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In neuroimaging research, seasonal effects are often neglected or controlled as confounding factors. However, seasonal fluctuations
in mood and behavior have been observed in both psychiatric disorders and healthy participants. There are vast opportunities for
neuroimaging studies to understand seasonal variations in brain function. In this study, we used two longitudinal single-subject
datasets with weekly measures over more than a year to investigate seasonal effects on intrinsic brain networks. We found that the
sensorimotor network displayed a strong seasonal pattern. The sensorimotor network is not only relevant for integrating sensory
inputs and coordinating movement, but it also affects emotion regulation and executive function. Therefore, the observed
seasonality effects in the sensorimotor network could contribute to seasonal variations in mood and behavior. Genetic analyses
revealed seasonal modulation of biological processes and pathways relevant to immune function, RNA metabolism, centrosome
separation, and mitochondrial translation that have a significant impact on human physiology and pathology. In addition, we
revealed critical factors such as head motion, caffeine use, and scan time that could interfere with seasonal effects and need to be
considered in future studies.
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INTRODUCTION
Seasonality has been reported for mood and behavior in patients
with psychiatric disorders [1] as well as in healthy individuals
alongside inter-individual variations [2]. Growing evidence sug-
gests an essential contribution of monoamine neurotransmitters
to seasonal fluctuations of psychiatric symptoms. For instance,
blunted seasonal dynamics of serotonin reuptake transporter
(SERT) availability [3] and cerebral monoamine oxidase A (MAO-A)
levels [4] were observed in patients with seasonal affective
disorder compared to healthy individuals. Seasonal fluctuations in
neurotransmitters are expected to subsequently modulate brain
function. In contrast to the various studies on neurotransmitter
activity and seasonality, very few studies have investigated
seasonal effects on brain functions [5]. A cross-sectional study
from Belgium reported that basic attentional processes were
associated with day length, whereas higher-level executive brain
responses covaried with day-to-day day length variations [6].
Another study from the US showed that the amplitude of P300
event-related brain potential, which reflects processes involved in
high-level cognition such as evaluation and decision-making, was
larger in young subjects tested in spring/summer than in fall/
winter [7, 8].
In the last decade, resting-state functional magnetic resonance

imaging (rfMRI) studies have expanded our understanding of
brain functional neurocircuitry in a task-free condition [9].
However, no studies have examined seasonal effects on intrinsic
brain functional networks. Furthermore, studies that applied
longitudinal design to examine seasonal effects are very sparce.

Even though some cross-sectional studies had large sample sizes
to cover various time points throughout the year, they cannot
replace longitudinal studies when investigating intra-individual
variations. Here, we leveraged two open-source datasets i.e.,
MyConnectome [10] and Kirby weekly projects [11] with rfMRI
measurements obtained over longer than a 1-year period. We
examined associations of resting state functional connectivity
(RSFC) with day length and its day-to-day variations. Consistent
cross-sectional evidence suggests seasonal fluctuation in the
human transcriptome [12–14]. However, longitudinal evidence is
still lacking. Thus, we explored seasonal effects on peripheral gene
expression using the RNA-sequence data collected in the
MyConnectome project. Despite the limitation of case studies in
generalizing the results, we hope the knowledge obtained from
these single-subject studies can inform neuroimaging studies of
critical factors that need to be considered in future studies of
seasonality.

MATERIALS AND METHODS
Participants and rfMRI imaging acquisition
MyConnectome. This is a longitudinal single-subject dataset collected
over 1.5 years. The subject was a right-handed Caucasian healthy male
aged 45 years at the study onset. In total 84 usable 10-min rfMRI sessions
(Figs. S1 and S2) were collected. rfMRI scans were performed at fixed times
of the day under eyes-closed conditions (Monday [13 sessions at 5:00 pm],
Tuesday [40 sessions at 7:30 am], and Thursday [31 sessions at 7:30 am]).
rfMRI data were collected on a Siemens Skyra 3 T MRI scanner using a 32-
channel head coil and multiband-EPI sequence (TR/TE= 1160/30ms;
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multiband factor= 8; flip angle= 63°; voxel size= 2.4 × 2.4 × 2mm). For
the ethical review of this study please see Poldrack et al. [10].

Kirby. The subject was a healthy male aged 40 years at the time of the
first scan. In total, there were 156 sessions over a span of 185 weeks [11]
(Figs. S3 and S4). Scans were performed weekly typically on Thursdays at
11:30 am and under eyes-closed conditions. The rfMRI data were collected
on 3 T Philips Achieva Scanner using a 16-channel neuro-vascular coil and
a multi-slice SENSE-EPI pulse sequence with TR/TE= 2000/30ms, SENSE
factor= 2, flip angle= 75°, voxel size= 3 × 3 × 3mm. The longitudinal
single-subject study was performed under protocols approved by the
Institutional Review Board at Johns Hopkins University School of Medicine.
Signed informed consent was obtained.

rfMRI preprocessing and analyses
rfMRI data from MyConnectome project were preprocessed according to a
pipeline developed at Washington University, St Louis [15]. Artifacts were
reduced using frame censoring, regression, and spectral filtering. For
detailed preprocessing steps please see Poldrack et al. [10]. After
preprocessing, the mean time course from each parcel was extracted.
For parcellation, we used (1) the individual subject parcellation which
consists of a total of 630 regions (616 parcels and 14 subcortical regions)
that were assigned to 12 networks [10]; (2) Glasser parcellation (360 ROIs)
[16] to test whether the results consisted using a different atlas.
For Kirby dataset, MRI data were processed using the minimal

preprocessing pipeline of the Human Connectome Project (HCP) [17].
The T1w image was segmented and spatially normalized to the
stereotactic space of the Montreal Neurological Institute (MNI) space
using routines from the University of Oxford’s Center for Functional
Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL)
[18], and FreeSurfer (Martinos Center for Biomedical Imaging, Charlestown,
Massachusetts, USA). The fMRI data underwent motion correction and
normalization to MNI space with 2-mm isotropic resolution. Following
surface data extraction, the data were further denoised by regressing out
12 movement regressors (3 rotational, 3 translational, and their derivatives)
and censoring (Power FD > 0.25). Twenty-two sessions were excluded
because less than 50 frames were left after censoring. The mean time
course from each parcel was then extracted using the Glasser atlas [16].
For both datasets, Pearson’s correlation coefficients between all pairs of

parcels were computed and then converted to normally distributed Z-
scores using the Fisher transformation for the subsequent analyses. The
relationships between head motion (Power FD) [15] and day length, as well
as its day-to-day variations, were also examined.

Blood sample (MyConnectome)
Weekly blood samples (48 blood draws; Fig. S5) enabled us to examine
seasonal effects on gene expression. To assess gene expression across the
whole genome, transcription profiling was performed on RNA extracted
from peripheral blood mononuclear cells. Blood was drawn every Tuesday
around 8:00 am immediately after the MRI scan and the subject was fasted
and had no caffeine on Tuesdays.

Gene network analysis (MyConnectome)
We used processed RNA-sequencing data to explore gene expressions
associated with day length and its day-to-day variations. Please see
Poldrack et al. [10] for methods. To avoid multiple comparisons, we
reduced data by using a network approach. First, we applied weighted
gene co-expression network analysis (WGCNA) to the RNA-sequencing
data (WGCNA R package Version 1.70-3) to cluster genes that co-expressed
throughout the year [19, 20]. For data preparation, we regressed against
RNA integrity number (RIN) values for each session. For WGCNA analysis, a
robust bicorrelation mid-weight estimator was used to estimate correla-
tions. The power for soft thresholding was chosen as 14 based on the
scale-free criterion. Modules of highly correlated genes were detected
using hierarchical clustering. The first principal component from each
module [module eigengenes (ME)] was extracted and its correlations with
day length and its day-to-day variations were examined.
Benjamini–Hochberg’s false discovery rate (FDR) was used to correct for
multiple comparisons [21].
Next, we used DAVID (Version 2021) functional annotation tool, which

provides typical gene–term enrichment (overrepresented) analysis, to
identify the most relevant (overrepresented) biological terms and path-
ways associated with genes involved in modules significantly associated

with day length and its day-to-day variations [22, 23]. The default
background set was used. The annotation analyses included Gene
Ontology biological processes (GO-BP), pathways (Reactome [24] and
KEGG database [25]), and disease (Genetic Association Database [GAD])
[26]. The significance was determined using the modified Fisher’s exact
test [22, 23] and corrected for multiple testing with PFDR < 0.05.
EnrichmentMap (Version 3.6.6) [27], a Cytoscape (Version 3.10.0) plugin
was used for functional enrichment visualization [28].

Other measurements (MyConnectome)
The PANAS-X was used to assess the positive (high energy, concentration,
experiencing pleasure) and negative affect (distress, unpleasurable
engagement) [29] after each scan. Higher scores indicate a stronger
experience of positive or negative affect. Total sleep time (minutes) was
measured on most nights before scanning sessions using a ZEO sleep
monitor. Self-reported sleep quality (1 [extremely poor] to 7 [extremely
good]) was assessed in the morning. Naked weight was measured upon
waking using the FitBit Aria scale. The severity of psoriasis (1 [extremely bad]
to 7 [extremely good]), stress (1 [extremely bad] to 7 [extremely good]),
total time spent outdoors (hours), and consumed alcohol in standard drinks
were assessed by self-reports in the evening [10].

Statistical analyses
Daylength and its day-to-day variations were calculated as the daytime plus
civil twilight on the study days using the R package “suncalc”, where
calculations were based on the geographic location of the study locations:
MyConnectome data (Austin, TX, USA: Latitude=30.286, Longitude=
−97.739); Kirby weekly data (Baltimore, Maryland, USA: Latitude= 38.290;
Longitude=−76.61). Gain/losses of day length were calculated by
subtracting the day length of the day prior to scan day from the day
length of the scan day.
We used the lm function in R to examine the effect of day length and its

variation on RSFC and included weekdays as a nuisance variable in the
linear model. Additionally, to examine whether caffeine/food consumption
modulated the seasonal effect in the MyConnectome dataset, we
separately tested the day-length effect on Tuesday (no caffeine/fasted)
and Thursday (fed/caffeinated) using Spearman’s rank correlation. A
significance level was set at a connection-level FDR-corrected p < 0.05.
Pearson’s correlations were used to assess correlations between day

length, day-to-day day length variations, and other measures including
positive and negative affect, sleep, stress, weight, psoriasis severity, time
spent outdoors, and alcohol consumption in the MyConnectome dataset. If
normality was violated i.e., Kolmogorov–Smirnov test was significant, a
non-parametric Spearman’s rank correlation was performed.

RESULTS
Resting-state functional connectivity
For the MyConnectome project, using a different atlas, the RSFC
findings consistently showed that day length was most promi-
nently associated with greater functional connectivity within the
sensorimotor network (SMN) and between the SMN and the visual
network (Fig. 1). However, no significant RSFC associations were
found with day-to-day variations in day length. In this dataset, the
subject was an fMRI expert, and the head motion was minimal:
Framewise displacement (FD) ranged from 0.04 to 0.06. Head
motion was not associated with day length (rho=−0.158,
p= 0.150) or its variations (rho= 0.159, p= 0.149) even when
only including the morning scans on Tuesday and Thursday
(71 sessions) and excluding the evening scans on Monday
(13 sessions) to lessen the circadian variability in the data (day
length rho=−0.139, p= 0.247; day length variation: rho= 0.095,
p= 0.559). Further, caffeine/food enhanced the seasonal effects
on RSFC such that the effect of day length was only significant on
Thursday with caffeine/food consumption but not on Tuesday
without caffeine/food intake before scans (Fig. 2 and Table S1).
For the Kirby weekly project, we did not find RSFC significantly

associated with daylength or daylength variations. However, in
this dataset, a head motion was greater compared to the
MyConnectome project: FD ranged from 0.10 to 0.61. Notably, a
head motion was positively associated with day length (rho=

R. Zhang et al.

2

Translational Psychiatry          (2023) 13:238 



0.316, p < 0.001) (Fig. 3) but not day length variations (rho=
0.156, p= 0.052).

Gene expression
Using WGCNA, 35 co-expression modules were identified (See
Table S2 for the hub genes of each module). Five of them
(modules 1, 3, 7, 16, and 25) were positively associated with day

length while 10 of them (modules 2, 4, 5, 11, 12, 13, 17, 30, 32, and
33) were negatively associated with day length (all |r| > 0.36,
PBH < 0.05; Fig. S6) but not with day-to-day daylength variation (all
|r| < 0.28, p > 0.056).
Since genes within a module were not necessarily biologically

related, we pooled genes from modules positively and negatively
associated with day length respectively for functional annotation

Fig. 1 RSFC associated with day length (MyConnectome). Relationship between day length and RSFC after regressing out weekdays.
Regression coefficients b are plotted. Significant FC (PBH < 0.05) are marked with *. Left: Parcellation using subject-specific atlas; Right:
Parcellation using Glasser atlas and assigned to Yeo 7 networks.

Fig. 2 Caffeine enhanced seasonal effect on RSFC (MyConnectome). Correlations (rho) between day length and RSFC for Tuesday (no
caffeine/fasted) and Thursday (caffeinated/fed) are plotted separately. Significant FC (PBH < 0.05) are marked with *. BH Benjamini–Hochberg
correction for multiple testing. Module labels: none: unassigned, DMN default mode network, V2 second visual network, FP1 primary
frontoparietal network, V1 primary visual network, DA dorsal attention network, VA ventral attention network, SN salience network, CO
cingulo-opercular network, SMN somatomotor network, FP2 secondary frontoparietal network, MPar medial parietal network, ParOcc parieto-
occipital network, subcort subcortical regions.
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using DAVID. Genes involved in rRNA processing in the cytosol,
centrosome separation, and mitochondrial translation increased
their expression with longer day length (Fig. 4A, C and Table S3).
Genes that were downregulated with longer day length were ones
strongly relevant to immune function (Fig. 4B, D and Table S4).
Genes enriched in the circadian pathway were also down-
regulated and involved in other biological processes and path-
ways that regulate immune functions (Fig. 4E).

Other measures
Longer day length and day-to-day day length variation was
associated with greater weight (day length: rho= 0.515, p < 0.001;
day length variation: rho= 0.366, p < 0.001). No significant
associations were found for mood, sleep, time spent outdoors,
stress, alcohol consumption, or severity of psoriasis.

DISCUSSION
The MyConnectome data analyses showed that longer day length
(but not day-to-day day length variation) was associated with

RSFC within the SMN and between the SMN and the visual
network. This is consistent with a preclinical study showing
seasonal effects on plasticity in the somatosensory cortex [30].
Moreover, a recent human study, reported that resting-state fMRI
signal variance dropped endogenously (i.e., not evoked by
external cues) at times coinciding with dawn and dusk, notably
in sensory cortices including the bilateral visual, somatosensory,
and right auditory cortices [31]. In the MyConnectome dataset, 71
rfMRI scans were performed at the same time in the morning (i.e.,
7:30 am on Tuesday and Thursday). The time between scans and
dawn, which was associated with day length (rho= 0.908,
p < 0.001), varied across the seasons (range from −33.58 to
87.5 min). In contrast to the summer scans, in winter the dawn was
later in the day such that the scan time was about or prior to dawn
(Fig. S7). The SMN exhibits strong recurrent connections
consistent with localized processing of external stimuli [32].
Therefore, SMN could be a network that conveys information
about dawn and dusk, which vary throughout the year, to the rest
of the brain. The sequent question is whether seasonal variation in
SMN results from the subject’s light exposure prior to the scan
(e.g., during travel to the research center) indicating a reactive
brain response; or reflects anticipatory adaptions of spontaneous
neural activity at twilight in preparation for expected environ-
mental changes, indicating a proactive response. A cross-sectional
study under strictly controlled laboratory conditions demon-
strated seasonality of cognitive brain responses in healthy
participants after living without any seasonal cues for 4.5 days
suggesting that there might be a “photic memory” for the
photoperiod to which the participants were exposed prior to the
study [6]. If the SMN association with day length reflects a
proactive brain response, SMN might receive information from
upstream regions that signal the timing of twilight such as the
entrainment of the internal clock by light [33].

Fig. 3 Seasonal effect on head motion (Kirby). Head motion
during fMRI scans (FD) was positively associated with day length.
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Fig. 4 Biological processes, pathways, or disease associated with day length. The results of enrichment analyses for genes that were
(A, C Positively; B, D, E Negatively) associated with day length were represented. A, B The top 30 enriched terms with the greatest gene count
is shown. The color represents the adjusted p-value of the enrichment scores (BH: Benjamini–Hochberg correction), while the dot size and x-
axis represent the number of gene counts. C–E Gene-set similarity mapping: edges represent the overlap between gene sets with a cutoff
value of 0.5. Gene sets with similar functional themes was clustered. E Overlapping of the circadian pathway with other biological processes
and pathways.
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Another important question is whether there is an interplay
between the time of day and seasonal effects. In other words,
whether scan time affects the observed seasonal effect, for
instance, whether the seasonal effect would be smaller or
observed in other regions when subjects are scanned in the
middle of the day rather than near dawn or dusk. The subject in
the Kirby weekly project gave us some insight into this since the
subjects were scanned weekly typically on Thursdays at 11:30 am
under eyes-closed conditions. We did not find RSFC significantly
associated with daylength or daylength variations. However,
longer day length (but not day length variation) was associated
with greater head motion, which could reflect worse inhibitory
control [34, 35]. Thus, in this dataset, head motion interfered with
the results, and the post-hoc statistical control for head motion
could have attenuated the seasonal effect confounding the
findings i.e., whether the negative results reflected a lack of
seasonal effect on RSFC when the subject was tested at midday or
reflected the regressing out of the neurobiological factors that
underly head motion and are also influenced by day length.
In the MyConnectome project, we did not find changes in

mood, sleep, stress, outdoor activities, or alcohol consumption
across seasons, although weight increased with longer day length
and greater day length variations. Inter-individual differences in
SMN adaptations to external seasonal changes might account for
resilience to seasonal variations in mood and behavior since
patients with seasonal affective disorders had reduced seasonality
at the molecular level that could affect RSFC [3, 4]. Comparing
seasonal effects on intrinsic brain networks between healthy
participants and patients with psychiatric disorders would be a
critical next step. There have already been some observations for
associations of brain network dynamics with different affective
states. In bipolar disorder, the shift of depressive and manic
phases has been suggested to relate to the balance between
default mode network (DMN) and SMN [36, 37].
We further compared seasonal effects on days with and without

caffeine/food consumption. Interestingly, caffeine/food enhanced
the seasonal effect on RSFC. Clinical [38, 39] and preclinical studies
[40] suggest that caffeine modulates monoamine transmitters that
display seasonal fluctuations. Since caffeine is the most widely
used stimulant worldwide, it should be systematically examined
by future studies.
Additionally, our findings were in line with previous studies

supporting a strong seasonal effect on immune function [12, 13].
Interestingly, we also found that the expression of genes involved
in circadian pathways was downregulated alongside longer day
length. These circadian genes engaged in other biological
processes and pathways that support immune functions. Research
on the interaction between the immune system, circadian
rhythms, and brain function is a very promising area for studying
seasonal effects [41–44]. In contrast, genes involved in processes
of RNA metabolism, centrosome separation, and mitochondrial
translation were upregulated with longer day lengths. Disruptions
of these processes are relevant to human physiology and are
associated with various diseases including cancer, cardiovascular
diseases, nervous system diseases, and infections [45–47].

CONCLUSIONS
We took advantage of databases from two single-subject studies
and documented seasonality in functional brain networks,
particularly in SMN. Single-subject projects have revealed
important factors that could influence the sensitivity to seasonal
effects such as head motion, caffeine use, and time of day of the
scan. Genetic findings revealed biological pathways including the
neuroimmune pathway that might contribute to the seasonal
effect on brain network dynamics and the involvement of
circadian modulation. Large sample sizes are needed for
additional investigations. Since a stronger seasonality has been

associated with more severe phenotypes in psychiatric disorders
[1], further investigation of seasonality in RSFC in patients with
psychiatric disorders might be clinically valuable to monitor and
personalize treatments. So far, seasonal effects are understudied
and often controlled as a covariate in brain research, although
seasonal changes are one of the most prominent changes in the
environment. Future endeavors that take advantage of neuroima-
ging, metabolomics, and sleep and circadian measures are
needed to advance our knowledge of biological processes
underlying seasonal adaptations.

DATA AVAILABILITY
All data files are available under websites http://myconnectome.org/wp/data-
sharing/ (MyConnectome) and https://www.nitrc.org/projects/kirbyweekly/ (Kriby).
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