Table 1 In vivo studies on neuromodulation therapy regulate inflammation.

From: Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression

Type of Neuromodulation

Disease/model

Treatment targets

Effects on inflammation

references

TMS

Patients with refractory depression

Left dorsolateral prefrontal cortex

Decrease serum IL-1β and TNF-α

Zhao et al. [87]

 

MDD patients

Bilateral DLPFC

No significant difference

Chou et al. [88]

 

CUMS rat model

Vertex of the skull

Decrease hippocampus TNF-α, iNOS, IL-1β, and IL-6

Tian et al. [24]

TES

Bipolar depression patients

MDD patients

AD patients

DLPFC

Anodal on left DLPFC and Cathodal on right DLPFC

Bitemporal lobes(40 Hz tACS)

Decrease plasma IL-6 and IL-8

No significant difference

Decrease of microglia activation

Goerigk et al. [21]

Brunoni et al. (2014), Brunoni et al. [98]

Dhaynaut et al. [100]

 

Rats model of vascular dementia

Healthy mice

MCAO mouse model

2.5 mm posterior to bregma

AP + 0.5 mm and ML + 1.5 mm from bregma(anodal tDCS)

Ischemic hemispheres

Decrease hippocampal IL-1β, IL-6, and TNF-α

reduce Iba1-positive microglia

Increase the number of iNOS-positive M1-polarized microglia

Guo et al. [94]

Pikhovych et al. [95]

Braun et al. [96]

ECT

Resistant major depression patients

Right unilateral and bilateral ECT

Activate peripheral blood mononuclear cells, increases circulating IL-1β, IL-6

Fluitman et al. [108],

Lehtimäki et al. [109]

 

CUMS rat model

Bilateral ear clip

Increase hippocampal

IL-1β and TNF-α

Zhu et al. (2015)

 

Depression patients

Bitemporal

Decrease in IL-6 levels

Belge et al. (2020)

 

Autoimmune encephalomyelitis

Ear clip

Reduce microglia activation, T cell stimulatory and chemokine expression

Goldfarb et al. [105]

Photobiomodulation

Aged rats

Cerebral cortex

Increase hippocampus IL-1α and decrease IL-5 and IL-8

Cardoso et al. [117]

TUS

MCAO mouse model

LPS-treated mice

PD mouse model

Ischemic hemispheres

2 mm posterior to the bregma

STN

Increase IL-10、IL-10R and M2 microglia

Inhibit activation of TLR4/NF-κB inflammatory signals and reduced TNF-α, IL-1β, and IL-6

Nnormalize the expression NF-κB, TNF-α, IL-1β and COX-2 and NF-κB

Wang et al. [93]

Chen et al. [122]

Zhou et al. [124]

DBS

Rats

Infralimbic cortex

Increase expression of glial fibrillary-acidic-protein, TNF-α, and p11

Perez-Caballero et al. [135]

 

Rats

Subthalamic nucleus

Increase the density of PBR

Hirshler et al. (2010)

 

FPI rat model

Lateral cerebellar nucleus

Suppress expression of pro-inflammatory genes, suppress microglial, and astrocytic activation

Chan et al. [136]

 

Pilocarpine-induced SE rat model

Anterior thalamic nucleus

Countered the increase in hippocampal caspase3 activity and IL-6 levels, but had no effect on TNFα

Covolan et al. (2014)

 

6-hydroxydopamine injection

Rat PD model

Subthalamic nucleus

Suppress microglia activation and NF-κB expression, decrease IL-1β and IL-6, increase IL-4, downregulate IL-1R, ERK, and cleaved-caspase3

Chen et al. [138]

VNS

Migraineurs

Cervical vagus nerve

Decrease serum IL-1βdecrease in IL-8

Chaudhry et al. (2019)

 

LPS endotoxemia in rats

Peripheral vagus nerve

Inhibit TNF synthesis, attenuate peak serum TNF amounts

Borovikova et al. [139]

 

LPS endotoxemia in mice

Vagus nerve

Reduce the central levels of IL-1β, IL-6, and TNFα, prevent LPS-induced hippocampal microglial activation

Huffman et al. (2019) Meneses et al. [140]

 

POCD-aged rat model

Auricular vagus nerve

Decrease hippocampus TNF-α, IL-1β, and the expression of NF-κB

suppress the elevated level of TNF-α

Cai et al. (2019)

 

CUMS and CCI rat model

Transcutaneous auricular vagus nerve

Decrease plasma and multiple brain regions TNF-α

Guo et al. [94]

  1. CUMS chronic unpredictable mild stress, STN subthalamic nucleus, MCAO middle cerebral artery occlusion, PBR peripheral benzodiazepine receptors, reflects microglia cell density, SE status epilepticus, ERK extracellular signal-regulated kinase, LPS lipopolysaccharide, TBI traumatic brain injury, POCD postoperative cognitive dysfunction, CCI chronic constriction injury of the sciatic nerve.