Abstract
The description of comammox Nitrospira spp., performing complete ammonia-to-nitrate oxidation, and their co-occurrence with canonical β-proteobacterial ammonia oxidizing bacteria (β-AOB) in the environment, calls into question the metabolic potential of comammox Nitrospira and the evolutionary history of their ammonia oxidation pathway. We report four new comammox Nitrospira genomes, constituting two novel species, and the first comparative genomic analysis on comammox Nitrospira. Unlike canonical Nitrospira, comammox Nitrospira genomes lack genes for assimilatory nitrite reduction, suggesting that they have lost the potential to use external nitrite nitrogen sources. By contrast, compared to canonical Nitrospira, comammox Nitrospira harbor a higher diversity of urea transporters and copper homeostasis genes and lack cyanate hydratase genes. Additionally, the two comammox clades differ in their ammonium uptake systems. Contrary to β-AOB, comammox Nitrospira genomes have single copies of the two central ammonia oxidation pathway operons. Similar to ammonia oxidizing archaea and some oligotrophic AOB strains, they lack genes involved in nitric oxide reduction. Furthermore, comammox Nitrospira genomes encode genes that might allow efficient growth at low oxygen concentrations. Regarding the evolutionary history of comammox Nitrospira, our analyses indicate that several genes belonging to the ammonia oxidation pathway could have been laterally transferred from β-AOB to comammox Nitrospira. We postulate that the absence of comammox genes in other sublineage II Nitrospira genomes is the result of subsequent loss.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by Nitrospira bacteria. Nature. 2015;528:504–9.
van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, et al. Complete nitrification by a single microorganism. Nature. 2015;528:555–9.
Gülay A, Musovic S, Albrechtsen H-J, Al-Soud WA, Sørensen SJ, Smets BF. Ecological patterns, diversity and core taxa of microbial communities in groundwater-fed rapid gravity filters. ISME J. 2016;10:2209–22.
Off S, Alawi M, Spieck E. Enrichment and physiological characterization of a novel nitrospira-like bacterium obtained from a marine sponge. Appl Environ Microbiol. 2010;76:4640–6.
Pester M, Maixner F, Berry D, Rattei T, Koch H, Lücker S, et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ Microbiol. 2014;16:3055–71.
Palomo A, Jane Fowler S, Gülay A, Rasmussen S, Sicheritz-Ponten T, Smets BF. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp. ISME J. 2016;10:2569–81.
Gruber-Dorninger C, Pester M, Kitzinger K, Savio DF, Loy A, Rattei T, et al. Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J. 2015;9:643–55.
Maixner F, Noguera DR, Anneser B, Stoecker K, Wegl G, Wagner M, et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ Microbiol. 2006;8:1487–95.
Park HD, Noguera DR. Nitrospira community composition in nitrifying reactors operated with two different dissolved oxygen levels. J Microbiol Biotechnol. 2008;18:1470–4.
Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lucker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052–4.
Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci. 2015;112:11371–6.
Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, et al. Cyanate as an energy source for nitrifiers. Nature. 2015;524:105–8.
Costa E, Pérez J, Kreft J-U. Why is metabolic labour divided in nitrification? Trends Microbiol. 2006;14:213–9.
Pinto AJ, Marcus DN, Ijaz Z, Bautista-de los Santos QM, Dick GJ, Raskin L. Metagenomic Evidence for the Presence of Comammox Nitrospira-Like Bacteria in a Drinking Water System. mSphere. 2015;1:e00054–15.
Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol. 2016;18:159–73.
Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–8.
Karst SM, Kirkegaard RH, Albertsen M. (2016). Mmgenome: a toolbox for reproducible genome extraction from metagenomes. bioRxiv 59121.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
Bosi E, Donati B, Galardini M, Brunetti S, Sagot MF, Lió P, et al. MeDuSa: a multi-draft based scaffolder. Bioinformatics. 2015;31:2443–51.
Boetzer M, Pirovano W, Zerbino D, Birney E, Simpson J, Wong K, et al. Toward almost closed genomes with GapFiller. Genome Biol. 2012;13:R56.
Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
Meyer F, Paarmann D, D’Souza M, Olson R, Glass E, Kubal M, et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 2008;9:386.
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Guy L, Kultima JR, Andersson SGE, Quackenbush J. GenoPlotR: comparative gene and genome visualization in R. Bioinformatics. 2011;27:2334–5.
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:1–6.
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:699–710.
Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22:2971–2.
Ochman H, Wilson AC. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:74–86.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.
Sjöstrand J, Tofigh A, Daubin V, Arvestad L, Sennblad B, Lagergren J. A bayesian method for analyzing lateral gene transfer. Syst Biol. 2014;63:409–20.
Jacox E, Chauve C, Szöllősi GJ, Ponty Y, Scornavacca C. ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics. 2016;32:btw105.
Chevenet F, Doyon J-P, Scornavacca C, Jacox E, Jousselin E, Berry V. SylvX: a viewer for phylogenetic tree reconciliations. Bioinformatics. 2016;32:608–10.
R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. http://www.R-project.org/.
Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res. 2014;42:1–12.
Offre P, Kerou M, Spang A, Schleper C. Variability of the transporter gene complement in ammoniaoxidizing archaea. Trends Microbiol. 2014;22:665–75.
Weidinger K, Neuhäuser B, Gilch S, Ludewig U, Meyer O, Schmidt I. Functional and physiological evidence for a Rhesus-type ammonia transporter in Nitrosomonas europaea. FEMS Microbiol Lett. 2007;273:260–7.
Westhoff CM, Wylie DE. Transport characteristics of mammalian Rh and Rh glycoproteins expressed in heterologous systems. Transfus Clin Biol. 2006;13:132–8.
Javelle A, Thomas G, Marini A-M, Krämer R, Merrick M. In vivo functional characterization of the Escherichia coli ammonium channel AmtB: evidence for metabolic coupling of AmtB to glutamine synthetase. Biochem J. 2005;390:215–22.
Walter B, Kuspert M, Ansorge D, Kramer R, Burkovski A. Dissection of ammonium uptake systems in Corynebacterium glutamicum: mechanism of action and energetics of AmtA and AmtB. J Bacteriol. 2008;190:2611–4.
Mills J, Wyborn NR, Greenwood JA, Williams SG, Jones CW. An outer-membrane porin inducible by short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus. Microbiology. 1997;143:2373–9.
Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M. In situ characterization of nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol. 2001;67:5273–84.
Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.
Lücker S, Nowka B, Rattei T, Spieck E, Daims H. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front Microbiol. 2013;4:1–19.
Moparthi VK, Hägerhäll C. The evolution of respiratory chain complex i from a smaller last common ancestor consisting of 11 protein subunits. J Mol Evol. 2011;72:484–97.
Spero MA, Aylward FO, Currie CR, Donohue TJ. Phylogenomic analysis and predicted physiological role of the proton-translocating NADH:Quinone oxidoreductase (Complex I) across bacteria. MBio. 2015;6:e00389–15.
Arai H, Jung HR, Kaplan S. Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1. J Bacteriol. 2008;190:286–99.
Spero MA, Brickner JR, Mollet JT, Pisithkul T, Amador-Noguez D, Donohue TJ. Different functions of phylogenetically distinct bacterial complex I isozymes. J Bacteriol. 2016;198:1268–80.
Lancaster CR. Wolinella succinogenes quinol:fumarate reductase - 2.2-Å resolution crystal structure and the E-pathway hypothesis of coupled transmembrane proton and electron transfer. Biochim Biophys Acta. 2002;1565:215–31.
Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA. 2010;107:13479–84.
Giuffrè A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014;1837:1178–87.
Zambonelli C and Roberts MF. Non-HKD phospholipase D enzymes: new players in phosphatidic acid signaling? Prog Nucleic Acid Res Mol Biol. 2005;79:133–181
Harayama S, Rekik M, Ngai KL, Ornston LN. Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida. J Bacteriol. 1989;171:6251–8.
Spieck E, Hartwig C, McCormack I, Maixner F, Wagner M, Lipski A, et al. Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ Microbiol. 2006;8:405–15.
Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol. 1986;144:1–7.
Ouellet H, Ranguelova K, LaBarre M, Wittenberg JB, Wittenberg BA, Magliozzo RS, et al. Reaction of Mycobacterium tuberculosis truncated hemoglobin O with hydrogen peroxide: Evidence for peroxidatic activity and formation of protein-based radicals. J Biol Chem. 2007;282:7491–503.
Torge R, Comandini A, Catacchio B, Bonamore A, Botta B, Boffi A. Peroxidase-like activity of Thermobifida fusca hemoglobin: the oxidation of dibenzylbutanolide. J Mol Catal B Enzym. 2009;61:303–8.
Marles-Wright J, Lewis RJ. The stressosome: molecular architecture of a signalling hub. Biochem Soc Trans. 2010;38:928–33.
Cha JS, Cooksey DA. Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl Environ Microbiol. 1993;59:1671–4.
Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, et al. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph nitrosomonas europaea complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph nitrosomonas europaea †. J Bacteriol. 2003;185:2759–73.
Richard-Fogal CL, Frawley ER, Feissner RE, Kranz RG. Heme concentration dependence and metalloporphyrin inhibition of the system I and II cytochrome c assembly pathways. J Bacteriol. 2007;189:455–63.
Daims H, Lücker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 2016;24:699–712.
Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5’-methylthioadenosine. IUBMB Life. 2009;61:1132–42.
Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M. Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J. 2013;451:145–54.
Lucker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci. 2010;107:13479–84.
Belevich I, Borisov VB, Konstantinov AA, Verkhovsky MI. Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability. FEBS Lett. 2005;579:4567–70.
Le Laz S, Kpebe A, Bauzan M, Lignon S, Rousset M, Brugna M. A biochemical approach to study the role of the terminal oxidases in aerobic respiration in Shewanella oneidensis MR-1. PLoS One. 2014;9:e86343.
Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807:1398–413.
Kageyama H, Tripathi K, Rai AK, Cha-Um S, Waditee-Sirisattha R, Takabe T. An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Appl Environ Microbiol. 2011;77:5178–83.
Shen Y-C, Hu Y-N, Shaw G-C. Expressions of alkaline phosphatase genes during phosphate starvation are under positive influences of multiple cell wall hydrolase genes in Bacillus subtilis. J Gen Appl Microbiol. 2016;62:106–9.
Amin Sa, Moffett JW, Martens-Habbena W, Jacquot JE, Han Y, Devol A, et al. Copper requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment. Limnol Oceanogr. 2013;58:2037–45.
De Vet WWJM, Van Loosdrecht MCM, Rietveld LC. Phosphorus limitation in nitrifying groundwater filters. Water Res. 2012;46:1061–9.
Scherrenberg SM, Menkveld HWH, Bechger M, Van Der Graaf JHJM. Phosphorus and nitrogen profile measurements to locate phosphorus limitation in a fixed bed filter. Water Sci Technol. 2009;60:2537–44.
Wagner FB, Nielsen PB, Boe-Hansen R, Albrechtsen HJ. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production. Water Res. 2016;95:280–8.
Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature. 2017;549:269–72.
Camejo PY, Santo Domingo J, McMahon KD, Noguera DR. Genome-enabled insights into the ecophysiology of the Comammox Bacterium ‘ Candidatus Nitrospira nitrosa’. mSystems. 2017;2:e00059–17.
Gao J-F, Fan X-Y, Pan K-L, Li H-Y, Sun L-X. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter. Sci Rep. 2016;6:38785.
Bartelme RP, McLellan SL, Newton RJ. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and Comammox Nitrospira. Front Microbiol. 2017;8:101.
Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A, et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of Comammox Nitrospira in the environment. Front Microbiol. 2017;8. e-pub ahead of print, https://doi.org/10.3389/fmicb.2017.01508.
Wang Y, Ma L, Mao Y, Jiang X, Xia Y, Yu K, et al. Comammox in drinking water systems. Water Res. 2017;116:332–41.
Speth DR, Guerrero-Cruz S, Dutilh BE. Genome-based microbial ecology of anammox granules in a fullscale wastewater treatment system. Nat Commun. 2016;7:11172.
Acknowledgements
This research was financially supported by MERMAID (An initial training network funded by the People Program—Marie Skłodowska-Curie Actions- of the European Union’s Seventh Framework Program FP7/2007-2013/ under REA grant agreement n°607492), and a research grant (Expa-N, 13391) from VILLUM FONDEN.
Authors contributions
The study was conceived by AP, BFS and TSP. AP performed the genome binning and comparative genomic analyses. AGP conducted the evolutionary analysis supported by AP. AP led interpretation of the results supported by SJF, AD and AGP. AP drafted the manuscript helped by SJF, AGP, and BFS; all authors contributed to its revision, and approved the final submission.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Additional information:All raw sequence data and genome sequences have been deposited at NCBI under the project PRJNA384587, with sequence accession for the raw sequence data: SRR5739198—SRR5739203; and for the draft genomes: GCA_002869925.1, GCA_002869845.1, GCA_002869885.1, GCA_002869855.1 and GCA_002869895.1 (GenBank assembly accessions). The file containing the protein clusters sequences is available on figshare ((http://dx.doi.org/10.6084/m9.figshare.4924748).
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Palomo, A., Pedersen, A.G., Fowler, S.J. et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J 12, 1779–1793 (2018). https://doi.org/10.1038/s41396-018-0083-3
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41396-018-0083-3
This article is cited by
-
Monitoring complete ammonia oxidizers bacteria: relevant players for nitrogen removal from wastewater
AMB Express (2025)
-
Soil comammox Nitrospira dominates over ammonia-oxidizing archaea and bacteria in the invasion of Solidago canadensis
Plant and Soil (2025)
-
Enrichment of nitrifying microbial communities in aquaculture: current trends and prospects
Aquaculture International (2025)
-
Biofilm colonization and succession in a full-scale partial nitritation-anammox moving bed biofilm reactor
Microbiome (2024)
-
Sustainable wastewater management through nitrogen-cycling microorganisms
Nature Water (2024)