration. Process Biochem. 2022;112:145–53.

    Article  CAS  Google Scholar 

  59. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.

    Article  CAS  PubMed  Google Scholar 

  60. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J Control release. 2016;235:34–47.

    Article  CAS  PubMed  Google Scholar 

  61. Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation. 2011;8:1–12.

    Article  Google Scholar 

  62. Bravo GÁ, Cedeño RR, Casadevall MP, Ramió-Torrentà L. Sphingosine-1-phosphate (S1P) and S1P signaling pathway modulators, from current insights to future perspectives. Cells. 2022;11:2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dong Y, Guo R, Ji J, Cao L, Zhang L, Chen Z, et al. S1 PR 3 is essential for phosphorylated fingolimod to protect astrocytes against oxygen‐glucose deprivation‐induced neuroinflammation via inhibiting TLR 2/4‐NF κB signalling. J Cell Mol Med. 2018;22:3159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun L, Ma W, Gao W, Xing Y, Chen L, Xia Z, et al. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome. Cell Death Dis. 2019;10:542.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Khatir AA, Abbasi A, Sarandili S, Sepidarkish M, Fazlollahpour-Naghibi A, Arjmandi D, et al. The association between Parkinson disease and Toxocara infection/exposure: A case-control study. J Helminthol. 2025;99:e40.

    Article  PubMed  Google Scholar 

  66. Moarrefzadeh A, Sarandili S, Motamed-Gorji N, Majdolashrafi F, Bahardoust M, Mousavi S, et al. Predictors of quality of life in patients with Parkinson’s disease: A multicenter case-control study. Basic Clin Neurosci. 2025;16:667.

    Article  Google Scholar 

  67. Feng Y, Feng F, Pan S, Zhang J, Li W. Fingolimod ameliorates chronic experimental autoimmune neuritis by modulating inflammatory cytokines and Akt/mTOR/NF‐κB signaling. Brain Behav. 2023;13:e2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Luo H, Gu X, Tong G, Han L. Research progress of apelin in acute ischemic brain injury. Am J Transl Res. 2022;14:7260.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the overall conceptualization and study design. Mohammed Hussein M. Alsharbaty, Reem S. Alazragi, and Uday Abdul-Reda Hussein performed the experimental work, data acquisition, and initial data analysis. Siba Mekaael Yaseen assisted in histological assessment and interpretation of imaging data. Mustafa Mudhafar drafted the initial version of the manuscript and contributed to data visualization. Hasan Ali Alsailawi supervised the project, secured resources, and performed the critical revision of the manuscript for important intellectual content. All authors reviewed, edited, and approved the final manuscript and agree to be accountable for the integrity of the work.

Corresponding author

Correspondence to Hasan Ali Alsailawi.

Ethics declarations

Ethics approval

All experimental procedures were approved by the Institutional Animal Ethics Committee of AlSafwa University College, Karbala, Iraq (Approval No. H15REA195).

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. Alsharbaty, M.H., Alazragi, R.S., Mekaael yaseen, S. et al. Nanoformulated fingolimod attenuates NLRP3 inflammasome activation and promotes functional recovery in a rat model of spinal cord injury. Spinal Cord (2026). https://doi.org/10.1038/s41393-026-01177-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41393-026-01177-2

Search

Quick links