Fig. 3
From: Diverse hydrogen production and consumption pathways influence methane production in ruminants

Comparison of expression levels of H2 production and H2 uptake pathways in low and high methane yield sheep. Results are shown for 10 metatranscriptome data sets each from low methane yield sheep (orange) and high methane yield sheep (blue) that were randomly subsampled at five million reads. a Normalised count of hydrogenase transcript reads based on hydrogenase subgroup. b Normalised count of hydrogenase transcript reads based on predicted taxonomic affiliation. c Normalised count of transcript reads of key enzymes involved in H2 production and H2 consumption, namely the catalytic subunits of [NiFe]-hydrogenases (NiFe), [FeFe]-hydrogenases (FeFe), [Fe]-hydrogenases (Fe), hydrogenase-associated diaphorases (HydB), nitrogenases (NifH), methyl-CoM reductases (McrA), acetyl-CoA synthases (AcsB), adenylylsulfate reductases (AprA), dissimilatory sulphite reductases (DsrA), alternative sulfite reductases (AsrA), fumarate reductases (FrdA), dissimilatory nitrate reductases (NarG), periplasmic nitrate reductases (NapA), ammonia-forming nitrite reductases (NrfA), DMSO/TMAO reductases (DmsA) and cytochrome bd oxidases (CydA) are provided. For FrdA, NrfA and CydA, the numerous reads from non-hydrogenotrophic organisms (e.g., Bacteroidetes) were excluded. Each boxplot shows the 10 datapoints and their range, mean and quartiles. Significance was tested using independent two-group Wilcoxon rank-sum tests (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; full p values in Table S9, S10 and S11). Note the metagenome abundance and RNA/DNA ratio of these genes is shown in Figure S2 (hydrogenase subgroup), Figure S3 (hydrogenase taxonomic affiliation) and Figure S4 (H2 uptake pathways). A full list of metagenome and metatranscriptome hits is provided for hydrogenases in Table S4 and H2 uptake pathways in Table S5