Abstract
The biogeochemical cycle of iron is intricately linked to numerous element cycles. Although biological processes that catalyze the reductive side of the iron cycle are established, little is known about microbial oxidative processes on iron cycling in sedimentary environments—resulting in the formation of iron oxides. Here we show that a potential source of sedimentary iron oxides originates from the metabolic activity of iron-oxidizing bacteria from the class Zetaproteobacteria, presumably enhanced by burrowing animals in coastal sediments. Zetaproteobacteria were estimated to be a global total of 1026 cells in coastal, bioturbated sediments, and predicted to annually produce 8 × 1015 g of Fe in sedimentary iron oxides—55 times larger than the annual flux of iron oxides deposited by rivers. These data suggest that iron-oxidizing Zetaproteobacteria are keystone organisms in marine sedimentary environments—despite their low numerical abundance—yet exert a disproportionate impact via the rejuvenation of iron oxides.
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Raiswell R, Canfield DE. The iron biogeochemical cycle past and present. Geochemical Perspectives. 2012;1:1–220.
Canfield DE, Thamdrup B, Hansen JW. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta. 1993;57:3867–83.
Aller RC. The Effects of Macrobenthos on Chemical Properties of Marine Sediment and Overlying Water. In: McCall PL, Tevesz MJS, editors. Animal-sediment relations: the biogenic alteration of sediments. Boston, MA: Springer US; 1982. p. 53–102.
Canfield DE. Reactive iron in maine sediments. Geochim Cosmochim Acta. 1989;53:619–32.
Kristensen E, Kostka JE. Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. In: Kristensen E, editor. Interactions between macro- microorganisms in marine sediments. Washington, DC: American Geophysical Union; 2005. p. 125–57.
Bertics VJ, Ziebis E. Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches. ISME J. 2009;3:1269–85.
Emerson D, Fleming EJ, McBeth JM. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol. 2010;64:561–83.
de Chanvalon AT, Metzger E, Mouret A, Knoery J, Geslin E, Meysman FJR. Two dimensional mapping of iron release in marine sediments at submillimetre scale. Mar Chem. 2017;191:34–49.
van de Velde S, Meysman FJR. The influence of bioturbation on iron and sulphur cycling in marine sediments: a model analysis. Aquat Geochem. 2016;22:469–504.
McAllister SM, Davis RE, McBeth JM, Tebo BM, Emerson D, Moyer CL. Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing Zetaproteobacteria. Appl Environ Microbiol. 2011;77:5445–57.
McBeth JM, Fleming EJ, Emerson D. The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA. Environ Microbiol Rep. 2013;5:453–63.
Scott JJ, Breier JA, Luther GW, Emerson D. Microbial iron mats at the mid-atlantic ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems. PLoS ONE. 2015;10:1–19.
Scott JJ, Glazer BT, Emerson D. Bringing microbial diversity into focus: high-resolution analysis of iron mats from the Lō‘ihi Seamount. Environ Microbiol. 2017;19:301–16.
Emerson D. The irony of iron—biogenic iron oxides as an iron source to the ocean. Front Microbiol. 2016;6:1–6.
Rubin-Blum M, Antler G, Tsadok R, Shemesh E, Austin JA, Coleman DF, et al. First evidence for the presence of iron oxidizing zetaproteobacteria at the levantine continental margins. PLoS ONE. 2014;9:1–10.
McAllister SM, Barnett JM, Heiss JW, Findlay AJ, MacDonald DJ, Dow CL, et al. Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer. Limnol Oceanogr. 2015;60:329–45.
Laufer K, Nordhoff M, Schmidt C, Behrens S, Jørgensen BB, Kappler A. Co-existence of microaerophilic, nitrate-reducing, and phototrophic Fe(II)-oxidizers and Fe(III)-reducers in coastal marine sediment. Appl Environ Microbiol. 2016;82:1433–47.
Reyes C, Dellwig O, Dahnke K, Gehre M, Noriega-Ortega BE, Bottcher ME, et al. Bacterial communities potentially involved in iron-cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing. FEMS Microbiol Ecol. 2016;92:fiw054
Field EK, Sczyrba A, Lyman AE, Harris CC, Woyke T, Stepanauskas R, et al. Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. ISME J. 2015;9:857–70.
Barco RA, Emerson D, Sylvan JB, Orcutt BN, Jacobson Meyers ME, Ramírez GA, et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl Environ Microbiol. 2015;81:5927–37.
Barco RA, Hoffman CL, Ramírez GA, Toner BM, Edwards KJ, Sylvan JB. In-situ incubation of iron-sulfur minerals reveals a divese chemolithoautotrophic community and a new biogeochemical role for Thiomicrospira. Environ Microbiol. 2017;19:1322–37.
Glud RN. Oxygen dynamics of marine sediments. Mar Biol Res. 2008;4:243–89.
Poulton SW, Canfield DE. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chem Geol. 2005;214:209–21.
Severmann S, McManus J, Berelson WM, Hammond DE. The continental shelf benthic iron flux and its isotope composition. Geochim Cosmochim Acta. 2010;74:3984–4004.
Berner RA. Sedimentary pyrite formation: an update. Geochim Coschim Acta. 1984;48:605–15.
Lalonde K, Mucci A, Ouellet A, Gelinas Y. Preservation of organic matter in sediments promoted by iron. Nature. 2012;483:198–200.
Seitaj D, Schauer R, Sulu-Gambari F, Hidalgo-Martinez S, Malkin SY, Burdorf LDW, et al. Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc Natl Acad Sci USA. 2015;112:13278–83.
Jørgensen BB. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature. 1982;296:634–5.
Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 2011;5:717–27.
Picard A, Kappler A, Schmid G, Quaroni L, Obst M. Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria. Nat Commun. 2015;6:6277.
Mori JF, Scott JJ, Hager KW, Moyer CL, Küsel K, Emerson D. Physiological and ecological implications of an iron- and hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov. sp. nov. ISME J. 2017;11:2624–36.
Boudreau BP. Mean mixed depth of sediments: the wherefore and the why. Limnol Oceanogr. 1998;43:524–6.
Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA. 2012;109:16213–6.
Teal LR, Bulling MT, Parker ER, Solan M. Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquat Biol. 2008;2:207–18.
Emerson D, Scott JJ, Leavitt AH, Fleming E, Moyer CL. In situ estimates of iron-oxidation and accretion rates for iron-oxidizing bacterial mats at Loihi Seamount. Deep Sea Research Part I. 2017;126:31–19.
LaRowe DE, Burwicz E, Arndt S, Dale AW, Amend JP, (2017) Temperature and volume of global marine sediments. Geology 45:275–278
Poulton SW, Raiswell R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am J Sci. 2002;302:774–805.
Lynch MDJ, Neufeld JD, Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015;13:217–29.
Meysman FJR, Middelburg JJ, Heip CHR. Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol. 2006;21:688–95.
Tarhan LG, Droser ML, Planavsky NJ, Johnston DT. Protracted development of bioturbation through the early Palaeozoic era. Nat Geosci. 2015;8:865–9.
Acknowledgements
This project was funded by a National Science Foundation Biological Oceanography Award number OCE-1459600 (D.E.). Sample collection for the Oregon margin and Gulf of Mexico was funded by National Science Foundation grants OCE-1029889 and OCE-1147407, and written contributions by OCE-1715106 (to J.M.). F.J.R.M. was supported through ERC Grant 306933 under the European Union’s Seventh Framework Program. C.S.C was supported by a National Science Foundation Biological Oceanography award (OCE-1155290). We appreciate Sarabeth George for field and laboratory assistance, Peter Larsen for marine polychaete and hemichordate identification, Anton Tramper for sampling worm burrow and sediments from Netherlands, Peter Girguis and David Johnston for helpful discussions, Megan Harder for assistance with iron oxide and DNA extractions, and Matthew Wade for logistical support. We appreciate the comments from two anonymous reviewers that greatly improved the quality of the final manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Beam, J.P., Scott, J.J., McAllister, S.M. et al. Biological rejuvenation of iron oxides in bioturbated marine sediments. ISME J 12, 1389–1394 (2018). https://doi.org/10.1038/s41396-017-0032-6
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41396-017-0032-6
This article is cited by
-
Biological matter enhanced iron release from shallow marine bioturbated sediments: a case study of Late Cretaceous sandstone, northern Saudi Arabia
International Journal of Earth Sciences (2023)
-
Potentially bioavailable iron produced through benthic cycling in glaciated Arctic fjords of Svalbard
Nature Communications (2021)