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Social bonding, essential for health and survival in all social species, depends on mu-opioid signalling in non-human mammals. A
growing neuroimaging and psychopharmacology literature also implicates mu-opioids in human social connectedness. To
determine the role of mu-opioids for social connectedness in healthy humans, we conducted a preregistered (https://osf.io/x5wmq)
multilevel random-effects meta-analysis of randomised double-blind placebo-controlled opioid antagonist studies. We included
data from 8 publications and 2 unpublished projects, totalling 17 outcomes (N = 455) sourced from a final literature search in Web
of Science, Scopus, PubMed and EMBASE on October 12, 2023, and through community contributions. All studies used naltrexone
(25-100 mg) to block the mu-opioid system and measured social connectedness by self-report. Opioid antagonism slightly reduced
feelings of social connectedness (Hedges' g [95% ClI) = —0.20] [—0.32, —0.07]. Results were highly consistent within and between
studies (/> = 23%). However, there was some indication of bias in favour of larger effects among smaller studies (Egger’s test:

B=—-2.16, SE=0.93, z= —2.33, p = 0.02), and publication bias analysis indicated that the effect of naltrexone might be
overestimated. The results clearly demonstrate that intact mu-opioid signalling is not essential for experiencing social
connectedness, as robust feelings of connectedness are evident even during full pharmacological mu-opioid blockade.
Nevertheless, antagonism reduced measures of social connection, consistent with a modulatory role of mu-opioids for human
social connectedness. The modest effect size relative to findings in non-human animals, could be related to differences in
measurement (subjective human responses versus behavioural/motivation indices in animals), species specific neural mechanisms,
or naltrexone effects on other opioid receptor subtypes. In sum, these results help explain how mu-opioid dysregulation and social
disconnection can contribute to disability, and conversely—how social connection can buffer risk of ill health.
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INTRODUCTION

Affiliative behaviours are life-sustaining in social animals across
taxa [1]. In humans, social relationships are key to physical and
mental health [2] and quality of life [3]. While loneliness increases
the risk of both mental and physical health problems, strong
relationships build resilience and reduce mortality [4].

To promote resilience, we must uncover the neurobiological
mechanisms linking social relationships to health and wellbeing.
Non-human animal findings indicate that affiliative behaviours
are supported by much the same neurochemical processes that
drive motivation for and pleasure from food consumption and
mating [5]. Similarly, neural responses to social rejection and
isolation have been associated with pain and threat-responsive
systems [6-8]. While several neurochemical systems, notably
dopamine and oxytocin, can promote affiliation, the experience
of affiliative reward has so far primarily been linked to mu-opioid
receptor signalling [9, 101.

According to the influential Brain Opioid Theory of Social
Attachment, endogenous mu-opioid signalling promotes social
bonds by mediating feelings of pleasure and security in presence
of others [11]. Conversely, social isolation is theorised to reduce
opioid receptor activation and induce withdrawal-like feelings of

despair [11]. Decades of research in non-human mammals support
this notion [10]. For instance, mu-opioids are necessary for mouse
pups to form a normal preference for their mother over a stranger
[12] and for prairie voles to form a partner pair-bond [13]. Across
species, mu-opioid modulation is observed in a state-dependent
pattern that suggests involvement in regulation of both negative and
positive social feelings [14].

A growing body of literature implicates opioids in social processes
relevant for feeling socially connected [15-17]. PET studies using mu-
opioid selective ligands have shown differences in receptor binding
related to feeling accepted or rejected by others [16, 18] and linked
attachment styles to mu-opioid receptor availability at rest [19]. A
hypothesis derived from the Brain Opioid Theory of Social
Attachment is that blocking opioid receptors would reduce feelings
of connection in humans. Several human studies have used opioid
antagonists such as naltrexone to test this hypothesis. For instance,
Inagaki et al. [20] found increased diary ratings of feeling
disconnected from others after naltrexone compared to placebo.
Tchalova and MacDonald [21] reported that while feelings of social
closeness was not significantly reduced in participants pre-treated
with naltrexone, they disclosed less in a self-disclosure task designed
to facilitate bonding between strangers and the mood improvement
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evident in the placebo group following this task was absent in the
naltrexone group.

The endogenous mu-opioid system is reported to be disrupted in
a range of mental and physical health conditions, notably chronic
pain with [22] and without chronic opioid treatment [23-26], alcohol
[27-29] and substance use disorder [30-32], behavioural addictions
[33, 34], schizophrenia [35] and Parkinson’s dyskinesia [36, 37].
Disruptions in endogenous mu-opioid signalling could disturb
behaviours important for forming and maintaining social connection
and thereby contribute to disability in these populations.

To determine how important endogenous mu-opioids are for
experiences of social connection in humans, we conducted a
systematic review of randomised double-blind placebo-controlled
studies and used meta-analysis to estimate the effect of
pharmacological mu-opioid receptor blockade on social connec-
tion and accompanying ratings of mood in healthy humans.

METHODS

This systematic review and meta-analysis was preregistered on the
Open Science Framework (https://osf.io/x5wmgq, [37]) and follows the
PRISMA 2020 guidelines for reporting systematic reviews [38]. Data
and code are available on the Open Science Framework (https://
osf.io/5f6ej). Deviations from the preregistration include (1) recording
whether the included studies were preregistered, (2) visualising
individual study quality with traffic light and risk of bias summary
plots, (3) determining the achieved mu-opioid receptor blockade in
the included studies, (4) conducting power analysis of the included
studies, (5) using aggregated outcomes within studies for the trim-
and-fill analysis, (6) using the GRADE approach to assess overall
certainty in evidence [39], and (7) conducting a reviewer-suggested
meta-regression to assess whether the effect of naltrexone on social
connectedness depends on relationship type.

Eligibility criteria

Original studies were eligible if they surveyed generally healthy
humans who were not described as patients and had collected
any measure of social bonding or connectedness, including
self-report and behavioural observations, after drug adminis-
tration. A centrally active mu-opioid antagonist (e.g., naltrex-
one or naloxone) and an inert substance (i.e., placebo) had to
be administered to two separate groups or on two separate
occasions. Treatment allocation or order had to be described as
randomised, and the drug administration had to be described
as double-blind. No other drugs could be administered before
or together with the study drug (antagonist/placebo), or
between the administration of the study drug and the
following outcome assessment.

Information sources

We searched the databases Web of Science, Scopus, PubMed, and
EMBASE (via Ovid) to ensure high coverage of relevant literature
[40]. All searches were conducted between February 21, 2022 and
October 12, 2023.

Search strategy

Exact search strings are available in the supplement. The
searches used a combination of the following terms, including
synonyms and related terms, and subject headings when
applicable: (1) Centrally active mu-opioid antagonist, (2)
placebo, and (3) social bonding/connectedness. Records
tagged as review articles were excluded from each search.
No other restrictions were imposed on the literature searches.

Selection process

We used Mendeley Desktop [41] to automatically remove
duplicate records and to merge records identified as close
duplicates. This method has been shown to vyield accurate
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deduplication [42]. Remaining duplicates were identified and
removed manually. Two researchers independently evaluated
each identified record against the eligibility criteria (agreement =
100%). Eligibility was primarily determined by screening the title
and abstract. When more information was necessary to reach a
conclusion, the author accessed and screened the full text,
including associated supplementary information and pre-
registrations.

Data collection process

One author (MT) extracted data manually from the full-texts,
supplementary materials, and preregistrations. When necessary,
we used WebPlotDigitizer [43] to extract data from figures as this
tool is reliable and easy to use and produces valid data [44-46].
We contacted authors to obtain both data missing from published
records and unpublished data.

Data items
We extracted the following data from the included records:

1. Record information, including author names, publication year,
record title, and journal name.

2. Drug administration information, including design (between-sub-
jects, within-subjects), mu-opioid antagonist name and dose, and
administration route, and intersession interval when applicable.

3. Context information, including the context (task/activity/event/
stimuli) in which the outcome was assessed, the time between
drug administration and engagement in this context, and what type
of relationships (e.g., new or established) the participants were likely
considering when providing outcome ratings.

4. Outcome assessment information, including the time between drug
administration and the outcome assessment, and the measurement
type (self-report, behaviour).

5. Outcome information (social bonding/connectedness) and covariate
(positive mood, and negative mood) per drug condition (antagonist,
placebo), including the number of participants, mean and standard
deviation, outcome interpretation, and whether the outcome was
baseline corrected. For within-subjects design, we extracted the
correlation between outcome scores and covariates in the
antagonist and placebo condition, or converted it from t- or F-
values [47]. When means and/or standard deviations were missing,
we extracted Cohen’s d for the difference between the drug
conditions.

6. Sample characteristics, including the total number of participants,
the number and percentage of male and female participants, and
the mean and standard deviation for age.

Effect size measures

Effect sizes were calculated as the standardised mean difference in
outcome scores (social bonding/connectedness) and covariates
(positive mood, and negative mood) between the antagonist and
the placebo condition. Specifically, we used the formulas for
Hedges’' g in Borenstein et al. [48]. Calculation of Hedges' g is
similar to that of Cohen’s d but includes the application of a
multiplicative correction factor that reduces overestimation of the
standardised mean difference when the sample size is small.
Hedges’ g was computed so that negative values indicated lower
social bonding/connectedness, positive mood, and negative
mood in the antagonist condition than in the placebo condition.
Conversely, positive values indicated higher social bonding/
connectedness, positive mood, and negative mood in the
antagonist condition than in the placebo condition.

Synthesis methods

Studies for which we could calculate Hedges' g for social bonding/
connectedness were included in the statistical analyses. Random-
effects models were implemented in R [49] using the metafor
package [50]. We specified a three-level model with random
intercepts for studies and outcomes nested within studies to
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account for statistical dependencies arising from reporting of
multiple outcomes per study [51, 52]. In the primary analysis, we
simply computed the average Hedges' g for social bonding/
connectedness across studies and visualised the results in a forest
plot. In secondary analyses, we ran four separate models with
Hedges' g for positive mood, negative mood, quality score, and
likely relationships as moderators to assess the contribution of
these variables to the effect of mu-opioid antagonism on social
bonding/connectedness. Studies for which moderator data were
unavailable were excluded from these analyses. The results of
secondary analyses were visualised in scatter plots. Heterogeneity
was assessed by computing the standard deviation between
studies (Oswqy) and between outcomes within studies (Osugy,
outcome), DY computing P for these two variance components, and
by conducting a Cochran’s Q test. Results were considered
statistically significant whenever p < 0.05 or the 95% Cl did not
include 0.

Study quality assessment

To evaluate the quality of the included studies, we used the
Oxford quality scoring system, i.e., the Jadad scale [53]. Although
brief, this checklist covers key sources of bias, such as treatment
randomisation and blinding procedures, and participant dropout.
Quality scores range from 0 to 5, with lower scores indicating
lower quality or higher risk of bias.

We also used the R Shiny app plantrexone and its accompanying
recommendations [54] to determine the achieved mu-opioid
receptor blockade at the time of outcome assessment in the
included studies.

Finally, we calculated the statistical power of each included
study to detect the average effect size obtained in the primary
analysis assuming a=0.05. The function mpower from the
package metapower [55] was used to estimate the sample size
needed per study for the meta-analysis to have 80% power to
detect this average effect size at the same alpha level.

Reporting bias assessment

To evaluate the risk of reporting bias, we assessed the relationship
between individual outcomes and their precision. First, we visually
inspected standard and contour-enhanced funnel plots for
asymmetry. Next, we formally tested the relationship between
outcome and precision by conducting an Egger’s test [56]. Finally,
we used the trim-and-fill method to estimate the average Hedges’
g for social bonding/connectedness under a symmetrical funnel
plot [57]. Because the trim-and-fill method has yet to be
generalised to three-level models, we used the aggregate function
from the metafor package [50] to aggregate outcomes within
studies before applying this method.

Overall certainty in evidence assessment
We used the GRADE approach to rate the overall certainty in
evidence [39].

RESULTS
Study selection
A detailed overview of the study selection process is available in
the PRISMA flowchart, Supplementary Fig. 1 (Supplementary
Materials). The literature search returned 410 records, and we
obtained details of 2 unpublished studies from authors. Of these
412 records, 159 were identified as duplicates. A total of 10
records met the inclusion criteria [20, 21, 58-65]. These records
reported 17 outcomes from 8 studies (N =455, 276 women, 179
men). All relevant outcomes from all studies were included in the
primary analysis.

One double-blind, randomised, placebo-controlled study with
25 mg naltrexone appeared to meet inclusion criteria, but was
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excluded due to the measure of social bonding/connectedness
being collected only prior to drug administration [66].

Study characteristics

Characteristics of individual studies are available in Table 1. On
average, participants were 22 years old (range 20-43). The gender
distribution was uneven in all studies, with the percentage of
women ranging from 6% to 100% (M = 61%).

Participants in the included studies rated their feelings of social
connectedness during or following a variety of tasks and activities,
such as participating in a yoga session, a silent disco session, or a
religious ritual; viewing images of close others, reading messages
from strangers and close others, having a structured conversation
with a stranger, preparing for a stressful event together with a
close other, experiencing physical pain together with another
participant, holding cold, warm or neutral objects, or simply going
about their daily lives.

Social bonding/connectedness was exclusively measured with
self-report. Questionnaire items mainly assessed feelings of
connection with or disconnection from others, liking of others,
commonalities or similarities with others, and inclusion of others
in the self, and were rated on Likert scales ranging from either 1-5,
1-7, 1-9, or 0-9.

Positive and negative mood was either measured with the
Positive and Negative Affect Schedule [21, 58, 64], Profile of Mood
States [65] or custom questionnaires [20, 59].

Results of individual studies

Figure 1 presents the results of individual studies. In total, 12/17
outcomes (71%) showed a negative effect of naltrexone on social
connectedness, while the remaining 5/17 (29%) indicated a
positive effect. When measured on a 1-7 Likert scale, the reported
social connectedness in the included studies was 1.12 points
lower to 0.33 points higher after naltrexone than after placebo.
Hedges’ g ranged from —2.50 to 0.35. See Table 1 for aggregated
outcomes within studies.

Results of syntheses

All outcomes (Koutcomes = 17) from all studies (Kyydies=8) were
included in the primary analysis. This analysis showed that on
average, there is a statistically significant negative effect of
naltrexone on social connectedness (Fig. 1). The mean effect size
was small (Hedges' g [95% Cl] = —0.20 [—0.32, —0.07]).

There was significant heterogeneity in the reported outcomes,
Q (16) = 28.47, p = 0.03. However, the amount of heterogeneity
was small (P =23%) and driven by variance in outcomes within
studies (Puithin = 23%, Ppetween = 0%). The estimated standard
deviation was 0.12 Hedges’ g units for outcomes within studies,
and 0.00 Hedges’ g units between studies.

Across individual outcomes, reductions in social connectedness
following treatment with naltrexone tended to be accompanied
by reductions in positive mood (Ksdies = 6, Koutcomes = 8, B=1.02,
SE=0.52, z=1.97, p < 0.05, see Fig. 2F) and increases in negative
mood (Kstudies = 5, Koutcomes =6, B= —3.62, SE=1.55, z=—2.33,
p=0.02, see Fig. 2G). However, the relationship with negative
mood changes was primarily driven by an outlier (kgygies =4,
Koutcomes =5, B=0.75, SE=4.01, z=0.19, p = 0.85).

Quality scores did not significantly predict the reported effect of
naltrexone on social connectedness (Ksiudies =8, Koutcomes = 17,
B=—-0.01, SE=0.12, z= —0.08, p = 0.93, see Fig. 2E).

The effect of naltrexone on social connectedness was non-
significantly higher when participants were likely considering
established (e.g., close others) versus new (e.g., strangers)
relationships  (Kstudies =8, Koutcomes =17, B=—0.30, SE=0.16,
z=-191, p=0.06). Exploratory removal of an outlier shifted
the statistics slightly (Kstudies = 7, Koutcomes = 16, B=—0.33, SE=
0.16, z=—2.11, p =0.04).
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Hedges' g [95% CI]

Inagaki et al. (2015, 2016)
Holding warm vs neutral object (50 mg)
Holding cold vs neutral object (50 mg)

Reading messages from close others (50 mg)

o -0.45 [-0.89, -0.02]

Fo -0.02 [-0.42, 0.38]
i -0.73 [-1.44, -0.02]

Daily life (50 mg/day) @ -0.38 [-0.69, -0.08]
Tarr et al. (2017)
Silent disco with strangers (50 mg) =0 0.35[-0.20, 0.90]
Silent disco with strangers (100 mg) —ei -0.20 [-0.76, 0.36]
Inagaki et al. (2019, 2020) & Ross et al. (2021)
Reading messages from close others (50 mg) —oH -0.22 [-0.65, 0.22]
Reading messages from strangers (50 mg) e 0.16 [-0.27, 0.60]
Holding warm object (50 mg) l—o——i -0.32 [-0.76, 0.11]
Holding cold object (50 mg) o 0.04 [-0.40, 0.47]
Viewing images of close others (50 mg) I—Q—! -0.39 [-0.83, 0.05]
Daily life (50 mg) o -0.40 [-0.84, 0.03]
Charles et al. (2020, Study 1)
Yoga session (100 mg) P -2.50 [-4.14, -0.86]
Charles et al. (2020, Study 2)
Religious ritual (100 mg) o -0.79 [-1.60, 0.02]
Tchalova & MacDonald (2020)
Structured conversation with stranger (50 mg) H@H -0.18 [-0.49, 0.13]
Tchalova et al. (2023)
Stress preparation with close other (50 mg) r—o—« 0.21[-0.45, 0.87]
Riitgen & Lamm (2023)

Pain empathy task (50 mg) I—O—i 0.05[-0.28, 0.38]
RE Model ¢ -0.20 [-0.32, -0.07]
T I
5 -4 -3 10 1
Hedges' g

Fig. 1 Forest plot. Hedges’' g is the effect size and indicates the standardised mean difference in social connectedness between the
naltrexone and placebo conditions. Circles indicate individual study effects and error bars indicate their corresponding 95% confidence
intervals. The diamond indicates the average effect size and corresponding 95% confidence interval obtained with the three-level random-
effects meta-analysis. Negative effect sizes indicate lower social connectedness after administration of naltrexone than after administration of
placebo. The vertical dotted line indicates an effect size of Hedges' g = 0 (i.e., no difference in social connectedness between the naltrexone

and placebo conditions).

Quality of individual studies

Four out of the eight included studies (50%) were preregistered.
Quality scores for each included study are available in Table 1. In
line with the strict inclusion criteria, quality scores were relatively
high for all studies (range 3-5, M = 4.38), indicating low risk of bias
associated with blinding and randomisation procedures, and
participant dropout. However, detailed descriptions of exact
blinding and randomisation procedures were sometimes missing
(see Risk of bias assessment based on Jadad Scale scores in
Supplementary Fig. 2), and quality scores do not reflect the
statistical power of the individual studies.

Power analysis indicated that all the included studies were
underpowered (median power = 0.15) to detect the average effect
size of g=—0.20 at a =0.05 (Firepower plot, Supplementary Fig.
3). The estimated number of participants per study required for a
random-effects meta-analysis to have 80% power to detect this
effect size at the same alpha level was 120 (60 in each drug
condition). In the included studies, the median number of
participants was 38 (range =9-159) with a median of 36
participants in the naltrexone conditions (range =4-75) and 27
in the placebo conditions (range = 5-84).

Full mu-opioid receptor blockade was likely achieved at some
point in all the included studies as they used oral doses of
50-100 mg naltrexone. When administered orally, a dose of 50 mg
naltrexone produces full (>90%) mu-opioid receptor blockade
within 2 h and maintains this level of blockade for at least 49 h [54,
671. Inagaki et al. [20, 59]. used a daily dosing schedule starting at
25 mg for the first two days, then increased to 50 mg on the next
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two days. We include measures only from the days with 50 mg
naltrexone in the meta-analysis.

Social connectedness was often assessed 60-95min after
administration [20, 21, 59, 60, 63, 64]. It is likely that mu-opioid
receptor blockade would be adequately high at this time point,
although it is uncertain whether mu-opioid receptor blockade had
reached >90% since stable PET data on mu-opioid receptor
blockade with oral naltrexone are available only from 2 h post-
ingestion [54, 67]. Charles et al. [58], Inagaki et al. [20, 21], Ross
et al. [62], and Tchalova et al. [65]. assessed social connectedness
2-24h after naltrexone administration and therefore likely under
full mu-opioid receptor blockade.

The blockade half-life of oral naltrexone is 72 h [67], meaning
that it takes at least 15 days for the blockade to be eliminated [54],
i.e, five times the half-life [68]. The intersession intervals in the
included within-subjects studies were 7 [63] and 10 days [20, 59],
which would not be sufficient to completely eliminate the mu-
opioid receptor blockade produced by naltrexone. Residual mu-
opioid receptor blockade in participants who received daily
naltrexone before their first session could be contributing to the
significantly lower social connectedness ratings observed in the
second session compared to the first session in the study by
Inagaki et al. [20].

Reporting bias

Visual inspection of standard (Fig. 2A) and contour-enhanced funnel
plots (Fig. 2C) suggested asymmetry. Egger’s test indicated that this
asymmetry was statistically significant (Ksugdies =8, Koutcomes = 17,
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Fig.2 Small-study effects and meta-regressions. In all plots, Hedges' g is the effect size and indicates the standardised mean difference between
the naltrexone and placebo conditions in ratings of social connectedness (A-E), positive mood, and negative mood (F, G). Negative effect sizes
indicate lower social connectedness/positive mood/negative mood after administration of naltrexone compared to placebo. A Funnel plot. The
vertical dotted line indicates the average effect size of g = —0.20 obtained with multilevel random-effects meta-analysis. White shading indicates the
95% confidence interval (Cl) around this average effect size at various levels of precision (i.e., standard error). B Egger’s test. Meta-regression assessing
the relationship between effect size and precision. The medium grey band is the 95% confidence band around the solid black regression line.
C Contour-enhanced funnel plot. The vertical dotted line indicates an effect size of g=0 (i.e, no difference in social connectedness between the
naltrexone and placebo conditions). White, dark grey and medium grey shading indicates the 90%, 95%, and 99% ClI (respectively) around this null-
effect at various levels of precision. D Trim-and-fill funnel plot. Because the trim-and-fill method has not been generalised to multilevel random-effects
meta-analysis, this method was applied to aggregated study effect sizes. Effect sizes within studies were aggregated in R using the aggregate function
from the metafor package [50]. The vertical dotted line indicates the adjusted average effect size of g = —0.20 obtained with the trim-and-fill method.
White shading indicates the 95% Cl around this adjusted average effect size at various levels of precision. Circles indicate aggregated observed effect
sizes. E-G Meta-regressions assessing predictors of the effect of naltrexone (vs placebo) on social connectedness. These predictors include (E) study
quality as assessed with the Jadad Scale (possible range = 0-5) [53]; (F) the effect of naltrexone (vs placebo) on positive mood; (G) the effect of
naltrexone (vs placebo) on negative mood; and (H) the likely type of relationships (new, unspecified or established) considered by participants when
rating their feelings of social connectedness. The medium grey band represents the 95% confidence interval around the solid black regression line.
Individual effect sizes are scaled according to their relative weight in each model, with larger circles indicating greater relative weight.

B=-216, SE=093, z=—-233, p=0.02, see Fig. 2B). When we reduced and still statistically significant (Hedges’ g [95% ClI] = —0.20

restored funnel plot symmetry with the trim-and-fill method, the [-032, —0.07], see Fig. 2D). The estimated number of missing
average effect of naltrexone on social connectedness was not studies was 0 (SE=2). Together, these results indicate that the
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average effect size of g=—0.20 could be a slight overestimate.

Overall certainty in evidence

The overall certainty of the evidence was judged as low (see Table
1 in Supplementary Materials for full GRADE evidence profile),
primarily due to indirectness (i.e., use of a non-selective opioid
antagonist to infer functions of a specific opioid receptor subtype)
and imprecision (i.e., insufficient statistical power). There were
only some concerns about bias due to insufficient details about
blinding (k=2) and randomisation procedure (k=2) and
participant dropout (k=1). Risk of bias was otherwise judged as
low in line with the strict inclusion criteria used in this systematic
review.

Heterogeneity was low (=23%) and the 95% Cls of most
individual observed effect sizes were overlapping. All studies
surveyed healthy volunteers, administered the same opioid
antagonist (i.e., oral naltrexone), used questionnaires consisting
of similar types of questions to measure social connectedness,
measured social connectedness in at least one context in which
participants spent (k=6) or could have spent (k= 2) time with
other people, and measured social connectedness at a time point
when the administered dose of naltrexone (50-100 mg) would
likely have produced full (i.e., >90%) mu-opioid receptor blockade.

Naltrexone’s high affinity for both mu-opioid and kappa-opioid
receptors precludes the assessment of their unique contributions
to social connectedness. Consequently, while the certainty in
evidence for the effect of oral naltrexone compared to placebo on
social connectedness in healthy volunteers is moderate, the
certainty in evidence for the effect of mu-opioid receptor
blockade compared to no mu-opioid receptor blockade on social
connectedness in healthy volunteers is low.

All studies were underpowered to detect a significant average
effect size of g = —0.20. Only k=1 study included more than 120
participants, which is the estimated number of participants per
study required for a random-effects meta-analysis to have 80%
power to detect a significant average effect size of g=—0.20
given a =0.05 [55].

There was a tendency for less precise individual observed
effect sizes to be of greater negative magnitude. While this
could indicate publication bias or other forms of reporting bias,
no studies were estimated to be missing (k=0), and adjust-
ments for this asymmetry resulted in no change in the average
effect size (g [95% ClI] = —0.20 [—0.32, —0.07]).

DISCUSSION

This systematic review and meta-analysis found modest
reductive effects of opioid antagonism on feelings of social
connectedness observed across tasks and contexts as varied as
diary reports, reading messages from close others, engaging
with strangers in a religious ritual, and performance in a
structured self-disclosure task. Moreover, naltrexone had a
comparable impact on ratings of social connection collected in
the lab and in daily life through diary measures, suggesting that
the laboratory findings might generalise to daily life. While the
included studies used opioid antagonist doses estimated to
cause full (>90%) blockade of mu-opioid receptors [54], the
average effect was a reduction of ~1 point or less on a 7-point
scale. The most parsimonious interpretation of these findings is
that feelings of social connection in humans are fine-tuned by -
but not dependent on - endogenous mu-opioid signalling
[69, 70].

The modest effect size of systemic opioid antagonism on
feeling connected to others reported here is broadly consistent
with the magnitude of modulatory effects reported in
laboratory studies of other rewards, e.g., pleasantness of pain
relief [71], photos of rewarding faces and bodies [15, 72, 73],
monetary reward [74] and taste reward [75, 76]. Small (or null)
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effects are also often reported in opioid antagonist studies of
socially relevant behaviours such as emotion perception
[77-79], facial mimicry [80], responses to music [81-83] and
stroking touch [84, 85]. Consistent with this literature — though
perhaps more surprising — are studies reporting small or even
null effects of opioid antagonism on experimental [86, 87] and
clinical pain [88, 89]. The abundance of modest opioid
antagonist effects in the literature contrasts to more dramatic
reports, such as naloxone-reversible insensitivity to pain in
people and mice [90, 91], or the lack of social preference
formation after mu-opioid silencing in mice and prairie voles
[12, 13, 92, 931.

Although the preclinical evidence indicates that opioid
antagonist treatment impedes formation of social preference
in non-human animals, many social behaviours remain intact.
For instance, Burkett et al. [13] reported that repeated systemic
naltrexone effectively eliminated the usual pair-bonding (partner
preference) triggered by huddling and mating in prairie voles.
Not a single animal treated with repeated doses of naltrexone
preferred their partner over a stranger. Yet, these animals
continued to huddle and mate, suggesting that social and
reproductive behaviours were not directly impeded. Other social
behaviours such as social exploration, reproductive and mater-
nal behaviour, are also not reliant on opioid signalling [93, 94].
Furthermore, grooming and huddling solicitations typically
increase after opioid antagonism when the animal is stressed.
These behaviours are directed towards individuals with whom
the stressed animal has an established bond, suggesting that
their social preference, perhaps reflecting trust and attachment,
remains intact after mu-opioid blockade (see Lgseth et al. [14]
for a review). Mu-opioid blockade could increase social comfort
seeking both via direct effects on the experience of social
connection, and indirectly by interfering with stress coping [95].
Future studies in humans could disentangle this by assessing
opioid antagonist effects on connectedness and coping in
response to stress. The meta-regression results indicating a
somewhat larger effect of naltrexone on feelings of connected-
ness in established relationships are in line with the suggestion
that opioids play a central role for maintenance of the long-term
bonds typical in humans and primates [10]. Since stress appears
to enhance social motivation targeted towards established
bonds, a stress context could be a good setting for testing
potential differences in opioid involvement of social connected-
ness related to relationship types.

Small effects may become important if they accumulate over
time [96]. Considering the results of this meta-analysis, one
could speculate that the healthy mu-opioid system promotes
behaviours that foster feelings of connection, intimacy and trust,
allowing strong attachments to build over time. Conversely,
disruptions in mu-opioid functioning related to drug use,
pharmacological treatment or physical and mental ill health
might trigger a negative feedback loop contributing to a
growing sense of social disconnection. For instance, the
decreased amount of self-disclosure in the naltrexone group
reported by Tchalova & MacDonald [21] indicates a subtle
disruption in a behaviour key to forming new relationships. In
rodents, partial reductions in mu-opioid signalling impaired
reciprocal social interaction as well as social preference
formation (Toddes et al. [93]). In humans, altered mu-opioid
responses to social rejection and acceptance in people with
major depression were linked to reduced social motivation [18].
Reduced ability to experience social connection could contribute
to disability by negatively affecting the individual's mood
[6, 97, 98] and coping with pain [99] or inflammation [100],
over time leading to attrition of social relationships and reduced
resilience [101].

In contrast to the reports from acute opioid antagonism,
prolonged naltrexone treatment of alcohol or opioid use disorder
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has not been associated with social impairments. An early report
found that switching from opioid maintenance treatment to
antagonist treatment with naltrexone led to an improvement in
depression symptoms and increased social functioning over time
[102]. Naltrexone-treated patients are able to form and maintain
social relationships, and some report even stronger feelings of
social connection while on long-term naltrexone treatment [103].
When opioid pathways are disrupted, compensatory neurobiolo-
gical and psychological mechanisms are triggered. Emery and Akil
use the metaphor of the endogenous opioid system as a spinning
plate, acutely sensitive to disruption [70]. Hence, naltrexone
treatment may restore rather than disrupt opioid function in
addiction.

The meta-analysis and included studies have some important
limitations. Firstly, the certainty of evidence was judged low
due to imprecision (underpowered studies). Secondly, the use
of a general opioid antagonist means that we cannot
differentiate the role of the various opioid receptor types.
While the naltrexone doses and timings of outcome assess-
ments in the studies reviewed here are broadly consistent with
full mu-opioid blockade, naltrexone also produces substantial
blockade at the kappa opioid receptor [54]. Simultaneous
blockade of mu- and kappa opioid receptor signalling could
conceivably cancel out behavioural sequelae of silencing each
receptor system, due to opposite effects on behaviour. For
instance, kappa activity has been shown to have both
pronociceptive [104] and social-aversion-like [105] effects in
preclinical studies, contrasting with antinociceptive [106] and
prosocial [107] effects of mu-opioid binding. The study of
kappa-selective medications and kappa-opioid neural proces-
sing in humans is still in its infancy [108, 109]. We note however
that the few published studies employing a mu-opioid selective
antagonist, reported behavioural and neural effects broadly
consistent with the effects of non-selective antagonists
[110, 111]. Further complicating the interpretation of opioid
antagonist studies in humans is the preclinical finding that
partial reductions in mu-opioid signalling ability can have larger
effects than full (genetic) blockade [93].

A third limitation pertains to side effects of opioid antagon-
ism, e.g., nausea, which could interfere with social connection
ratings directly via a “gut feeling” or indirectly via distress and/or
impaired mood. In studies where physical side effect symptoms
were measured, naltrexone caused a modest increase in
symptoms and symptom-related distress [60-62]. Another study
reported severe gastrointestinal discomfort in three female
participants, who were excluded from further participation [59].
While Inagaki et al. [60] report that adjusting for side effect
symptoms did not change their key findings, we note that some
included studies did not assess side effects. Future studies
should carefully consider the actions of medications over time in
the brain and body as well as their interactions and effects on
mood. The use of Western, Educated, Industrialised, Rich and
Democratic (WEIRD) and/or convenience samples is also
frequently observed in the literature to date, limiting generali-
sability [112].

Finally, note that most of the studies included in this meta-
analysis did not involve stress, threats or reward tasks.
Exceptions are the unpublished datasets included here, where
feelings of social connection were collected while participants
were preparing for a stress task [65] and during a pain empathy
task [63]. As the opioid system is thought to “come into action”
once an organism is exposed to significant threats or rewards
[70, 113], it is conceivable the mu-opioid system is key for
generating and modulating social feelings when social homo-
eostasis is truly disrupted. Future studies should assess the role
of opioids in situations dominated by psychosocial stress,
loneliness or other social threats, or in the context of immediate
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opportunities for attractive social rewards such as establish-
ment of new connections.

CONCLUSION

In sum, we report that pharmacological opioid blockade causes
a modest reduction in feelings and behaviours related to
healthy human social connection. When considered in con-
junction with the alterations in endogenous mu-opioid
receptor binding reported in samples of patients with common
mental or physical conditions, this finding highlights endo-
genous mu-opioid function as a putative mechanism con-
tributing to impairment and social difficulties in clinical
populations. Future studies should aim to detect small effect
sizes, use active rather than inert placebo controls, tailor tasks
and stimuli to individuals and their social environments, target
established connections, and design inclusion strategies to
enhance the generalisability of findings.
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