Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early modifications of circulating microRNAs levels in metastatic colorectal cancer patients treated with regorafenib

Abstract

Biomarkers able to improve the cost/benefit ratio are urgently needed for metastatic colorectal cancer patients that are eligible to receive regorafenib. Here, we measured plasma levels of ten circulating microRNAs (c-miRNAs) and we investigated their early changes during treatment, as well as possible correlation with clinical outcome. Ten literature-selected c-miRNAs were quantified by qRT-PCR on plasma samples collected at baseline (d1) and after 15 days of treatment (d15). C-miRNAs showing significant changes were further analyzed to establish correlations with outcome. A decision tree-based approach was employed to define a c-miRNA signature able to predict the outcome. Results achieved in an exploratory cohort were tested in a validation group. In the exploratory cohort (n = 34), the levels of c-miR-21 (p = 0.06), c-miR-141 (p = 0.04), and c-miR-601 (p = 0.01) increased at d15 compared with d1. A c-miRNA signature involving c-miR-21, c-miR-221, and c-miR-760 predicted response to treatment (p < 0.0001) and was significantly associated to PFS (HR = 10.68; 95% CI 3.2–35.65; p < 0.0001). In the validation cohort (n = 36), the increase in c-miR-21 (p = 0.02) and c-miR-601 (p = 0.02) levels at d15 was confirmed, but the associations with outcome were not. Our data indicate that early changes of c-miRNA levels might be influenced by regorafenib treatment. However, further studies are needed to establish the predictive power of such modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016;27:1386–422.

  2. Network NCC. NCCN clinical practice guidelines in oncology, NCCN guidelines colon cancer (Version 2.2018), 2018.

  3. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–12.

    Article  CAS  Google Scholar 

  4. Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Goodman PJ, et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med. 1990;322:352–8.

    Article  CAS  Google Scholar 

  5. Curley SA, Izzo F, Delrio P, Ellis LM, Granchi J, Vallone P, et al. Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann Surg. 1999;230:1–8.

    Article  CAS  Google Scholar 

  6. Carter NJ. Regorafenib: a review of its use in previously treated patients with progressive metastatic colorectal cancer. Drugs & Aging. 2014;31:67–78.

    Article  CAS  Google Scholar 

  7. Goldstein DA, Ahmad BB, Chen Q, Ayer T, Howard DH, Lipscomb J, et al. Cost-effectiveness analysis of regorafenib for metastatic colorectal cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2015;33:3727–32.

    Article  CAS  Google Scholar 

  8. Cortez MA, Calin GA. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther. 2009;9:703–11.

    Article  CAS  Google Scholar 

  9. Kawaguchi T, Komatsu S, Ichikawa D, Tsujiura M, Takeshita H, Hirajima S, et al. Circulating microRNAs: a next-generation clinical biomarker for digestive system cancers. Int J Mol Sci. 2016;17:1459.

    Article  Google Scholar 

  10. Geurts P, Irrthum A, Wehenkel L. Supervised learning with decision tree-based methods in computational and systems biology. Mol Biosyst. 2009;5:1593–605.

    Article  CAS  Google Scholar 

  11. Tabernero J, Lenz HJ, Siena S, Sobrero A, Falcone A, Ychou M, et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol. 2015;16:937–48.

    Article  CAS  Google Scholar 

  12. Michael Teufel JK, Mark Daniel Rutstein, Karl Koechert, Henrik Seidel, Joachim Reischl, Adam Skubala, et al.; Bayer HealthCare Pharmaceuticals, Whippany, NJ; Bayer Pharma AG, Berlin, Germany; Chrestos Concept GmbH & CO. KG, Ratingen, Germany; PLA Cancer Center of Nanjing Bayi Hospital, Nanjing, China; Sun Yat-sen University Cancer Center, Guangzhou, China; Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China. Analysis of plasma protein biomarkers from the phase 3 CONCUR study of regorafenib in Asian patients with metastatic colorectal cancer (mCRC). J Clin Oncol. 2016;34 (suppl 4S; abstr 672):2016.

  13. Giampieri R. Angiogenenis genotyping and clinical outcome during regorafenib treatment in metastatic colorectal cancer patients. J Clin Oncol. 2015;33 (suppl 3; abstr595): 2015; Abstract N 595.

    Article  Google Scholar 

  14. Toiyama Y, Okugawa Y, Fleshman J, Richard Boland C, Goel A. MicroRNAs as potential liquid biopsy biomarkers in colorectal cancer: a systematic review. Biochim Biophys Acta. 2018;1870:274–82.

    Article  CAS  Google Scholar 

  15. Ma H, Pan JS, Jin LX, Wu J, Ren YD, Chen P, et al. MicroRNA-17~92 inhibits colorectal cancer progression by targeting angiogenesis. Cancer Lett. 2016;376:293–302.

    Article  CAS  Google Scholar 

  16. Fiala O, Pitule P, Hosek P, Liska V, Sorejs O, Bruha J, et al. The association of miR-126-3p, miR-126-5p and miR-664-3p expression profiles with outcomes of patients with metastatic colorectal cancer treated with bevacizumab. Tumour Biol. 2017;39:1010428317709283.

    PubMed  Google Scholar 

  17. Sohel MH. Extracellular/circulating microRNAs: release mechanisms, functions and challenges. Achiev Life Sci. 2016;10:175–86.

    Google Scholar 

  18. Keller A, Rounge T, Backes C, Ludwig N, Gislefoss R, Leidinger P, et al. Sources to variability in circulating human miRNA signatures. RNA Biol. 2017;14:1791–8.

    Article  Google Scholar 

  19. Zhao J, Zhang Y, Zhao G. Emerging role of microRNA-21 in colorectal cancer. Cancer Biomark. 2015;15:219–26.

    Article  Google Scholar 

  20. Wu Y, Song Y, Xiong Y, Wang X, Xu K, Han B, et al. MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell Physiol Biochem. 2017;43:945–58.

    Article  CAS  Google Scholar 

  21. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    Article  CAS  Google Scholar 

  22. Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH, et al. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis. 2012;33:68–76.

    Article  Google Scholar 

  23. Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One. 2011;6:e19139.

    Article  CAS  Google Scholar 

  24. Mima K, Nishihara R, Yang J, Dou R, Masugi Y, Shi Y, et al. MicroRNA MIR21 (miR-21) and PTGS2 expression in colorectal cancer and patient survival. Clin Cancer Res. 2016;22:3841–8.

    Article  CAS  Google Scholar 

  25. Bleday R. Local excision of rectal cancer. World J Surg. 1997;21:706–14.

    Article  CAS  Google Scholar 

  26. Liu K, Li G, Fan C, Zhou X, Wu B, Li J. Increased expression of microRNA-21and its association with chemotherapeutic response in human colorectal cancer. J Int Med Res. 2011;39:2288–95.

    Article  CAS  Google Scholar 

  27. Pan C, Yan X, Li H, Huang L, Yin M, Yang Y, et al. Systematic literature review and clinical validation of circulating microRNAs as diagnostic biomarkers for colorectal cancer. Oncotarget. 2017;8:68317–28.

    PubMed  PubMed Central  Google Scholar 

  28. Kanaan Z, Rai SN, Eichenberger MR, Roberts H, Keskey B, Pan J, et al. Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg. 2012;256:544–51.

    Article  Google Scholar 

  29. Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105:849–59.

    Article  CAS  Google Scholar 

  30. Yin J, Bai Z, Song J, Yang Y, Wang J, Han W, et al. Differential expression of serum miR-126, miR-141 and miR-21 as novel biomarkers for early detection of liver metastasis in colorectal cancer. Chin J Cancer Res. 2014;26:95–103.

    PubMed  PubMed Central  Google Scholar 

  31. Sun X, Ma X, Wang J, Zhao Y, Wang Y, Bihl JC, et al. Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal. Oncotarget. 2017;8:36137–48.

    PubMed  PubMed Central  Google Scholar 

  32. Ding L, Yu LL, Han N, Zhang BT. miR-141 promotes colon cancer cell proliferation by inhibiting MAP2K4. Oncol Lett. 2017;13:1665–71.

    Article  CAS  Google Scholar 

  33. Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE. 2011;6:e17745.

    Article  CAS  Google Scholar 

  34. Liu J, Xu D, Wang Q, Zheng D, Jiang X, Xu L. LPS induced miR-181a promotes pancreatic cancer cell migration via targeting PTEN and MAP2K4. Dig Dis Sci. 2014;59:1452–60.

    Article  CAS  Google Scholar 

  35. Ye Y, Li SL, Ma YY, Diao YJ, Yang L, Su MQ, et al. Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget. 2017;8:94834–49.

    PubMed  PubMed Central  Google Scholar 

  36. Wang Q, Huang Z, Ni S, Xiao X, Xu Q, Wang L, et al. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS ONE. 2012;7:e44398.

    Article  CAS  Google Scholar 

  37. Ettrich TJ, Seufferlein T. Regorafenib. Recent Results Cancer Res. 2018;211:45–56.

    Article  CAS  Google Scholar 

  38. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.

    Article  CAS  Google Scholar 

  39. Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer J Int du Cancer. 2010;127:118–26.

    Article  CAS  Google Scholar 

  40. Nugent M, Miller N, Kerin MJ. Circulating miR-34a levels are reduced in colorectal cancer. J Surg Oncol. 2012;106:947–52.

    Article  CAS  Google Scholar 

  41. Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25:1674–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by: Istituto Toscano Tumori; IIT Laboratory of Integrative Systems Medicine (LISM); FONDAZIONE ARCO; Regione Veneto [RP-2014-00000395, Caratterizzazione molecolare dei tumori del colon retto metastatico e valutazione di outcome: progetto di rete], and PRIN 2010 [Ottimizzazione dei trattamenti personalizzati con le terapie con farmaci a bersaglio molecolare nel cancro del colon retto].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Poliseno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schirripa, M., Borelli, B., D’Aurizio, R. et al. Early modifications of circulating microRNAs levels in metastatic colorectal cancer patients treated with regorafenib. Pharmacogenomics J 19, 455–464 (2019). https://doi.org/10.1038/s41397-019-0075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41397-019-0075-3

This article is cited by

Search

Quick links