Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms

Abstract

Sodium valproate (VPA) is a histone deacetylase (HDAC) inhibitor, widely prescribed in the treatment of bipolar disorder, and yet the precise modes of therapeutic action for this drug are not fully understood. After exposure of the rat serotonergic cell line RN46A to VPA, RNA-sequencing (RNA-Seq) analysis showed widespread changes in gene expression. Analysis by four bioinformatic pipelines revealed as many as 230 genes were significantly upregulated and 72 genes were significantly downregulated. A subset of 23 differentially expressed genes was selected for validation using the nCounter® platform, and of these we obtained robust validation for ADAM23, LSP1, MAOB, MMP13, PAK3, SERPINB2, SNAP91, WNT6, and ZCCHC12. We investigated the effect of lithium on this subset and found four genes, CDKN1C, LSP1, SERPINB2, and WNT6 co-regulated by lithium and VPA. We also explored the effects of other HDAC inhibitors and the VPA analogue valpromide on the subset of 23 selected genes. Expression of eight of these genes, CDKN1C, MAOB, MMP13, NGFR, SHANK3, VGF, WNT6 and ZCCHC12, was modified by HDAC inhibition, whereas others did not appear to respond to several HDAC inhibitors tested. These results suggest VPA may regulate genes through both HDAC-dependent and independent mechanisms. Understanding the broader gene regulatory effects of VPA in this serotonergic cell model should provide insights into how this drug works and whether other HDAC inhibitor compounds may have similar gene regulatory effects, as well as highlighting molecular processes that may underlie regulation of mood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of RNA-Seq data analysis procedure.
Fig. 2: Principal component analysis of RNA-Seq normalized counts for all nine samples with the DESeq2 R package, spanned by their first two components.
Fig. 3: Flowchart for shortlisting of genes for nCounter® assay.
Fig. 4: Agreement between the four differential gene expression methods.
Fig. 5: Heatmap showing nCounter gene expression patterns for mood stabilizers and HDAC inhibitors.

Similar content being viewed by others

References

  1. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734–41.

    Article  CAS  PubMed  Google Scholar 

  2. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo J. 2001;20:6969–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cipriani A, Reid K, Young AH, Macritchie K, Geddes J. Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Database Syst Rev. 2013;10:CD003196.

    Google Scholar 

  4. Sargent PA, Rabiner EA, Bhagwagar Z, Clark L, Cowen P, Goodwin GM. et al. 5-HT(1A) receptor binding in euthymic bipolar patients using positron emission tomography with [carbonyl-(11)C]WAY-100635. J Affect Disord.2010;123:77–80.

    Article  CAS  PubMed  Google Scholar 

  5. Wu JB, Shih JC. Valproic acid induces monoamine oxidase A via Akt/FoxO1 activation. Mol Pharmacol. 2011;80:714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, et al. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry. 2006;11:1116–25.

    Article  CAS  PubMed  Google Scholar 

  7. Rosenberg G. The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell Mol Life Sci. 2007;64:2090–103.

    Article  CAS  PubMed  Google Scholar 

  8. Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharm Rev. 2013;65:105–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soeiro-de-Souza Márcio G, Henning A, Machado-Vieira R, Moreno RA, Pastorello BF, da Costa Leite C, et al. Anterior cingulate Glutamate–Glutamine cycle metabolites are altered in euthymic bipolar I disorder. Eur Neuropsychopharmacol. 2015;25:2221–9.

    Article  PubMed  Google Scholar 

  10. Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, et al. Anterior Cingulate cortex glutamatergic metabolites and mood stabilizers in euthymic bipolar I disorder patients: a proton magnetic resonance spectroscopy study. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2018;3:985–91.

    Google Scholar 

  11. Yu W, Daniel J, Mehta D, Maddipati KR, Greenberg ML. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate. PloS ONE. 2017;12:e0182534.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Silverstone PH, McGrath BM. Lithium and valproate and their possible effects on themyo-inositol second messenger system in healthy volunteers and bipolar patients. Int Rev Psychiatry. 2009;21:414–23.

    Article  PubMed  Google Scholar 

  13. Hashimoto K, Xing B, Liang X-p, Liu P, Zhao Y, Chu Z, et al. Valproate inhibits methamphetamine induced hyperactivity via glycogen synthase kinase 3β signaling in the nucleus accumbens core. PloS one. 2015;10:e0128068.

    Article  Google Scholar 

  14. Abrial E, Etievant A, Betry C, Scarna H, Lucas G, Haddjeri N, et al. Protein kinase C regulates mood-related behaviors and adult hippocampal cell proliferation in rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;43:40–48.

    Article  CAS  Google Scholar 

  15. Ludtmann MH, Boeckeler K, Williams RS. Molecular pharmacology in a simple model system: implicating MAP kinase and phosphoinositide signalling in bipolar disorder. Semin Cell Dev Biol. 2011;22:105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Einat H, Manji HK, Gould TD, Du J, Chen G. Possible involvement of the ERK signaling cascade in bipolar disorder: behavioral leads from the study of mutant mice. Drug N. Perspect. 2003;16:453–63.

    Article  CAS  Google Scholar 

  17. Maletic V, Raison C. Integrated neurobiology of bipolar disorder. Front Psychiatry. 2014;5:98.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shiah IS, Yatham LN. Serotonin in mania and in the mechanism of action of mood stabilizers: a review of clinical studies. Bipolar Disord. 2000;2:77–92.

    Article  CAS  PubMed  Google Scholar 

  19. Yu W, Greenberg ML. Inositol depletion, GSK3 inhibition and bipolar disorder. Future Neurol. 2016;11:135–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gardea-Resendez M, Kucuker MU, Blacker CJ, Ho AMC, Croarkin PE, Frye MA, et al. Dissecting the epigenetic changes induced by non-antipsychotic mood stabilizers on schizophrenia and affective disorders: a systematic review. Front Pharmacol. 2020;11:467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen G, Huang LD, Jiang YM, Manji HK. The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J neurochemistry. 1999;72:1327–30.

    Article  CAS  Google Scholar 

  22. Chen G, Manji HK, Hawver DB, Wright CB, Potter WZ. Chronic sodium valproate selectively decreases protein kinase C alpha and epsilon in vitro. J neurochemistry. 1994;63:2361–4.

    Article  CAS  Google Scholar 

  23. Chen G, Manji HK, Wright CB, Hawver DB, Potter WZ. Effects of valproic acid on beta-adrenergic receptors, G-proteins, and adenylyl cyclase in rat C6 glioma cells. Neuropsychopharmacology. 1996;15:271–80.

    Article  CAS  PubMed  Google Scholar 

  24. Chen G, Yuan P, Hawver DB, Potter WZ, Manji HK. Increase in AP-1 transcription factor DNA binding activity by valproic acid. Neuropsychopharmacology. 1997;16:238–45.

    Article  CAS  PubMed  Google Scholar 

  25. Chen G, Yuan PX, Jiang YM, Huang LD, Manji HK. Valproate robustly enhances AP-1 mediated gene expression. Brain Res Mol Brain Res. 1999;64:52–58.

    Article  CAS  PubMed  Google Scholar 

  26. Daniel ED, Mudge AW, Maycox PR. Comparative analysis of the effects of four mood stabilizers in SH-SY5Y cells and in primary neurons. Bipolar Disord. 2005;7:33–41.

    Article  PubMed  Google Scholar 

  27. Adams LJ, Schofield PR. Microarray studies of changes in gene expression in mouse brain induced by anti-manic drugs. Am J Med Genet - Neuropsychiatr Genet. 2001;105:582–3.

    Google Scholar 

  28. Bosetti F, Bell JM, Manickam P. Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res Bull. 2005;65:331–8.

    Article  CAS  PubMed  Google Scholar 

  29. Chetcuti A, Adams LJ, Mitchell PB, Schofield PR. Altered gene expression in mice treated with the mood stabilizer sodium valproate. Int J Neuropsychopharmacol. 2006;9:267–76.

    Article  CAS  PubMed  Google Scholar 

  30. Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, et al. Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res. 2009;65:35–43.

    Article  CAS  PubMed  Google Scholar 

  31. LaBonte MJ, Wilson PM, Fazzone W, Groshen S, Lenz HJ, Ladner RD. DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med Genomics. 2009;2:67.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang X-Z, Yin A-H, Zhu X-Y, Ding Q, Wang C-H, Chen Y-X. Using an exon microarray to identify a global profile of gene expression and alternative splicing in K562 cells exposed to sodium valproate. Oncol Rep. 2012;27:1258–65.

    Article  CAS  PubMed  Google Scholar 

  33. Lee RS, Pirooznia M, Guintivano J, Ly M, Ewald ER, Tamashiro KL, et al. Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene. Transl Psychiatry. 2015;5:e600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jornada LK, Moretti M, Valvassori SS, Ferreira CL, Padilha PT, Arent CO, et al. Effects of mood stabilizers on hippocampus and amygdala BDNF levels in an animal model of mania induced by ouabain. J Psychiatr Res. 2010;44:506–10.

    Article  PubMed  Google Scholar 

  35. Chang YC, Rapoport SI, Rao JS. Chronic administration of mood stabilizers upregulates BDNF and Bcl-2 expression levels in rat frontal cortex. Neurochem Res. 2009;34:536–41.

    Article  CAS  PubMed  Google Scholar 

  36. Asghari V, Wang JF, Reiach JS, Young LT. Differential effects of mood stabilizers on Fos/Jun proteins and AP-1 DNA binding activity in human neuroblastoma SH-SY5Y cells. Brain Res Mol Brain Res. 1998;58:95–102.

    Article  CAS  PubMed  Google Scholar 

  37. Herteleer L, Zwarts L, Hens K, Forero D, Del-Favero J, Callaerts P. Mood stabilizing drugs regulate transcription of immune, neuronal and metabolic pathway genes in Drosophila. Psychopharmacology. 2016;233:1751–62.

    Article  CAS  PubMed  Google Scholar 

  38. Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003;26:331–43.

    Article  CAS  PubMed  Google Scholar 

  39. White LA, Eaton MJ, Castro MC, Klose KJ, Globus MY, Shaw G, et al. Distinct regulatory pathways control neurofilament expression and neurotransmitter synthesis in immortalized serotonergic neurons. J Neurosci. 1994;14:6744–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McHugh PC, Joyce PR, Kennedy MA. Polymorphisms of sepiapterin reductase gene alter promoter activity and may influence risk of bipolar disorder. Pharmacogenetics Genomics. 2009;19:330–7.

    Article  CAS  PubMed  Google Scholar 

  41. McHugh PC, Joyce PR, Deng X, Kennedy MA. A polymorphism of the GTP-cyclohydrolase I feedback regulator gene alters transcriptional activity and may affect response to SSRI antidepressants. Pharmacogenomics J. 2010;11:207–13.

    Article  PubMed  Google Scholar 

  42. Balasubramanian D, Pearson JF, Kennedy MA. Gene expression effects of lithium and valproic acid in a serotonergic cell line. Physiological Genomics. 2019;51:43–50.

    Article  CAS  PubMed  Google Scholar 

  43. Glubb DM, Joyce PR, Kennedy MA. Expression and association analyses of promoter variants of the neurogenic gene HES6, a candidate gene for mood disorder susceptibility and antidepressant response. Neurosci Lett. 2009;460:185–90.

    Article  CAS  PubMed  Google Scholar 

  44. Glubb DM, McHugh PC, Deng X, Joyce PR, Kennedy MA. Association of a functional polymorphism in the adrenomedullin gene (ADM) with response to paroxetine. Pharmacogenomics J. 2010;10:126–33.

    Article  CAS  PubMed  Google Scholar 

  45. Balasubramanian D, Deng AX, Doudney K, Hampton MB, Kennedy MA. Valproic acid exposure leads to upregulation and increased promoter histone acetylation of sepiapterin reductase in a serotonergic cell line. Neuropharmacology. 2015;99:79–88.

    Article  CAS  PubMed  Google Scholar 

  46. Eaton MJ, Staley JK, Globus MY, Whittemore SR. Developmental regulation of early serotonergic neuronal differentiation: the role of brain-derived neurotrophic factor and membrane depolarization. Developmental Biol. 1995;170:169–82.

    Article  CAS  Google Scholar 

  47. Fleming J, Chetty M. Therapeutic monitoring of valproate in psychiatry. Clin Neuropharmacol. 2006;29:350–60.

    Article  CAS  PubMed  Google Scholar 

  48. Severus WE, Kleindienst N, Seemuller F, Frangou S, Moller HJ, Greil W. What is the optimal serum lithium level in the long-term treatment of bipolar disorder-a review? Bipolar Disord. 2008;10:231–7.

    Article  CAS  PubMed  Google Scholar 

  49. Reddy DS, Reddy MS. Serum lithium levels: ideal time for sample collection! are we doing it right? Indian J Psychol Med. 2014;36:346–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci USA. 1999;96:8745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lai JS, Zhao C, Warsh JJ, Li PP. Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol. 2006;539:18–26.

    Article  CAS  PubMed  Google Scholar 

  52. Shao L, Young LT, Wang JF. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry. 2005;58:879–84.

    Article  CAS  PubMed  Google Scholar 

  53. Nciri R, Bourogaa E, Jbahi S, Allagui MS, Elfeki A, Vincent C, et al. Chronic neuroprotective effects of low concentration lithium on SH-SY5Y cells: possible involvement of stress proteins and gene expression. Neural Regen Res. 2014;9:735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim HJ, Thayer SA. Lithium increases synapse formation between hippocampal neurons by depleting phosphoinositides. Mol Pharm. 2009;75:1021–30.

    Article  CAS  Google Scholar 

  55. O’Donnell T, Rotzinger S, Nakashima TT, Hanstock CC, Ulrich M, Silverstone PH. Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res. 2000;880:84–91.

    Article  PubMed  Google Scholar 

  56. Otero Losada ME, Rubio MC. Acute and chronic effects of lithium chloride on GABA-ergic function in the rat corpus striatum and frontal cerebral cortex. Naunyn Schmiedebergs Arch Pharm. 1986;332:169–72.

    Article  CAS  Google Scholar 

  57. Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S. Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology. 2001;158:100–6.

    Article  CAS  PubMed  Google Scholar 

  58. Hillert M, Zimmermann M, Klein J. Uptake of lithium into rat brain after acute and chronic administration. Neurosci Lett. 2012;521:62–66.

    Article  CAS  PubMed  Google Scholar 

  59. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  60. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.

    Article  CAS  PubMed  Google Scholar 

  61. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2012;31:46–53.

    Article  PubMed  Google Scholar 

  64. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  66. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. Bmc Bioinforma. 2013;14:128.

    Article  Google Scholar 

  68. Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank. 2015;13:311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 2012;41:D996–D1008.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.

    Article  Google Scholar 

  71. Wang H, Horbinski C, Wu H, Liu Y, Sheng S, Liu J, et al. NanoStringDiff: a novel statistical method for differential expression analysis based on NanoString nCounter data. Nucleic Acids Res. 2016;44:e151.

    PubMed  PubMed Central  Google Scholar 

  72. Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.

    Article  CAS  PubMed  Google Scholar 

  73. Adell A. Revisiting the role of raphe and serotonin in neuropsychiatric disorders. J Gen Physiol. 2015;145:257–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ornoy A. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod Toxicol. 2009;28:1–10.

    Article  CAS  PubMed  Google Scholar 

  75. Wieck A, Jones S. Dangers of valproate in pregnancy. BMJ. 2018;361:k1609.

    Article  PubMed  Google Scholar 

  76. Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci USA. 2017;114:E4462–E4471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cruceanu C, Alda M, Grof P, Rouleau GA, Turecki G. Synapsin II is involved in the molecular pathway of lithium treatment in bipolar disorder. PloS one. 2012;7:e32680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hill AS, Sahay A, Hen R, Sahay A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology. 2015;40:2368–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schloesser RJ, Orvoen S, Jimenez DV, Hardy NF, Maynard KR, Sukumar M, et al. Antidepressant-like effects of electroconvulsive seizures require adult neurogenesis in a neuroendocrine model of depression. Brain Stimul. 2015;8:862–7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–9.

    Article  CAS  PubMed  Google Scholar 

  82. Castrén E, Hen R. Neuronal plasticity and antidepressant actions. Trends Neurosci. 2013;36:259–67.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fornito A, Malhi GS, Lagopoulos J, Ivanovski B, Wood SJ, Velakoulis D, et al. In vivo evidence for early neurodevelopmental anomaly of the anterior cingulate cortex in bipolar disorder. Acta Psychiatr Scandinavica. 2007;116:467–72.

    Article  CAS  Google Scholar 

  84. Schloesser RJ, Chen G, Manji HK. Neurogenesis and neuroenhancement in the pathophysiology and treatment of bipolar disorder. Int Rev Neurobiol. 2007;77:143–78.

    Article  CAS  PubMed  Google Scholar 

  85. Schloesser RJ, Martinowich K, Manji HK. Mood-stabilizing drugs: mechanisms of action. Trends Neurosci. 2012;35:36–46.

    Article  CAS  PubMed  Google Scholar 

  86. Hajek T, Cullis J, Novak T, Kopecek M, Hoschl C, Blagdon R, et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord. 2012;14:261–70.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jang S, Jeong H-S. Histone deacetylase inhibition-mediated neuronal differentiation via the Wnt signaling pathway in human adipose tissue-derived mesenchymal stem cells. Neurosci Lett. 2018;668:24–30.

    Article  CAS  PubMed  Google Scholar 

  88. Jacob J, Ribes V, Moore S, Constable SC, Sasai N, Gerety SS, et al. Valproic acid silencing of ascl1b/Ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome. Dis Model Mech. 2014;7:107–17.

    CAS  PubMed  Google Scholar 

  89. Yu IT, Park J-Y, Kim SH, Lee J-s, Kim Y-S, Son H. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology. 2009;56:473–80.

    Article  CAS  PubMed  Google Scholar 

  90. Hall AC, Brennan A, Goold RG, Cleverley K, Lucas FR, Gordon-Weeks PR, et al. Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci. 2002;20:257–70.

    Article  CAS  PubMed  Google Scholar 

  91. Xiao Y, Camarillo C, Ping Y, Arana TB, Zhao H, Thompson PM, et al. The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PloS one. 2014;9:e95875.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lubbers BR, Smit AB, Spijker S, van den Oever MC. Chapter 12 - Neural ECM in addiction, schizophrenia, and mood disorder. In: Dityatev A, Wehrle-Haller B, Pitkänen A (eds), Progress in Brain Research, vol. 214. Elsevier, 2014. pp. 263−284.

  93. Pantazopoulos H, Berretta S. In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast. 2016;2016:9847696.

    Article  PubMed  Google Scholar 

  94. Drago A, Monti B, De Ronchi D, Serretti A. Genetic variations within metalloproteinases impact on the prophylaxis of depressive phases in bipolar patients. Neuropsychobiology. 2014;69:76–82.

    Article  CAS  PubMed  Google Scholar 

  95. Berretta S. Extracellular matrix abnormalities in schizophrenia. Neuropharmacology. 2012;62:1584–97.

    Article  CAS  PubMed  Google Scholar 

  96. Gupta A, Schulze TG, Nagarajan V, Akula N, Corona W, Jiang XY, et al. Interaction networks of lithium and valproate molecular targets reveal a striking enrichment of apoptosis functional clusters and neurotrophin signaling. Pharmacogenomics J. 2012;12:328–41.

    Article  CAS  PubMed  Google Scholar 

  97. Gurvich N, Klein PS. Lithium and valproic acid: Parallels and contrasts in diverse signaling contexts. Pharmacol Therapeutics. 2002;96:45–66.

    Article  CAS  Google Scholar 

  98. Valvassori SS, Dal-Pont GC, Resende WR, Jornada LK, Peterle BR, Machado AG, et al. Lithium and valproate act on the GSK-3beta signaling pathway to reverse manic-like behavior in an animal model of mania induced by ouabain. Neuropharmacology. 2017;117:447–59.

    Article  CAS  PubMed  Google Scholar 

  99. Van de Pette M, Abbas A, Feytout A, McNamara G, Bruno L, To WK, et al. Visualizing changes in cdkn1c expression links early-life adversity to imprint mis-regulation in adults. Cell Rep. 2017;18:1090–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y. p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J. 2013;32:970–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Le NPK, Channabasappa S, Hossain M, Liu L, Singh B. Leukocyte-specific protein 1 regulates neutrophil recruitment in acute lung inflammation. Am J Physiol-Lung Cell Mol Physiol. 2015;309:L995–L1008.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Brietzke E, Stertz L, Fernandes BS, Kauer-Sant’Anna M, Mascarenhas M, Vargas AE, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord. 2009;116:214–7.

    Article  CAS  PubMed  Google Scholar 

  103. Modabbernia A, Taslimi S, Brietzke E, Ashrafi M. Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol Psychiatry. 2013;74:15–25.

    Article  CAS  PubMed  Google Scholar 

  104. Kunz M, Cereser KM, Goi PD, Fries GR, Teixeira AL, Fernandes BS, et al. Serum levels of IL-6, IL-10 and TNF-alpha in patients with bipolar disorder and schizophrenia: differences in pro- and anti-inflammatory balance. Rev Bras Psiquiatr. 2011;33:268–74.

    PubMed  Google Scholar 

  105. Barbosa IG, Machado-Vieira R, Soares JC, Teixeira AL. The immunology of bipolar disorder. Neuroimmunomodulation. 2014;21:117–22.

    Article  CAS  PubMed  Google Scholar 

  106. Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol psychiatry. 2010;15:384–92.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang SJ, Zou M, Lu L, Lau D, Ditzel DA, Delucinge-Vivier C, et al. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet. 2009;5:e1000604.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Carlson PJ, Singh JB, Zarate JrCA, Drevets WC, Manji HK. Neural circuitry and neuroplasticity in mood disorders: Insights for novel therapeutic targets. NeuroRx. 2006;3:22–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rocha MV, Nery F, Galvão-de-Almeida A, Quarantini LdC, Miranda-Scippa Â. Neuroplasticity in Bipolar Disorder: Insights from Neuroimaging. In Heinbockel, T (ed.), Synaptic Plasticity. London, UK: Intech Open Ltd; 2017. pp. 1040−1057.

  110. Boku S, Nakagawa S, Masuda T, Nishikawa H, Kato A, Takamura N, et al. Valproate recovers the inhibitory effect of dexamethasone on the proliferation of the adult dentate gyrus-derived neural precursor cells via GSK-3beta and beta-catenin pathway. Eur J Pharm. 2014;723:425–30.

    Article  CAS  Google Scholar 

  111. Wexler EM, Geschwind DH, Palmer TD. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol psychiatry. 2008;13:285–92.

    Article  CAS  PubMed  Google Scholar 

  112. Deng X Gene Regulation by Drugs Used to Treat Mood Disorders Doctor of Philosophy thesis, Univesity of Otago, 2011.

  113. Gould TD, Chen G, Manji HK. Mood stabilizer psychopharmacology. Clin Neurosci Res. 2002;2:193–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lagace DC, Timothy O’Brien W, Gurvich N, Nachtigal MW, Klein PS. Valproic acid: how it works. Or not. Clin Neurosci Res. 2004;4:215–25.

    Article  CAS  Google Scholar 

  115. Arent CO, Valvassori SS, Fries GR, Stertz L, Ferreira CL, Lopes-Borges J, et al. Neuroanatomical profile of antimaniac effects of histone deacetylases inhibitors. Mol Neurobiol. 2011;43:207–14.

    Article  CAS  PubMed  Google Scholar 

  116. Machado-Vieira R, Ibrahim L Jr, CAZ. Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci Therapeutics. 2010;17:699–704.

    Article  Google Scholar 

  117. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci. 2007;104:6406–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stertz L, Fries GR, Aguiar BWD, Pfaffenseller B, Valvassori SS, Gubert C, et al. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF) levels in a pharmacological model of mania. Rev Brasileira de Psiquiatria. 2013;36:39–46.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jim and Mary Carney Charitable Trust, Whangarei, New Zealand, including a Postgraduate Scholarship from this source. The RN46A cell line was a kind gift from Dr Scott Whittemore, Laboratory of Molecular Neurobiology, Louisville, Kentucky, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Kennedy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, P., Cree, S.L., Miller, A.L. et al. Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms. Pharmacogenomics J 21, 359–375 (2021). https://doi.org/10.1038/s41397-021-00215-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41397-021-00215-x

Search

Quick links