Abstract
The enormous chemical diversity and strain variability of prokaryotic protein glycosylation makes their large-scale exploration exceptionally challenging. Therefore, despite the universal relevance of protein glycosylation across all domains of life, the understanding of their biological significance and the evolutionary forces shaping oligosaccharide structures remains highly limited. Here, we report on a newly established mass binning glycoproteomics approach that establishes the chemical identity of the carbohydrate components and performs untargeted exploration of prokaryotic oligosaccharides from large-scale proteomics data directly. We demonstrate our approach by exploring an enrichment culture of the globally relevant anaerobic ammonium-oxidizing bacterium Ca. Kuenenia stuttgartiensis. By doing so we resolve a remarkable array of oligosaccharides, which are produced by two seemingly unrelated biosynthetic routes, and which modify the same surface-layer protein simultaneously. More intriguingly, the investigated strain also accomplished modulation of highly specialized sugars, supposedly in response to its energy metabolism—the anaerobic oxidation of ammonium—which depends on the acquisition of substrates of opposite charges. Ultimately, we provide a systematic approach for the compositional exploration of prokaryotic protein glycosylation, and reveal a remarkable example for the evolution of complex oligosaccharides in bacteria.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Data availability
The mass spectrometry proteomics raw data have been deposited in the ProteomeXchange consortium database with the dataset identifier PXD021600. Raw sequencing data are available through the NCBI Sequence Read Archive (SRA) under accession number: SRR12344472. The MAGs are available at GenBank under accession numbers JACFMP000000000 to JACFOJ000000000. The BioProject accession number is PRJNA647942.
References
Prabakaran S, Lippens G, Steen H, Gunawardena J. Post‐translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med. 2012;4:565–83.
Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. 2011;1:90.
den Ridder M, Daran-Lapujade P, Pabst M. Shot-gun proteomics: why thousands of unidentified signals matter. FEMS Yeast Res. 2020;20:foz088.
Spoel SH. Orchestrating the proteome with post-translational modifications. Oxford University Press UK. 2018;19:4499–4503.
Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al. Essentials of glycobiology. 3rd edition. (Cold Spring Harbor Laboratory Press, New York, 2015–2017).
Varki A. Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harb Perspect Biol. 2011;3:a005462.
Varki A, Lowe JB. Biological roles of glycans. In: Varki A. Essentials of glycobiology. 2nd edition (Cold Spring Harbor Laboratory Press, New York, 2009). pp 75–88.
Herget S, Toukach PV, Ranzinger R, Hull WE, Knirel YA, Von der Lieth C-W. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans. BMC Struct Biol. 2008;8:1–20.
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev. 2017;41:49–91.
Eichler J, Koomey M. Sweet new roles for protein glycosylation in prokaryotes. Trends Microbiol. 2017;25:662–72.
Eichler J. Extreme sweetness: protein glycosylation in archaea. Nat Rev Microbiol. 2013;11:151.
Kleikamp HB, Lin YM, McMillan DG, Geelhoed JS, Naus-Wiezer SN, Van Baarlen P, et al. Tackling the chemical diversity of microbial nonulosonic acids–a universal large-scale survey approach. Chem Sci. 2020;11:3074–80.
Boleij M, Kleikamp H, Pabst M, Neu TR, Van Loosdrecht MC, Lin Y. Decorating the anammox house: sialic acids and sulfated glycosaminoglycans in the extracellular polymeric substances of anammox granular sludge. Environ Sci Technol. 2020;54:5218–26.
Bucci M. A gut reaction. Nat Chem Biol. 2020;16:363-.
Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep. 2009;1:285–92.
Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci. 2009;106:4752–7.
Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature. 2006;440:790.
Kartal B, Kuenen JV, Van Loosdrecht M. Sewage treatment with anammox. Science. 2010;328:702–3.
van Niftrik L, Jetten MS. Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev. 2012;76:585–96.
Fuerst JA, Sagulenko E. Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol. 2011;9:403.
Van Teeseling MC, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, et al. Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun. 2015;6:6878.
Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C, Jogler M, et al. Planctomycetes do possess a peptidoglycan cell wall. Nat Commun. 2015;6:7116.
van Teeseling MC, Maresch D, Rath CB, Figl R, Altmann F, Jetten MS, et al. The S-layer protein of the anammox bacterium Kuenenia stuttgartiensis is heavily O-glycosylated. Front Microbiol. 2016;7:1721.
van Teeseling MC, de Almeida NM, Klingl A, Speth DR, den Camp HJO, Rachel R, et al. A new addition to the cell plan of anammox bacteria:“Candidatus Kuenenia stuttgartiensis” has a protein surface layer as the outermost layer of the cell. J Bacteriol. 2014;196:80–9.
Boleij M, Pabst M, Neu TR, van Loosdrecht MC, Lin Y. Identification of glycoproteins isolated from extracellular polymeric substances of full-scale anammox granular sludge. Environ Sci Technol. 2018;52:13127–35.
Gerbino E, Carasi P, Mobili P, Serradell M, Gómez-Zavaglia A. Role of S-layer proteins in bacteria. World J Microbiol Biotechnol. 2015;31:1877–87.
Sleytr UB, Schuster B, Egelseer E-M, Pum D. S-layers: principles and applications. FEMS Microbiol Rev. 2014;38:823–64.
Schuster B, Sleytr UB. Relevance of glycosylation of S-layer proteins for cell surface properties. Acta biomaterialia. 2015;19:149–57.
Tamir A, Eichler J N-Glycosylation is important for proper Haloferax volcanii S-layer stability and function. Appl Environ Microbiol. 2017;83:e03152-16.
Wang F, Cvirkaite-Krupovic V, Kreutzberger MA, Su Z, de Oliveira GA, Osinski T, et al. An extensively glycosylated archaeal pilus survives extreme conditions. Nat Microbiol. 2019;4:1401–10.
Li P-N, Herrmann J, Tolar BB, Poitevin F, Ramdasi R, Bargar JR, et al. Nutrient transport suggests an evolutionary basis for charged archaeal surface layer proteins. ISME J. 2018;12:2389–402.
Posch G, Pabst M, Brecker L, Altmann F, Messner P, Schäffer C. Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. J Biol Chem. 2011;286:38714–24.
Benz I, Schmidt MA. Never say never again: protein glycosylation in pathogenic bacteria. Mol Microbiol. 2002;45:267–76.
Sekot G, Posch G, Messner P, Matejka M, Rausch-Fan X, Andrukhov O, et al. Potential of the Tannerella forsythia S-layer to delay the immune response. J Dent Res. 2011;90:109–14.
Szymanski CM, Burr DH, Guerry P. Campylobacter protein glycosylation affects host cell interactions. Infect Immun. 2002;70:2242.
Drickamer K, Taylor ME. Evolving views of protein glycosylation. Trends Biochem Sci. 1998;23:321–4.
Koomey M. O-linked protein glycosylation in bacteria: snapshots and current perspectives. Curr Opin Struct Biol. 2019;56:198–203.
Wang N, Anonsen JH, Hadjineophytou C, Reinar WB, Børud B, Vik Å, et al. Allelic polymorphisms in a glycosyltransferase gene shape glycan repertoire in the O-linked protein glycosylation system of Neisseria. Glycobiology. 2021;31:477–91.
Stadlmann J, Taubenschmid J, Wenzel D, Gattinger A, Dürnberger G, Dusberger F, et al. Comparative glycoproteomics of stem cells identifies new players in ricin toxicity. Nature. 2017;549:538–42.
Polasky DA, Yu F, Teo GC, Nesvizhskii AI. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat Methods. 2020;17:1125–32.
Lu L, Riley NM, Shortreed MR, Bertozzi CR, Smith LM. O-Pair Search with MetaMorpheus for O-glycopeptide characterization. Nat Methods. 2020;17:1133–8.
Fulton KM, Li J, Tomas JM, Smith JC, Twine SM. Characterizing bacterial glycoproteins with LC-MS. Expert Rev Proteom. 2018;15:203–16.
Ahrné E, Müller M, Lisacek F. Unrestricted identification of modified proteins using MS/MS. Proteomics. 2010;10:671–86.
Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. Curr Protoc Bioinforma. 2012;40:13.20. 1-13.20. 14
Na S, Bandeira N, Paek E. Fast multi-blind modification search through tandem mass spectrometry. Mol Cell Proteomics. 2012;11:1–13.
Devabhaktuni A, Lin S, Zhang L, Swaminathan K, Gonzalez CG, Olsson N, et al. TagGraph reveals vast protein modification landscapes from large tandem mass spectrometry datasets. Nat Biotechnol. 2019;37:469–79.
Izaham ARA, Scott NE. Open database searching enables the identification and comparison of bacterial glycoproteomes without defining glycan compositions prior to searching. Mol Cell Proteom. 2020;19:1561–74.
Ahmad Izaham AR, Ang C-S, Nie S, Bird LE, Williamson NA, Scott NE. What are we missing by using hydrophilic enrichment? improving bacterial glycoproteome coverage using total proteome and FAIMS analyses. J Proteome Res. 2020;20:599–612.
Kelstrup CD, Frese C, Heck AJ, Olsen JV, Nielsen ML. Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID). Mol Cell Proteom. 2014;13:1914–24.
Wuhrer M, Catalina MI, Deelder AM, Hokke CH. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B 2007;849:115–28.
Hoffmann M, Marx K, Reichl U, Wuhrer M, Rapp E. Site-specific O-glycosylation analysis of human blood plasma proteins. Mol Cell Proteom. 2016;15:624–41.
Singh C, Zampronio CG, Creese AJ, Cooper HJ. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J proteome Res. 2012;11:4517–25.
Hoffmann M, Pioch M, Pralow A, Hennig R, Kottler R, Reichl U, et al. The fine art of destruction: a guide to in‐depth glycoproteomic analyses—exploiting the diagnostic potential of fragment ions. Proteomics 2018;18:1800282.
Kosma P, Wugeditsch T, Christian R, Zayni S, Messner P. Glycan structure of a heptose-containing S-layer glycoprotein of Bacillus thermoaerophilus. Glycobiology. 1995;5:791–6.
Faridmoayer A, Fentabil MA, Haurat MF, Yi W, Woodward R, Wang PG, et al. Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation. J Biol Chem. 2008;283:34596–604.
Harding CM, Nasr MA, Scott NE, Goyette-Desjardins G, Nothaft H, Mayer AE, et al. A platform for glycoengineering a polyvalent pneumococcal bioconjugate vaccine using E. coli as a host. Nat Commun. 2019;10:1–11.
Speth DR, Guerrero-Cruz S, Dutilh BE, Jetten MS. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat Commun. 2016;7:11172.
Lawson CE, Wu S, Bhattacharjee AS, Hamilton JJ, McMahon KD, Goel R, et al. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat Commun. 2017;8:1–12.
Straka LL, Meinhardt KA, Bollmann A, Stahl DA, Winkler M-K. Affinity informs environmental cooperation between ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (Anammox) bacteria. ISME J. 2019;13:1997–2004.
Hu Z, Wessels HJ, van Alen T, Jetten MS, Kartal B. Nitric oxide-dependent anaerobic ammonium oxidation. Nat Commun. 2019;10:1–7.
Shaw DR, Ali M, Katuri KP, Gralnick JA, Reimann J, Mesman R, et al. Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria. Nat Commun. 2020;11:1–12.
Lewis AL, Desa N, Hansen EE, Knirel YA, Gordon JI, Gagneux P, et al. Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure. Proc Natl Acad Sci. 2009;106:13552–7.
Fernández L, Rodríguez A, García P. Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J. 2018;12:1171–9.
Wang J, Cheng B, Li J, Zhang Z, Hong W, Chen X, et al. Chemical remodeling of cell‐surface sialic acids through a palladium‐triggered bioorthogonal elimination reaction. Angew Chem Int Ed. 2015;54:5364–8.
Pabst M, Fischl RM, Brecker L, Morelle W, Fauland A, Köfeler H, et al. Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. Plant J. 2013;76:61–72.
Popa I, Pons A, Mariller C, Tai T, Zanetta J-P, Thomas L, et al. Purification and structural characterization of de-N-acetylated form of GD3 ganglioside present in human melanoma tumors. Glycobiology. 2007;17:367–73.
Paschinger K, Wilson IB. Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates. Glycoconj J. 2020;37:27–40.
Nothaft H, Scott NE, Vinogradov E, Liu X, Hu R, Beadle B, et al. Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol Cell Proteom. 2012;11:1203–19.
Hadjineophytou C, Anonsen JH, Wang N, Ma KC, Viburiene R, Vik Å, et al. Genetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system. PLoS Genet. 2019;15:e1008532.
Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol. 2016;18:2784–96.
Kartal B, Geerts W, Jetten MS. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria. Methods in enzymology. 486. Elsevier; 2011. p. 89–108.
Lotti T, Kleerebezem R, Lubello C, Van Loosdrecht M. Physiological and kinetic characterization of a suspended cell anammox culture. Water Res. 2014;60:1–14.
Kleikamp HB, Pronk M, Tugui C, da Silva LG, Abbas B, Lin YM, et al. Database-independent de novo metaproteomics of complex microbial communities. Cell Syst. 2021;12:375–83.
Köcher T, Pichler P, Swart R, Mechtler K. Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients. Nat Protoc. 2012;7:882.
Lawson CE, Nuijten GH, de Graaf RM, Jacobson TB, Pabst M, Stevenson DM, et al. Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13 C and 2 H metabolic network mapping. ISME J. 2021;15:673–87.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
Laczny CC, Kiefer C, Galata V, Fehlmann T, Backes C, Keller A. BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res. 2017;45:W171–W9.
Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165
Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy T, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S, Li W. Prokaryotic genome annotation pipeline. In: The NCBI Handbook. 2nd edition. (National Center for Biotechnology Information, US, 2013). pp 131–45.
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Acknowledgements
We acknowledge Laura van Niftrik for reading the manuscript and providing constructive feedback. We further would like to acknowledge Claire Chassagne for discussions on surface charges, Guylaine Nuijten and Katinka van de Pas-Schoonen for anammox biomass sampling, technical assistance and reactor care, and Ben Abbas for the support with DNA extraction. The authors acknowledge the SIAM consortium and the TU Delft for startup funding. Additionally, SL was supported by a NWO VIDI grant (016.Vidi.189.050), and ML was supported by a Marie Skłodowska-Curie Individual Fellowship (752992), and a VENI grant from the Dutch Research Council (NWO, VI.Veni.192.252).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pabst, M., Grouzdev, D.S., Lawson, C.E. et al. A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium. ISME J 16, 346–357 (2022). https://doi.org/10.1038/s41396-021-01073-y
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41396-021-01073-y
This article is cited by
-
Microbial extracellular polymeric substances in the environment, technology and medicine
Nature Reviews Microbiology (2025)
-
Planktonic anammox bacteria toward a better understanding of ecophysiological traits and harnessing the untapped potential as a bioresource
Bioprocess and Biosystems Engineering (2025)
-
Full-length single-molecule protein fingerprinting
Nature Nanotechnology (2024)
-
Surface-layer protein is a public-good matrix exopolymer for microbial community organisation in environmental anammox biofilms
The ISME Journal (2023)
-
Physiological and stoichiometric characterization of ethanol-based chain elongation in the absence of short-chain carboxylic acids
Scientific Reports (2023)