Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CYP3A5 and POR gene polymorphisms as predictors of infection and graft rejection in post-liver transplant patients treated with tacrolimus - a cohort study

Abstract

Liver transplantation is the only curative option for patients with advanced stages of liver disease, with tacrolimus used as the immunosuppressive drug of choice. Genetic variability can interfere with drug response, potentially leading to overexposure or underexposure. This study aims to investigate the association of CYP3A4 (rs2740574, rs2242480, rs35599367), CYP3A5 (rs776746, rs10264272), POR (rs1057868) and ABCB1 (rs1128503, rs2229109, rs9282564) gene polymorphisms with infection, acute rejection, and renal failure. The logistic regression model found an influence of CYP3A5 (rs776746) and POR28 (rs1057868) on the development of acute rejection after liver transplantation (p = 0.028). It also found an association between carriers of the variant allele of the POR*28 gene and infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Association of POR gene (rs1057868) genotypes with infection.

Similar content being viewed by others

Data availability

Internal data management: After signing the informed consent form, clinical data was collected from the institution’s electronic medical records and databases and entered into the RedCAP platform (https://redcap.hc.fm.usp.br/). The polymorphism results were stored on the platform and on an institutional cloud drive (FMUSP). Only the researcher in charge and the master’s student have access to this data, which is protected by login and passwords. The data for statistical analysis with the other researchers was de-identified, thus ensuring the privacy, confidentiality and security of the participants.

References

  1. Centers for Disease Control and Prevention: Chronic liver disease cirrhosis. 2020. https://www.cdc.gov/nchs/fastats/liver-disease.htm 2020.

  2. Guimaraes J, Mesquita J, Kimura T, Oliveira A, Leite M, Oliveria A. Burden of liver diseases in Brazil, 1996-2022: epidemiology and impact to public healthcare. Lancet Reg Health Am. 2023;33:100731.

    Google Scholar 

  3. Adam R, Karam V, Cailliez V, O Grady JG, Mirza D, Cherqui D, et al. 2018 annual report of the european liver transplant registry (ELTR) – 50-year evolution of liver transplantation. Transpl Int. 2018;31:1293–317.

    Article  PubMed  Google Scholar 

  4. Bentata Y. Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity. Artif Organs. 2019;44:140–52.

    Article  PubMed  Google Scholar 

  5. Di Maira T, Little EC, Berenguer M. Immunosuppression in liver transplant. Best Pract Res Clin Gastroenterol. 2020;46:101681.

    Article  PubMed  Google Scholar 

  6. European Association for the Study of the Liver. EASL clinical practice guidelines: liver transplantation. J Hepatol. 2016;64:433–85.

    Article  Google Scholar 

  7. Jeng LB, Lee SG, Soin AS, Lee WC, Suh KS, Joo DJ, et al. Am J Transplant. 2018;18:1435–46.

    Article  CAS  PubMed  Google Scholar 

  8. Weber ML, Ibrahim HN, Lake JR. Renal dysfunction in liver transplant recipients: evaluation of the critical issues. Liver Transpl. 2012;18:1290–301.

    Article  PubMed  Google Scholar 

  9. Noble J, Terrec F, Malvezzi P, Rostaing L. Adverse effects of immunosuppression after liver transplantation. Best Pract Res Clin Gastroenterol. 2021;54-55:101762.

    Article  PubMed  Google Scholar 

  10. Rubín A, Sánchez-Montes C, Aguilera V, Juan FS, Ferrer I, Moya A, et al. Long-term outcome of “long-term liver transplant survivors”. Transpl Int. 2013;26:740–50.

    Article  PubMed  Google Scholar 

  11. Brunet M, Pastor-Anglada M. Insights into the pharmacogenetics of tacrolimus pharmacokinetics and pharmacodynamics. Pharmaceutics. 2022;14:1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salvadori M, Tsalouchos A. Pharmacogenetics of immunosuppressant drugs: A new aspect for individualized therapy. World J Transplant. 2020;10:90–103.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Turolo S, Edefonti A, Syren ML, Montini G. Pharmacogenomics of old and new immunosuppressive drugs for precision medicine in kidney transplantation. J Clin Med. 2023;12:4454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez-Antona C, Savieo JL, Lauschke VM, Sangkuhl K, Drögemöller BI, Wang D, et al. PharmVar GeneFocus: CYP3A5. Clin Pharmacol Ther. 2022;112:1159–71.

    Article  CAS  PubMed  Google Scholar 

  15. Schutte-Nutgen K, Tholking G, Suwelack B, Reuter S. Tacrolimus – pharmacokinetic considerations for clinicians. Curr Drug Metab. 2018;19:342–50.

    Article  CAS  PubMed  Google Scholar 

  16. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet. 2010;49:141–75.

    Article  CAS  PubMed  Google Scholar 

  17. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015;98:19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hendijani F, Azarpira N, Kaviani M. Effect of CYP3A5*1 expression on tacrolimus required dose after liver transplantation: a systematic review and meta-analysis. Clin Transplant. 2018;32:e13306.

    Article  PubMed  Google Scholar 

  19. Uesugi M, Kikuchi M, Shinke H, Omura T, Yonezawa A, Matsubara K, et al. Impact of cytochrome P450 3A5 polymorphism in graft livers on the frequency of acute cellular rejection in living-donor liver transplantation. Pharmacogenet Genomics. 2014;24:356–66.

    Article  CAS  PubMed  Google Scholar 

  20. Shah RR. Pharmacogenetics in drug regulation: promise, potential and pitfalls. Philos Trans R Soc Lond B Biol Sci. 2005;360:1617–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neuberger JM, Bechstein WO, Kuypers DRJ, Burra P, Citterio F, De Geest S, et al. Practical recommendations for long-term management of modifiable risks in kidney and liver transplant recipients: a guidance report and clinical checklist by the consensus on managing modifiable risk in transplantation (COMMIT) group. Transplantation. 2017;101:S1–56.

    Article  PubMed  Google Scholar 

  22. Kelava T, Turcic P, Markotic A, Ostojic A, Sisl D, Mrzljak A. Importance of genetic polymorphisms in liver transplantation outcomes. World J Gastroenterol. 2020;26:1273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langman L, Van Gelder T, Van Schaik RHN Pharmacogenomics aspect of immunosuppressant therapy. Personalized Immunosuppression in Transplantation. 2016:109-24. https://doi.org/10.1016/B978-0-12-800885-0.00005-9.

  24. Lee DH, Lee H, Yoon HY, Yee J, Gwak HS. Association of P450 oxidoreductase gene polymorphism with tacrolimus pharmacokinetics in renal transplant recipients: a systematic review and meta-analysis. Pharmaceutics. 2022;14:261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Naslavsky M, Scliar M, Yamamoto G, Wang J, Zverinova S, Karp T, et al. Whole-genome sequencing of 1171 elderly admixed individuals from Brazil. Nature. 2022;13:1004.

    CAS  Google Scholar 

  26. Elens L, Hesselink DA, Bouamar R, Budde K, De Fijter JW, De Meyer M, et al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine a in renal transplant patients. 2014. http://www.drug-monitoring.com. Accessed 15 jun 2022.

  27. Sridharan K, Shah S, Jassim A, Hammad M, Al Gadhban JE, Al Segai O. Evaluation of pharmacogenetics of drug-metabolizing enzymes and drug efflux transporter in renal transplants receiving immunosuppressants. J Pers Med. 2022;12:823.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nakamura T, Fukuda M, Matsukane R, Suetsugu K, Harada N, Yoshizumi T, et al. Influence of POR*28 polymorphisms on 5*3-associated variations in tacrolimus blood levels at an early stage after liver transplantation. Int J Mol Sci. 2020;21:2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gómez-Bravo MA, Salcedo M, Fondevila C, Suarez F, Castellote J, Rufian S, et al. Impact of donor and recipient CYP3A5 and ABCB1 genetic polymorphisms on tacrolimus dosage requirements and rejection in caucasian spanish liver transplant patients. J Clin Pharmacol. 2013;53:1146–54.

    Article  PubMed  Google Scholar 

  30. Woillard JB, Chouchana L, Picard N, Loriot MA. Pharmacogenetics of immunosuppressants: state of the art and clinical implementation – recommendations from the french national network of pharmacogenetics (RNPGx). Therapie. 2017;72:285–99.

    Article  PubMed  Google Scholar 

  31. Brunet M, Van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit. 2019;41:261–307.

    Article  CAS  PubMed  Google Scholar 

  32. U.S Food & Drug Administration. https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations. 2022.

  33. Dong Y, Xu Q, Li R, Tao Y, Zhang Q, Li J, et al. CYP3A7, CYP3A4, and CYP3A5 genetic polymorphisms in recipients rather than donors influence tacrolimus concentrations in the early stages after liver transplantation. Gene. 2022;809:146007.

    Article  CAS  PubMed  Google Scholar 

  34. Maseko N, Yang S, Li C, Zhang S, Wang R, Zhang Y, et al. Impact of genetic polymorphisms on tacrolimus trough blood concentration in Chinese liver transplant recipients. Pharmacogenomics. 2023;24:207–17.

    Article  CAS  PubMed  Google Scholar 

  35. Anutrakulchai S, Pongskul C, Kritmetapak K, Limwattananon C, Vannaprasaht S. Therapeutic concentration achievement and allograft survival comparing usage of conventional tacrolimus doses and CYP3A5 genotype-guided doses in renal transplantation patients. Br J Clin Pharmacol. 2019;85:1964–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Katari SR, Magnone M, Shapiro R, Jordan M, Scantlebury V, Vivas C, et al. Clinical features of acute reversible tacrolimus (FK 506) nephrotoxicity in kidney transplant recipients. Clin Transplant. 1997;11:237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Debette-Gratien M, Woillard JB, Picard N, Sebagh M, Loustaud-Ratti V, Sautereau D, et al. Influence of donor and recipient CYP3A4, CYP3A5, and ABCB1 genotypes on clinical outcomes and nephrotoxicity in liver transplant recipients. Transplantation. 2016;100:2129–37.

    Article  CAS  PubMed  Google Scholar 

  38. Kim V, Wal TV, Nishi MY, Montenegro LR, Carrilho FJ, Hoshida Y, et al. Brazilian cohort and genes encoding for drug-metabolizing enzymes and drug transporters. Pharmacogenomics. 2020;21:575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank FAPESP, CNPQ and CAPES for funding the project. We would also like to thank everyone involved in carrying out the project: nursing staff, medical staff, postgraduate secretary, laboratory team. Their participation was essential to the project’s progress. We would like to thank the Department of Gastroenterology, which provided the data of the patients on the waiting list for liver transplantation, collected and stored the blood of the liver transplant patients and helped collect the information of the liver donors. The HC-FMUSP Pharmacy Division also helped with access to data on immunosuppressant prescriptions for transplant patients.

Author information

Authors and Affiliations

Authors

Contributions

GDARN: data curation, formal analysis, writing – original draft, investigation, methodology, review & editing; ABM: supervision, visualization, writing – review & editing; TDMP: data curation, formal analysis, writing – review & editing; VF: data curation, formal analysis, review & editing; MAF: data curation, formal analysis, review & editing; GHG: data curation, review & editing; LN: data curation, clinical analysis, investigation, methodology, review & editing; LACDA: review and editing, supervision; RL: data curation, review & editing; EL: data curation, review & editing; ELRC: review and editing, supervision, resources; SKO: conceptualization, data curation, funding acquisition, methodology, project administration, supervision, validation, visualization, writing – review & editing.

Corresponding author

Correspondence to Graziella D’ Agostino Ribeiro Naldi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Financial support statement

FAPESP: 2019/00945-1; CNPq: 308609/2018-2; GDARN: CAPES Scholarship. The opinions, hypotheses, conclusions, or recommendations expressed in this material are the sole responsibility of the authors and do not necessarily reflect FAPESP’s, CNPq’s or CAPES’s view.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naldi, G.D.A.R., Minari, A.B., Pereira, T.D.M. et al. CYP3A5 and POR gene polymorphisms as predictors of infection and graft rejection in post-liver transplant patients treated with tacrolimus - a cohort study. Pharmacogenomics J 25, 4 (2025). https://doi.org/10.1038/s41397-025-00363-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41397-025-00363-4

Search

Quick links