Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploring pharmacogenetic factors influencing hydroxyurea response in tanzanian sickle cell disease patients: a genomic medicine approach

Abstract

In sub-Saharan Africa, sickle cell disease (SCD) remains a significant public health challenge. Despite the discovery of SCD over a century ago, progress in developing and accessing effective treatments has been limited. Hydroxyurea is the primary drug used for managing SCD and associated with improving clinical outcomes. However, up to 30% of patients do not respond to hydroxyurea, likely due to genetic factors. This study involved 148 individuals with SCD investigated the association of hydroxyurea response with genetic variants across 13 loci associated with HbF synthesis and drug metabolism, focusing on MYB, HBB, HBG1, HBG2, BCL11A, KLF10, HAO2, NOS1, ARG2, SAR1A, CYP2C9, and CYP2E1. Significant associations with hydroxyurea response were identified in CYP2C9, CYP2E1, KLF10, BCL11A, ARG2, HBG1, SAR1A, MYB, and NOS1 loci. Furthermore, pathway enrichment and gene-gene interaction analyses provide deeper insights into the genetic mechanisms underlying hydroxyurea treatment response, highlighting potential avenues for personalized therapy in SCD management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Haematological profiles of poor and good responders to hydroxyurea treatment.
Fig. 2: Distribution of pathogenic SNPs across the targeted genetic variants in the studied population and other ethnic groups.
Fig. 3: PCA plot of Hydroxyurea associated population structure across world-wide ethnicities.
Fig. 4: Gene-gene interaction network of genes harbouring the most deleterious variants.

Similar content being viewed by others

Data availability

Genomic sequencing data generated in this study have been submitted to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA1114738. The original contributions presented in the study are included in the article/supplementary material, further inquiries contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

References

  1. How I use hydroxyurea to treat young patients with sickle cell anemia blood American society of hematology. Blood. 2010;115:5300–11. Available from: https://ashpublications.org/blood/article/115/26/5300/130853/How-I-use-hydroxyurea-to-treat-young-patients-with

  2. Tshilolo L, Tomlinson G, Williams TN, Santos B, Olupot-Olupot P, Lane A. Hydroxyurea for children with sickle cell anemia in sub-saharan Africa. N Engl J Med. 2019;380:121–31.

    Article  PubMed  CAS  Google Scholar 

  3. John CC, Opoka RO, Latham TS, Hume HA, Nabaggala C, Kasirye P. Hydroxyurea dose escalation for sickle cell anemia in sub-saharan Africa. N Engl J Med. 2020;382:2524–33.

    Article  PubMed  CAS  Google Scholar 

  4. McGann PT, Niss O, Dong M, Marahatta A, Howard TA, Mizuno T, et al. Robust clinical and laboratory response to hydroxyurea using pharmacokinetically guided dosing for young children with sickle cell anemia. Am J Hematol. 2019;94:871–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ginete C, Delgadinho M, Santos B, Pinto V, Silva C, Miranda A. Are genetic modifiers the answer to different responses to hydroxyurea treatment?-a pharmacogenetic study in sickle cell anemia angolan children. Int J Mol Sci. 2023;24:8792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Walker AL, Franke RM, Sparreboom A, Ware RE. Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters. Exp Hematol. 2011;39:446–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Green NS, Barral S. Emerging science of hydroxyurea therapy for pediatric sickle cell disease. Pediatr Res. 2014;75:196–204.

    Article  PubMed  CAS  Google Scholar 

  8. Rappaport SM. Genetic factors are not the major causes of chronic diseases. PLoS ONE. 2016;11:e0154387.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sheehan VA, Crosby JR, Sabo A, Mortier NA, Howard TA, Muzny DM, et al. Whole exome sequencing identifies novel genes for fetal hemoglobin response to hydroxyurea in children with sickle cell anemia. PLoS ONE. 2014;9:e110740.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nkya S, Nzunda C, Saukiwa E, Kaywanga F, Solomon D, Christopher H. Towards genomic medicine: a tailored next-generation sequencing panel for hydroxyurea pharmacogenomics in Tanzania. BMC Med Genomics. 2024;17:190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10.1–11.10.33.

    PubMed  Google Scholar 

  12. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010;38:1767–71. https://doi.org/10.1093/nar/gkp1137

    Article  PubMed  CAS  Google Scholar 

  13. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M. The UCSC genome browser database: 2015 update. Nucleic Acids Res. 2015;43:D670–81. https://doi.org/10.1093/nar/gku1177

    Article  PubMed  CAS  Google Scholar 

  14. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008;18:1851–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A. The genome analysis toolkit: a mapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gézsi A, Bolgár B, Marx P, Sarkozy P, Szalai C, Antal P. VariantMetaCaller: automated fusion of variant calling pipelines for quantitative, precision-based filtering. BMC Genomics. 2015;16:875.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Auton A, Salcedo T. The 1000 genomes project. In: Zeggini E, Morris A, editors. Assessing rare variation in complex traits: design and analysis of genetic studies. New York, NY: Springer; 2015;71–90. https://doi.org/10.1007/978-1-4939-2824-8_6

  22. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  PubMed  Google Scholar 

  23. Sherry S, Ward M, Kholodov M, Baker J, Phan L, Smigielski E, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D, et al. The ExAC browser: displaying reference data information from over 60,000 exomes. Nucleic Acids Res. 2017;45:D840–D845. https://doi.org/10.1093/nar/gkw971

    Article  PubMed  CAS  Google Scholar 

  26. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43:805–11.

    Article  Google Scholar 

  27. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45.

    Article  PubMed  Google Scholar 

  28. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19:1553–61. https://doi.org/10.1101/gr.092619.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2012;9:743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39:37.

    Article  Google Scholar 

  31. Shihab HA, Gough J, Cooper DN, Day INM, Gaunt TR. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics. 2013;29:1504–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kircher M. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–D894.

    Article  PubMed  CAS  Google Scholar 

  34. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010;6:e1001025.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015;31:761–3.

    Article  PubMed  CAS  Google Scholar 

  36. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics. 2009;25:54.

    Article  Google Scholar 

  38. Ashburner M, Ball CA, Blake JA, Butler H, Cherry JM, Eppig JT, et al. Creating the gene ontology resource: design and implementation. Genome Res. 2001;11:1425–33. https://doi.org/10.1101/gr.180801

    Article  CAS  Google Scholar 

  39. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:2074.

    Article  CAS  Google Scholar 

  41. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome wide association studies. Nat Genet. 2006;38:904.

    Article  PubMed  CAS  Google Scholar 

  42. Genesis can be used to display screen and publication quality pictures of population PCA and admixture charts | Genesis PCA and Admixture Plot Viewer. 2014. Available from: https://www.bioinf.wits.ac.za/software/genesis/.

  43. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–20. https://doi.org/10.1093/nar/gkq537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yawn BP, Buchanan GR, Afenyi-Annan AN, Ballas SK, Hassell KL, James AH, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312:1033–48. https://doi.org/10.1001/jama.2014.10517

    Article  PubMed  CAS  Google Scholar 

  46. Chand AR, Xu H, Wells LG, Clair B, Neunert C, Spellman AE, et al. Are there true non-responders to hydroxyurea in sickle cell disease? a multiparameter analysis. Blood. 2014;124:4073.

    Article  Google Scholar 

  47. Ma Q, Wyszynski DF, Farrell JJ, Kutlar A, Farrer LA, Baldwin CT, et al. Fetal hemoglobin in sickle cell anemia: Genetic determinants of response to hydroxyurea. Pharmacogenomics J. 2007;7:386–94. https://doi.org/10.1038/sj.tpj.6500433

    Article  PubMed  CAS  Google Scholar 

  48. Molokie R, Lavelle D, Gowhari M, Pacini M, Krauz L, Hassan J, et al. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: a randomized phase 1 study. PLoS Med. 2017;14:e1002382 https://doi.org/10.1371/journal.pmed.1002382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Niihara Y, Miller ST, Kanter J, Lanzkron S, Smith WR, Hsu LL, et al. A phase 3 trial of l -glutamine in sickle cell disease. N Engl J Med. 2018;379:226–35. https://doi.org/10.1056/nejmoa1715971

    Article  PubMed  CAS  Google Scholar 

  50. Kutlar A, Kanter J, Liles DK, Alvarez OA, Cançado RD, Friedrisch JR, et al. Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: a SUSTAIN study analysis. Am J Hematol. 2019;94:55–61. https://doi.org/10.1002/ajh.25308

    Article  PubMed  CAS  Google Scholar 

  51. Howard J, Hemmaway CJ, Telfer P, Layton DM, Porter J, Awogbade M, et al. A phase 1/2 ascending dose study and open-label extension study of voxelotor in patients with sickle cell disease. Blood. 2019;133:1865–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lanzkron S, Strouse JJ, Wilson R, Beach MC, Haywood C, Park H, et al. Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease. Ann Intern Med. 2008;148:939–55. https://doi.org/10.7326/0003-4819-148-12-200806170-00221

    Article  PubMed  PubMed Central  Google Scholar 

  53. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. N Engl J Med. 1995;332:1317–22.

    Article  PubMed  CAS  Google Scholar 

  54. Bridges KR, Barabino GD, Brugnara C, Cho MR, Christoph GW, Dover G, et al. A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood. 1996;88:4701–10. https://doi.org/10.1182/blood.v88.12.4701.bloodjournal88124701

    Article  PubMed  CAS  Google Scholar 

  55. Mtatiro SN, Makani J, Mmbando B, Thein SL, Menzel S, Cox SE. Genetic variants at HbF-modifier loci moderate anemia and leukocytosis in sickle cell disease in Tanzania. Am J Hematol. 2015;90:E1–4. https://doi.org/10.1002/ajh.23859

    Article  PubMed  CAS  Google Scholar 

  56. Subotički T, Mitrović Ajtić O, Djikić D, Kovačić M, Santibanez JF, Tošić M, et al. Nitric oxide mediation in hydroxyurea and nitric oxide metabolites’ inhibition of erythroid progenitor growth. Biomolecules. 2021;11:1562 https://doi.org/10.3390/biom11111562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: Functional and clinical considerations. J Pers Med. 2018;8:1 https://doi.org/10.3390/jpm8010001

    Article  Google Scholar 

  58. Garciá-Suástegui WA, Ramos-Chávez LA, Rubio-Osornio M, Calvillo-Velasco M, Atzin-Méndez JA, Guevara J, et al. The role of CYP2E1 in the drug metabolism or bioactivation in the brain. Oxid Med Cell Longev. 2017;2017:4680732 https://doi.org/10.1155/2017/4680732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Manu GP, Segbefia C, N’guessan BB, Coffie SA, Adjei GO. Association between selected single nucleotide polymorphisms in globin and related genes and response to hydroxyurea therapy in ghanaian children with sickle cell disease. Pharmgenomics Pers Med. 2022;15:205–14. https://doi.org/10.2147/PGPM.S351599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Green NS, Barral S. Genetic modifiers of HbF and response to hydroxyurea in sickle cell disease. Pediatr Blood Cancer. 2011;56:177–81. https://doi.org/10.1002/pbc.22754

    Article  PubMed  Google Scholar 

  61. Green NS, Ender KL, Pashankar F, Driscoll C, Giardina PJ, Mullen CA, et al. Candidate sequence variants and fetal hemoglobin in children with sickle cell disease treated with hydroxyurea. PLoS ONE. 2013;8:e55709 https://doi.org/10.1371/journal.pone.0055709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chaparro M, Aterido A, Guerra I, Iborra M, Cabriada JL, Bujanda L, et al. Functional rare variants influence the clinical response to anti-TNF therapy in Crohn’s disease. Therap Adv Gastroenterol. 2019;12:1756284819867848 https://doi.org/10.1177/1756284819867848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Nelson MR, Marnellos G, Kammerer S, Hoyal CR, Shi MM, Cantor CR, et al. Large-scale validation of single nucleotide polymorphisms in gene regions. Genome Res. 2004;14:1664–8. https://doi.org/10.1101/gr.2421604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Memon N, Weinberger BI, Hegyi T, Aleksunes LM. LiverTox: clinical and research information on drug-induced liver injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547852/

  65. Zhou Y, Lauschke VM. The genetic landscape of major drug metabolizing cytochrome P450 genes—an updated analysis of population-scale sequencing data. Pharmacogenomics J. 2022;22:284–93. https://doi.org/10.1038/s41397-022-00288-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Vinhaes CL, Teixeira RS, Monteiro-Júnior JAS, Tibúrcio R, Cubillos-Angulo JM, Arriaga MB, et al. Hydroxyurea treatment is associated with reduced degree of oxidative perturbation in children and adolescents with sickle cell anemia. Sci Rep. 2020;10:18982 https://doi.org/10.1038/s41598-020-76075-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The Sickle cell Program and the Haematology Clinical and Research Laboratory of the Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences is highly appreciated for the cooperation shown during the whole time of study.

Author information

Authors and Affiliations

Authors

Contributions

SN contributed to conceptualization, funding acquisition, supervision, and project administration. CN, ERC, EB, ES, FK, HC, and MZ were involved in data curation, formal analysis, investigation, methodology, and software development. ERC, CN, SN, and CD contributed to writing, review and editing, conceptualization, methodology, supervision, validation, resources, and visualization. DS, DN, JJ, FU, JM, SK, RS, CC, JM, CK, MY, and EN critically reviewed the data and edited the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Collin Nzunda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

This study received ethical approval from the Institutional Review Board at Muhimbili University of Health and Allied Science, number MUHAS-REC-2018-078. Both verbal and written consent were obtained from mothers to agree their babies to participate in this study. Informed consent to participate was obtained from the parents or legal guardians of any participant under the age of 16. Consent forms were signed by the mothers or legal guardians who agreed to their children to participate after the research assistant educated them.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkya, S., Nzunda, C., Saukiwa, E. et al. Exploring pharmacogenetic factors influencing hydroxyurea response in tanzanian sickle cell disease patients: a genomic medicine approach. Pharmacogenomics J 25, 11 (2025). https://doi.org/10.1038/s41397-025-00372-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41397-025-00372-3

Search

Quick links