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Opioid use disorders cause major morbidity and mortality, and there is a pressing need for novel mechanistic targets and
biomarkers for diagnosis and prognosis. Exposure to mu-opioid receptor (MOR) agonists causes changes in cytokine and
inflammatory protein networks in peripheral blood, and also in brain glia and neurons. Individuals with heroin use disorder (iHUD)
show dysregulated levels of several cytokines in the blood. However, there is limited data on a comprehensive panel of such
markers in iHUD versus healthy controls (HC), especially considered as a multi-target biomarker. We used a validated proximity
extension assay for the relative quantification of 92 cytokines and inflammatory proteins in the serum of iHUD on medication-
assisted therapy (MAT; n= 21), compared to HC (n= 24). Twenty-nine targets showed significant group differences (primarily
iHUD>HC), surviving multiple comparison corrections (p= 0.05). These targets included 19 members of canonical cytokine families,
including specific chemokines, interleukins, growth factors, and tumor necrosis factor (TNF)-related proteins. For dimensionality
reduction, data from these 19 cytokines were entered into a principal component (PC) analysis, with PC1 scores showing significant
group differences (iHUD > HC; p < 0.0001). A receiver-operating characteristic (ROC) curve analysis yielded an AUROC= 91.7%
(p < 0.0001). This PC1 score remained a positive predictor of being in the HUD group in a multivariable logistic regression, that
included select demographic/clinical variables. Overall, this study shows a panel of cytokines that differ significantly between iHUD
and HC, providing a multi-target “cytokine biomarker score” for potential diagnostic purposes, and future examination of disease
severity.
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INTRODUCTION
Heroin use disorders (HUD) and other opioid use disorders pose
significant challenges to society, resulting in substantial
morbidity and mortality [1], including a 2022 provisional
estimate from the CDC of approximately 83,000 deaths
attributed to opioid-related causes [2]. Heroin and other opioid
compounds such as fentanyl act primarily as agonists at mu-
opioid receptors (MOR), which mediate the direct effects as well
as long-term pathophysiology of these compounds, both in the
periphery and central nervous system. Although effective
medication-assisted therapies (MAT) exist for HUD, such as oral
maintenance with the MOR-agonist methadone or the partial
MOR-agonist/kappa-opioid receptor (KOR) antagonist buprenor-
phine, a significant proportion of individuals with HUD (iHUD)
discontinue treatment or relapse [3–5]. The underlying

mechanisms for these undesirable outcomes remain unclear,
highlighting an urgent need for novel mechanistically based
treatments. There is also a pressing need for objective and
quantitative biomarkers for HUD [6–10]. Due to their relative
non-invasiveness and practicality, the measurement of blood-
based biomarkers has emerged as a powerful approach in the
study of diverse neuropsychiatric disorders [11, 12].
In addition to their actions on neuronal functions [13, 14], MOR

agonists and their cognate receptors interact with complex
networks of cytokines (e.g., chemokines, interleukins, growth
factors, and tumor necrosis factor, TNF, -related proteins) [15, 16],
signaling proteins that operate as interactively both in the
periphery (e.g., in circulating leukocytes), and in central glia and
neurons [17, 18]. Recent preclinical studies more broadly show
that neuronal-glial interactions, often mediated by cytokines, are
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crucial in homeostatic functions including neuroplasticity and
behavioral outcomes [18–20]. Importantly, circulating leukocytes
and the cytokines they release may mediate some of the
neurobiological and behavioral consequences of HUD [21, 22].
In support of this, recent preclinical studies in rodents have

found that extended access fentanyl self-administration was
correlated with blood levels of several cytokines (e.g., the
chemokine CCL4, TNF-alpha, and interleukin-17) [23]. Intriguingly,
this correlation was observed in a principal component analysis
(PCA) factor that primarily contained translational indicators
models of disease severity (e.g., escalation of drug intake,
punished drug-taking, and progressive ratio behaviors) [23].
Furthermore, chronic i.v. oxycodone self-administration in mice
caused upregulation in mRNA levels of several cytokine genes (or
those for cognate receptors), such as oncostatin-M receptor, and
several chemokines and TNF-related genes in the dorsal or ventral
striatum [24]. Prior clinical studies have similarly detected
differences in levels of some cytokines in iHUD compared to
healthy controls (HC), with some discrepancies across studies,
possibly due to methodological differences [25–27]. Given this
translational gap, there is a clear need for analysis of a
comprehensive panel of cytokines from major cytokine families,
including chemokines, interleukins, growth factors, and TNF-
related proteins, in the context of clinical HUD [7, 21].
The goals of this study were therefore twofold: First, to examine

differences between iHUD and HC using a large and representa-
tive panel of cytokines and other inflammatory proteins [11, 28],
aiming to identify novel targets that are potentially related to HUD
[1, 29]. Secondly, to develop a multi-target (i.e., composite)
“cytokine biomarker score” via dimensionality reduction with
principal component analysis (PCA), and determine if it can
robustly differentiate iHUD from HC, taking into account major
demographic/clinical variables that may affect cytokine targets,
especially age, body mass index (BMI), sleep, and perceived stress
[30–34].

METHODS
Participants and diagnostic procedures
Twenty-one iHUD and 24 age- and sex-matched HC were recruited for the
current study. All iHUD were recruited from an inpatient drug addiction
rehabilitation organization (Samaritan Daytop Village, NY). The HC were
recruited from the surrounding communities, for matching purposes. This
study was approved by the Institutional Review Board of the Icahn School
of Medicine at Mount Sinai, and all participants provided written informed
consent. At the time of screening, all participants underwent a
comprehensive clinical diagnostic interview, conducted by trained
research staff under a clinical psychologist’s supervision, including the
Addiction Severity Index (ASI) [35] and the M.I.N.I. neuropsychiatric
interview [36] for DSM-5 diagnoses. On the day of the blood sample
(mean= 113.7 days after screening; 95% CI:98.8–128.6), all participants
also underwent a clinical interview to examine recent substance use status,
providing a urine sample for drug testing, a carbon monoxide breath
sample for nicotine use determination and salivary alcohol strip test. This
interview also obtained basic vital signs (e.g., heart rate, temperature,
blood pressure), and no abnormal findings were observed.

Inclusion criteria for all participants
Ability to understand and give informed consent in English, and 18–65
years of age. Inclusion criteria for iHUD specifically: Meet DSM-5 criteria for
opioid use disorder, with heroin as the primary drug of choice or reason for
treatment. We did not exclude iHUD with DSM-5 diagnosis of a drug use
disorder other than opioid, as long as heroin was the primary drug of
choice and reason for seeking treatment. All iHUD were inpatients in MAT
and stabilized on methadone (n= 17) or buprenorphine (n= 4). Exclusion
criteria for all participants: (1). DSM-5 diagnoses for psychotic disorders
(e.g. schizophrenia) or neurodevelopmental disorders (e.g. autism). (2).
History of head trauma with loss of consciousness (>30min). (3).
Neurological disease of central origin, including seizures. (4). Cardiovas-
cular disease including high blood pressure. (5). Active infectious diseases

such as hepatitis B/C or HIV/AIDS. (6). Other active medical conditions,
including metabolic, endocrinological, oncological, or autoimmune dis-
eases. The latter exclusions are based on the potential consequences of
these conditions on neuropsychiatric and cytokine systems [37–39].
Exclusion criteria for HC specifically: Any current or prior diagnosis for
any alcohol/substance use disorder.

Other medication use and comorbidities
In the iHUD, other than MAT, there was reported use of other common
medications (e.g., of bupropion, selective serotonin reuptake inhibitors,
quetiapine, and trazodone); the HC group reported instead primarily
vitamin use (see Supplementary Table S1). None of the participants in
either group had current exposure to corticosteroids, other major
immunomodulatory or anti-inflammatory medications, or n-acetyl-
cysteine, or opioids for the treatment of pain. As is common in persons
in this diagnostic group, the iHUD also had some other lifetime substance
use disorder diagnoses. Based on the MINI, of the total n= 21 iHUD, the
following lifetime diagnoses were detected: n= 3 alcohol use disorder,
n= 6 cocaine use disorder (n= 2 of these had both alcohol and cocaine
use disorder); none with cannabis use disorder. We also analyzed years of
regular use of alcohol and cannabis (based on the ASI), substances
commonly used in the population overall.

Demographic, behavioral, and clinical variables
Sex, BMI, racial background, and age were examined as demographic
variables. Hours of sleep in the night prior to the blood sample were also
examined. Stress exposure, depression, and anxiety have been associated
with changes in cytokine levels [11, 30, 40]. Therefore on the day of blood
sampling, we examined perceived stress with the PSS-10 scale (score
range: 0–40, denoting increasing perceived stress) [41, 42], self-rated
anhedonia, dysphoria, pessimism, and fatigue with the Beck Depression
Inventory (BDI-II; score range:0–63, scores ≤13 denote minimal depression)
[43, 44], and somatic and cognitive symptoms of anxiety with the Beck
Anxiety Inventory (BAI; score range: 0–63; scores ≤7 denote minimal
anxiety) [45]. On the day of screening, the iHUD also completed the
subjective opioid withdrawal scale (SOWS; score range 0–64, denoting
increasing withdrawal) [46]. In the iHUD, we further examined methadone
dose (documented report, or self-report if the former was unavailable) and
duration of current abstinence from heroin, as well as age trajectory
measures based on the ASI: age of first heroin use, the age of onset of
regular use, and the number of years of regular use (excluding periods of
abstinence) [47, 48]. A number of years of regular alcohol and cannabis use
were also analyzed from the ASI (persons who did not endorse any regular
use were assigned “0” for these values). A summary of demographic and
clinical variables is in Table 1, and compared across groups with
Mann–Whitney tests or Fisher’s exact tests.

Cytokine and inflammatory protein assay
A single blood sample was obtained by venipuncture, in the general time
range of 09:00–17:00, at least one hour after the daily MAT dose for the
iHUD. Samples were centrifuged (10min at 1200 G) within ≈1 h, and serum
was stored at −80 °C until the time of analysis. Serum samples were
analyzed for relative levels of cytokines, using the validated Olink Target 96
Inflammation panel (Olink, Uppsala Sweden), following the manufacturer’s
instructions [11], at the Human Immune Monitoring Center of the Icahn
School of Medicine at Mount Sinai. This panel measures 92 different
targets (principally chemokines, interleukins, growth factors, TNF-related
molecules as well as other inflammation-related proteins; full target list:
https://olink.com/products-services/target/inflammation/). The assay pro-
vides relative quantification of these targets, expressed as normalized
protein units (NPX) on a log2 scale. Following established procedures, if a
specific target in the panel yielded values for which ≥50% of the samples
were lower than the limit of detection (LOD) within either the iHUD or HC
group, the target overall was excluded from further analysis [11]. The
remaining targets were analyzed, including individual values < LOD, as in
previous studies [49]. Lastly, individual outliers (>±3 SD from the group
mean), were removed from the individual target analyses. However, these
outliers were later substituted by multiple imputation, for the principal
component analysis (see below).

Statistical analyses for demographic and clinical variables
Sex and race distribution across groups was analyzed with Fisher’s exact
test. Clinical data (e.g., age, BMI, sleep hours, PSS-10, BDI-II, BAI, and years
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of regular alcohol and cannabis use) were examined across groups with
Mann–Whitney U tests.

Analyses of individual targets
Normalized protein units (NPX) for each target were analyzed with
Wilcoxon’s rank-sum tests for group differences, and p-values were
corrected for multiple comparisons, using the False Discovery Rate (FDR)
approach (5% cutoff level) [50].

Principal component analysis based on 19 cytokines that
differed significantly between iHUD and HC
For dimensionality reduction, after identifying the 29 targets that showed
significant group differences (after correction for multiple comparisons),
we focused on the subset thereof (19 targets) that are in canonical
cytokine families. A principal component analysis (PCA) was carried out
with these 19 canonical cytokines [11, 51], using centered and
z-standardized individual values. Because PCA requires data for all relevant
variables, outliers (greater than ±3 SD within each group mean) were
replaced with a multiple imputation procedure (missMDA in R) [52].
Nineteen principal components were determined in the algorithm, with a
95% threshold for significance based on 1000 Monte Carlo simulations.
Differences in principal component scores between iHUD and HC were
examined non-parametrically (Mann–Whitney U test). A ROC curve was
used to determine if the first principal component (PC1) score (that

explained 40.9% variance) could be used as a diagnostic biomarker to
separate iHUD and HC groups [53, 54]. As a follow-up, Spearman
correlations were examined between these PC1 scores and demographic
and clinical variables (as in Table 1), applying multiple comparison
correction (FDR approach; 5% cutoff level).

Multiple logistic regression with group diagnosis (iHUD vs HC)
as a binary outcome
The above PC1 scores were entered into a multiple logistic regression,
together with age, BMI, sleep hours, PSS-10 (perceived stress) scores, and
sex. The binary outcome was group diagnosis (HUD vs. HC). An ROC curve
was also used to examine the performance of the multiple logistic
regression in correctly classifying iHUD vs. HC.

RESULTS
Demographics
Table 1 shows demographics and clinical variables. Age and
hours slept in the night before blood sampling did not differ
between groups. There were relatively more males than females
in both iHUD and HC, but the contingency analysis was non-
significant. There were relatively more persons of white race in
the iHUD versus HC group. Also, iHUD had greater BMI,

Table 1. Demographics.

Variable iHUD (n= 21) HC (n= 24) Group differences tests; Mann–Whitney U or Fisher’s
exact test

Age: mean (95%CI) 42.0 (38.5–45.5) 40.7 (36.0–45.4) NS

Sex: Male/Female 17M/4 F 15M/9 F Fisher’s test; NS

Race: White/Black/Other 18/0/3 12/8/4 Fisher’s test; p= 0.006

Body mass index (BMI) 32.3 (29.4–35.3) 26.7 (24.9–28.6) U= 110; p= 0.0009

Sleep hours in the night prior to the blood
sample

6.54 (5.6–7.5) 6.51 (5.9–7.2) NS

PSS-10 Perceived stress scorea;
Score range: 0–40

20.5 (17.7–23.3)
n= 20

12.3 (9.5–16.0) U= 104; p= 0.001

BDI-II Depression scorea;
Score range: 0–63

15.5 (9.9–21.2)
n= 19

3.8 (1.8–5.7) U= 78; p= 0.0001

BAI Anxiety scorea;
Score range: 0–63

14.1 (8.8–19.4)
n= 20

2.8 (1.1–4.4) U= 85.5; p= 0.0001

Subjective opioid withdrawal scale (SOWS) at
screening;
Score range: 0–64

4.1 (1.6–6.5) N/A

Age of first use of heroinb 23.6 (17.4–27.8)
n= 20

N/A N/A

Age of onset of regular use of heroinb 25.1 (21.2–28.9)
n= 20

N/A N/A

Years of regular heroin useb 8.5 (5.9–11.2)
n= 19

N/A N/A

Heroin abstinence duration in days 198 (130–268)
range: 1-634

N/A N/A

Methadone daily dose in mgc 91.9 (63–121)
n= 16

N/A N/A

Years of regular alcohol useb 12.3 (5.9–18.6)
n= 17

13.2 (6.6–19.8)
n= 18

NS

Years of regular cannabis useb 10.4 (5.9–14.9)
n= 15

1.3 (0.1–2.5)
n= 14

U= 85.5; p= 0.0001

Frequencies or means and 95% CI (in parentheses) and the number of subjects are provided.
Unless otherwise stated, n= 21 for iHUD (of which n= 17 with methadone and n= 4 with buprenorphine MAT), and n= 24 for HC; “n” varies due to missing
data in specific variables.
aIndividual PSS-10, BDI-II, and BAI scores are shown in Supplementary Fig. S1. “Floor” effects (i.e., a preponderance of “0” scores) were observed in the BDI-II
and BAI scores in the HC group.
bFrom the Addiction Severity Index (ASI).
cBuprenorphine daily dose available from n= 3; mean= 13.3 mg (range 8–24; n= 3).
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perceived stress scores (PSS-10), as well as depression (BDI-II),
and anxiety (BAI) scores, compared to HC. Supplementary Fig. S1
shows that PSS-10 scores are widely distributed across partici-
pants, whereas BDI-II and BAI scores showed a robust “floor”
effect (i.e., 0 scores), especially in the HC. The iHUD as a group
reported very low SOWS (subjective withdrawal scores), at the
time of screening. The mean duration of heroin abstinence in the
iHUD was 198 days.

Cytokine and inflammatory target data
Comparison of iHUD versus HC. After excluding 14/92 targets due
to ≥50% of the samples being <LOD (see “Methods” section), we

compared the remaining 78 targets in iHUD vs. HC with Wilcoxon’s
rank-sum tests. After FDR correction, 29 of these targets had
significantly different NPX values between the two groups
(Fig. 1A), of which 26 showed higher levels in iHUD vs. HC. Only
3 targets had the opposite profile (higher in HC vs. iHUD). Data
summaries for these 29 targets are in Supplementary Table S2;
targets that did not reach significance are in Supplementary Table
S3. Fig. 1B shows the same data as Fig. 1A, as differences in mean
scores (i.e., mean iHUD - mean HC), for visualization.

Summary of 29 targets showing significant differences between the
iHUD vs. HC. Of the 29 targets showing significant differences
between the groups, 19 were members of canonical cytokine
families. The cytokines with iHUD>HC levels were: the chemokines
MCP1/CCL2, MCP3/CCL7, CCL19, and CXCL9, the interleukins IL6,
IL10RB, IL15RA, IL18, OSM, and TRAIL, the growth factors CSF1,
HGF, TGF-alpha and the TNF-related targets were TNFRSF9,
TNFSF14, and CD40/TNFR5. By contrast, only three cytokines had
the opposite profile, with HC > iHUD levels: CCL28, IL-7, and SCF.
All the remaining 10 targets that reached group significance had
an iHUD > HC profile. These targets were: eukaryotic translation
initiation factor 4E [4E-BP1], adenosine deaminase [ADA], axin-1
[AXIN1], caspase-8 [CASP8], CD5, CD6, CUB domain-containing
protein [CDCP1], extracellular newly identified receptor for
advanced glycation end-products binding protein [EN.RAGE],
signaling lymphocytic activation molecule 1 [SLAMF1], and
signal-transducing adaptor molecule-binding protein [STAMBP]
(marked “other targets” in Fig. 1).

Principal component analysis (PCA) on the 19 cytokines that differed
significantly between iHUD vs. HC. Fig. 2 shows the PCA results
based on the 19 cytokines that differed between the iHUD vs. HC
(from Fig. 1; excluding the 10 significant “other targets” in the
assay panel). The Scree plot in Fig. 2A shows that the first 2
principal components (i.e., PC1 and PC2) accounted for 40.9% and
15.8% of variance, respectively (further PCs accounted for
relatively small proportions of variance). As shown in Fig. 2B, C,
PC1 scores were significantly greater in the iHUD vs. HC
(Mann–Whitney U= 36; p < 0.0001), whereas PC2 scores did not
differ significantly between groups (not shown). An ROC curve of
the PC1 scores in Fig. 2D, with iHUD and HC as the binary
outcomes, shows a univariate AUROC= 91.7 (p < 0.0001). Load-
ings (Eigenvector*√Eigenvalue) for the 19 cytokines in PC1 are
shown in the Supplementary Material (Table S4), to illustrate the
contribution of individual cytokines to the overall PC score. As
expected, the sign of PC loadings differed between the 16
cytokines that had iHUD>HC values versus the 3 cytokines that
had HC > iHUD values (i.e., CCL28, IL-7, and SCF) (Supplementary
Table S4).

Multiple logistic regression for HUD and HC as binary diagnostic
outcomes, examining cytokine PC1 scores and major demographic
and clinical variables. We carried out a multiple logistic regres-
sion with group membership as the outcome (iHUD vs. HC), with
the following variables: cytokine PC1 scores (from Fig. 2), sex, age,
BMI, sleep hours, and perceived stress (PSS-10) scores. Depression
and anxiety scores (BDI-II and BAI instruments, respectively) were
not entered in the regression due to “floor” effects in HC
(Supplementary Fig. S1). Regression parameters are shown in
Table 2. In this regression, only cytokine PC1 scores and PSS scores
were positive predictors of being in the iHUD category. Overall,
the multiple regression had a near unity AUROC (98.3; 95%
CI:95.4–100; p < 0.0001), indicating excellent effectiveness in
differentiating iHUD from HC [55]. In a follow-up sensitivity
analysis, we examined the performance of the above multiple
logistic regression, using only the n= 17 participants with
methadone maintenance (i.e., excluding n= 4 with buprenor-
phine). In this sensitivity analysis, cytokine PC1 scores remained a
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Fig. 1 Serum cytokine and inflammatory proteins in iHUD
versus HC. A Box and whisker plot for all the 29 targets that
showed significant differences between iHUD and HC groups.
Targets are organized by canonical cytokine families (19 targets;
chemokines, interleukin-related, growth factors, and TNF-related),
and the remainder as “other targets”. The box marks 25-75
percentiles; the midline marks the median and the whiskers mark
5-95 percentiles. p-values are shown for group comparisons per
target, after FDR correction: *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001. B Re-plotting of panel A data as the difference in
mean values in iHUD and HC (i.e., mean of iHUD - mean of HC).
Positive values indicate that the target has levels iHUD>HC, and
negative values indicate levels iHUD < HC. Full data for statistical
comparisons are in the Supplementary Material.
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positive predictor of HUD, adjusting for the other variables as in
the overall sample (not shown).

Correlations of cytokine PC1 scores with demographic and clinical
variables. As shown in Supplementary Table S5, in all participants

combined, cytokine PC1 scores were positively correlated with
BMI (surviving FDR correction for multiple comparisons). In the
iHUD, there were negative correlations of cytokine PC1 scores with
BDI-II scores and age of first use of heroin, and a positive
correlation with duration of abstinence (none survived FDR

Fig. 2 Principal component analysis (PCA) for the 19 cytokines (representing 4 cytokine families in Fig. 1: chemokines, interleukin-
related, growth factors, and TNF-related). A Scree plot, showing the proportion of variance accounted for by consecutive principal
components (PC). B Scatter plot for individual scores for PC1 and PC2. C Comparison of PC1 scores between iHUD (n= 21) and HC (n= 24).
D Receiver-operating characteristic (ROC) curve for PC1 scores as a measure to detect HUD vs HC as binary diagnostic outcomes.

Table 2. Multivariable logistic regression parameters.

Variable Odds ratio for HUD as outcome (95%CI) p-value

Cytokine PC1 Scorea 3.14 1.64 to 11.38 0.01

PSS-10 perceived stress score 1.41 1.12 to 2.18 0.03

Body mass index (BMI) 1.47 1.04 to 2.76 0.09

Age 0.99 0.80 to 1.19 0.89

Sex: Male(Female as reference) 2.77 0.05 to 179.70 0.61

Sleep Hours 1.12 0.46 to 2.36 0.77
aPrincipal component 1 (PC1) scores based on 19 cytokines that differ in iHUD vs. HC (Figs. 1–2).
Odds ratios, 95%CI and p-values are in bold for significant variables.
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correction; see Supplementary Fig. S2). The daily methadone dose
was not correlated with cytokine PC1 scores, suggesting that the
robust difference in cytokine PC1 scores between iHUD and HC is
unlikely to be primarily driven by methadone exposure per se.
Years of regular alcohol or cannabis use were not correlated with
cytokine PC1 scores. See the absence of correlations between
PC1 scores and all other measures in Table 1, for iHUD, HC, and
across both groups (Table S5).

DISCUSSION
Using a representative panel of cytokines as well as inflammatory
mediators, we found that 29 targets were significantly different
between iHUD and HC (26 of these were higher in iHUD vs. HC).
Importantly, these 29 targets included 19 members of several major
cytokine families (chemokines, interleukins, growth factor, and TNF-
related), showing robust dysregulation of different cytokine systems
in HUD. Several studies, primarily in vitro, have shown mechanistic
interactions between MOR systems and specific cytokine receptors
[15, 56]. Furthermore, chronic exposure to MOR agonists during HUD
causes a repeated disruption to the hypothalamic–pituitary–adrenal
(HPA) stress axis [57, 58], and adrenal corticosteroids (e.g., cortisol)
have a major modulatory role for diverse cytokines [59–61]. These are
therefore two major types of mechanisms that could underlie robust
differences in cytokine levels between iHUD and HC.

Cytokines with higher levels in iHUD vs. HC
Some of the cytokines that were elevated in the iHUD vs HC, such
as the interleukin IL6, were previously reported [25, 47]. IL6 has
primarily pro-inflammatory effects both in the central nervous
system and peripherally [62, 63], and also regulates downstream
cytokine networks [17]. Other cytokines that were elevated in
iHUD vs HC, including the chemokine CCL2 (ligand for the CCR2
receptor), were recently shown to mediate neuro-glial adaptations
after MOR-agonist exposure [18]. Furthermore, genes for several of
the cytokines (or their cognate receptors) that were elevated in
the iHUD versus HC exhibited changes in regional brain
expression in rodents exposed to MOR agonists, including CCL2,
hepatocyte growth factor (HGF), oncostatin M (OSM) and colony-
stimulating factor-1 (CSF1) [24, 64, 65]. Overall, the specific
functions and status of these targets as markers of disease severity
in iHUD are important areas for future study.

Cytokines with lower levels in iHUD vs. HC
Only three of the cytokines in the assay were significantly lower in
iHUD vs. HC: stem cell factor (SCF), interleukin IL-7, and the
chemokine CCL28. A small number of studies have reported
interactions between these cytokines and opioid receptor
systems, either in vitro or in animal models [66–68]. However, to
our knowledge, this is the first report to show differences in their
serum levels in iHUD vs. HC. Therefore future studies should
examine their potential mechanistic relevance to this disorder.

Other inflammatory targets (not part of canonical cytokine
families)
Ten proteins that are not part of canonical cytokine families had
higher levels in iHUD vs. HC (see Fig. 1). Functional changes in
some of those proteins have been observed after MOR-agonist
exposure (e.g., adenosine deaminase, caspase-8, eukaryotic
translation initiation factor 4E-binding protein 1) in experimental
settings [69–71]. The mechanistic underpinnings and conse-
quences of changes in these inflammatory proteins in the context
of HUD can be the focus of future studies.

Developing a “cytokine biomarker score” to differentiate
iHUD from HC
In addition to documenting differences in specific serum cytokine
and inflammatory proteins of iHUD vs. HC, this study also

identified a robust multi-target blood-based biomarker score
(based on PC1 scores from the 19 cytokines that differed between
the groups). This score is of potential diagnostic value as a positive
predictor of being in the HUD class since the univariate AUROC
was 91.7%, considered in the “excellent” range [55]. The diagnostic
value of this PC1 cytokine biomarker score survived adjustment
for major variables known to affect cytokine markers (e.g., age,
sex, BMI, and sleep) in a multiple logistic regression [31, 32, 72, 73].
In this multiple regression, the perceived stress score was also a
positive predictor of being in the iHUD category. This finding is
consistent with the role of stress exposure in the severity of HUD,
and in dysregulation of the HPA-stress axis (which can itself affect
cytokine systems) [21, 74]. In follow-up analyses, this cytokine PC1
score was correlated with specific clinical and age trajectory
aspects in the iHUD (although these correlations did not survive
FDR correction, in this relatively small sample). Specifically, in the
iHUD, the cytokine PC1 score was negatively correlated with
depression BDI-II scores and with the age of onset of regular
heroin use. Depression signs and the age trajectory of heroin are
important facets of HUD history and severity [29, 44]. Intriguingly,
cytokine PC1 scores were positively correlated with the duration
of heroin abstinence. However, for all these correlations, larger
samples are necessary to determine the linearity of these
relationships with cytokine PC1 scores (and with specific cytokines
therein), while adjusting for demographic and clinical features.

Methodological considerations
We employed a simplified two-step approach for dimensionality
reduction: first focusing on 29 targets that differed significantly
between iHUD and HC, and secondly with PCA based on the
subset of 19 targets that are members of canonical cytokine
families [17, 25]. Other machine learning methods to elucidate the
optimal components of a “cytokine PC score” for use in iHUD can
also be evaluated in larger studies. Second, while circadian effects
have been detected for specific cytokines (e.g., IL6) [75], the
present samples were obtained across a relatively broad range in
daytime hours. Nevertheless, this time range did not vary
systematically across iHUD and HC, therefore, it is unlikely that
the robust group differences are mainly driven by circadian
effects. Third, as expected in a clinical inpatient population, the
iHUD reported common therapeutic medications on the day of
the blood sample (e.g., SSRI, trazodone, bupropion), whereas these
were less frequent in the HC. Future larger studies may examine
whether these medications have robust effects on the cytokine
biomarker score. Fourth, due to the presence of “floor” effects in
depression and anxiety scores in the HC, we opted not to adjust
for these dimensions in the multivariable model. Intriguingly, a
recent study using the same assay found that serum cytokine
levels were unchanged in patients with depression and anhedonia
as compared to controls [11]. Nevertheless, future studies could
explore whether depression and/or anxiety processes affect these
cytokine biomarker scores in HUD. Finally, because the iHUD were
on stable daily MAT, and blood samples were collected at least 1 h
after daily dosing, it is unlikely that withdrawal affected results
(under these conditions it would not have been experienced to a
substantial degree at the time of blood draw). This conclusion
receives support from a clinical interview conducted at approxi-
mately the same time.

Future directions
A small number of recent studies suggest that differences in levels
of specific cytokines can normalize over prolonged opioid
abstinence, (e.g., for IL6) [25]. Therefore, future studies in larger
cohorts should determine if this multi-target cytokine biomarker
score (or other multi-target blood biomarker approaches) differs
across stages in HUD recovery trajectory, including protracted
abstinence, as well as based on disease severity. Another crucial
avenue for future research involves investigating sex differences [1].
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Studies have indicated that women with some substance use
disorders exhibit heightened susceptibility to stress exposure, and
this profile could potentially result in sexually dimorphic cytokine
dysregulation [21, 72]; nevertheless, sex differences in cytokine
responses to MOR agonists are yet to be investigated in depth in
humans [21].

Conclusions and future studies
This is one of the few studies to examine a comprehensive set of
cytokines from several major families, detecting robust differences in
levels of both previously known and novel targets [21], in iHUD
compared to HC. Cytokines and their cognate receptors are known to
act in interactive networks, both in the periphery and brain [17]. In this
regard, ours is also the first study to provide a multi-target ”cytokine
biomarker score” [48, 76] that was a positive predictor of being in the
iHUD group, surviving adjustment for major demographic and clinical
variables. Since perceived stress scores were also positive predictors in
the multivariable model, future larger-scale studies could determine
whether stress mechanisms are directly related to the cytokine score
differences observed between the groups [30]. Blood-based and other
biomarkers are potentially important tools in research and in the care
of psychiatric conditions, including substance use disorders
[6, 8, 10, 77, 78]. Such blood biomarkers could eventually enhance
clinical diagnostic interviews, providing a further mechanistically
based understanding of risk stratification, trajectory, and treatment
prognosis [6, 78].

DATA AVAILABILITY
The main assay used here (Olink Target 96 Inflammation; is commercially available;
www.olink.com). Statistical analysis routines are available upon request to scientific
researchers. Data from this study are available upon request, after consultation with
IRB.

REFERENCES
1. Butelman ER, Huang Y, Epstein DH, Shaham Y, Goldstein RZ, Volkow ND, et al.

Overdose mortality rates for opioids and stimulant drugs are substantially higher
in men than in women: state-level analysis. Neuropsychopharmacology. 2023.
https://doi.org/10.1038/s41386-023-01601-8.

2. Provisional Data Shows U.S. Drug Overdose Deaths Top 100,000 in 2022. In:
Centers for Disease Control and Prevention [Internet]. Available: https://
blogs.cdc.gov/nchs/2023/05/18/7365/.

3. Wakeman SE, Larochelle MR, Ameli O, Chaisson CE, McPheeters JT, Crown WH,
et al. Comparative effectiveness of different treatment pathways for opioid use
disorder. JAMA Netw Open. 2020;3:e1920622. https://doi.org/10.1001/
jamanetworkopen.2019.20622.

4. Buonora M, Perez HR, Stumph J, Allen R, Nahvi S, Cunningham CO, et al. Medical
record documentation about opioid tapering: examining benefit-to-harm fra-
mework and patient engagement. Pain Med. 2020;21:2574–82. https://doi.org/
10.1093/pm/pnz361.

5. Glanz JM, Xu S, Narwaney KJ, McClure DL, Rinehart DJ, Ford MA, et al. Association
between opioid dose reduction rates and overdose among patients prescribed long-
term opioid therapy. Subst Abus. 2023. https://doi.org/10.1177/08897077231186216.

6. Volkow ND, Koob G, Baler R. Biomarkers in substance use disorders. ACS Chem
Neurosci. 2015;6:522–5. https://doi.org/10.1021/acschemneuro.5b00067.

7. Morcuende A, Navarrete F, Nieto E, Manzanares J, Femenía T. Inflammatory
Biomarkers in Addictive Disorders. Biomolecules. 2021;11:1824. https://doi.org/
10.3390/biom11121824.

8. Dunn KE, Strain EC. Establishing a research agenda for the study and assessment
of opioid withdrawal. Lancet Psychiatry. 2024. https://doi.org/10.1016/S2215-
0366(24)00068-3.

9. Chapman BP, Gullapalli BT, Rahman T, Smelson D, Boyer EW, Carreiro S. Impact of
individual and treatment characteristics on wearable sensor-based digital bio-
markers of opioid use. NPJ Digit Med. 2022;5:123. https://doi.org/10.1038/s41746-
022-00664-z.

10. Caspani G, Sebők V, Sultana N, Swann JR, Bailey A. Metabolic phenotyping of
opioid and psychostimulant addiction: a novel approach for biomarker discovery
and biochemical understanding of the disorder. Br J Pharmacol.
2022;179:1578–606. https://doi.org/10.1111/bph.15475.

11. Costi S, Morris LS, Collins A, Fernandez NF, Patel M, Xie H, et al. Peripheral
immune cell reactivity and neural response to reward in patients with depression

and anhedonia. Transl Psychiatry. 2021;11:565. https://doi.org/10.1038/s41398-
021-01668-1.

12. Marchese S, Cancelmo L, Diab O, Cahn L, Aaronson C, Daskalakis NP, et al. Altered
gene expression and PTSD symptom dimensions in World Trade Center respon-
ders. Mol Psychiatry. 2022;27:2225–46. https://doi.org/10.1038/s41380-022-01457-2.

13. Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid receptor-mediated regulation of
neurotransmission in the brain. Front Mol Neurosci. 2022;15:919773. https://
doi.org/10.3389/fnmol.2022.919773.

14. Chen Y, Mestek A, Liu J, Hurley JA, Yu L. Molecular cloning and functional
expression of a mu-opioid receptor from rat brain. Mol Pharmacol. 1993;44:8–12.

15. Eisenstein TK. The role of opioid receptors in immune system function. Front
Immunol. 2019;10:2904. https://doi.org/10.3389/fimmu.2019.02904.

16. Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen L-Y. Heterodimerization and cross-
desensitization between the mu-opioid receptor and the chemokine CCR5 recep-
tor. Eur J Pharmacol. 2004;483:175–86. https://doi.org/10.1016/j.ejphar.2003.10.033.

17. Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev
Immunol. 2017;17:49–59. https://doi.org/10.1038/nri.2016.123.

18. Zhu Y, Yan P, Wang R, Lai J, Tang H, Xiao X, et al. Opioid-induced fragile-like
regulatory T cells contribute to withdrawal. Cell. 2023;186:591–606.e23. https://
doi.org/10.1016/j.cell.2022.12.030.

19. Kruyer A, Angelis A, Garcia-Keller C, Li H, Kalivas PW. Plasticity in astrocyte sub-
populations regulates heroin relapse. Sci Adv. 2022;8:eabo7044. https://doi.org/
10.1126/sciadv.abo7044.

20. Hashimoto A, Kawamura N, Tarusawa E, Takeda I, Aoyama Y, Ohno N, et al.
Microglia enable cross-modal plasticity by removing inhibitory synapses. Cell
Rep. 2023;42:112383. https://doi.org/10.1016/j.celrep.2023.112383.

21. Butelman ER, Goldstein RZ, Nwaneshiudu CA, Girdhar K, Roussos P, Russo SJ, et al.
Neuroimmune mechanisms of opioid use disorder and recovery: Translatability to
human studies, and future research directions. Neuroscience. 2023. https://
doi.org/10.1016/j.neuroscience.2023.07.031.

22. Hofford RS, Russo SJ, Kiraly DD. Neuroimmune mechanisms of psychostimulant
and opioid use disorders. Eur J Neurosci. 2019;50:2562–73. https://doi.org/
10.1111/ejn.14143.

23. Marchette RCN, Carlson ER, Said N, Koob GF, Vendruscolo LF. Extended access to
fentanyl vapor self-administration leads to addiction-like behaviors in mice:
blood chemokine/cytokine levels as potential biomarkers. Addict Neurosci.
2023;5. https://doi.org/10.1016/j.addicn.2022.100057.

24. Zhang Y, Liang Y, Levran O, Randesi M, Yuferov V, Zhao C, et al. Alterations of
expression of inflammation/immune-related genes in the dorsal and ventral
striatum of adult C57BL/6J mice following chronic oxycodone self-administration:
a RNA sequencing study. Psychopharmacology. 2017;234:2259–75. https://
doi.org/10.1007/s00213-017-4657-y.

25. Re G-F, Jia J, Xu Y, Zhang Z, Xie Z-R, Kong D, et al. Dynamics and correlations in
multiplex immune profiling reveal persistent immune inflammation in male drug
users after withdrawal. Int Immunopharmacol. 2022;107:108696. https://doi.org/
10.1016/j.intimp.2022.108696.

26. Salarian A, Kadkhodaee M, Zahmatkesh M, Seifi B, Bakhshi E, Akhondzadeh S,
et al. Opioid use disorder induces oxidative stress and inflammation: the
attenuating effect of methadone maintenance treatment. Iran J Psychiatry.
2018;13:46–54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994232.

27. Zhang Z, Wu H, Peng Q, Xie Z, Chen F, Ma Y, et al. Integration of molecular
inflammatory interactome analyses reveals dynamics of circulating cytokines and
extracellular vesicle long non-coding RNAs and mRNAs in heroin addicts during
acute and protracted withdrawal. Front Immunol. 2021;12:730300. https://
doi.org/10.3389/fimmu.2021.730300.

28. Carlyle BC, Kitchen RR, Mattingly Z, Celia AM, Trombetta BA, Das S, et al. Technical
performance evaluation of Olink Proximity Extension Assay for blood-based
biomarker discovery in longitudinal studies of Alzheimer’s disease. Front Neurol.
2022;13:889647. https://doi.org/10.3389/fneur.2022.889647.

29. Butelman ER, Chen CY, Brown KG, Kreek MJ. Escalation of drug use in persons
dually diagnosed with opioid and cocaine dependence: Gender comparison and
dimensional predictors. Drug Alcohol Depend. 2019;205:107657. https://doi.org/
10.1016/j.drugalcdep.2019.107657.

30. Ménard C, Pfau ML, Hodes GE, Russo SJ. Immune and neuroendocrine
mechanisms of stress vulnerability and resilience. Neuropsychopharmacology.
2017;42:62–80. https://doi.org/10.1038/npp.2016.90.

31. Ter Horst R, Jaeger M, Smeekens SP, Oosting M, Swertz MA, Li Y, et al. Host and
environmental factors influencing individual human cytokine responses. Cell.
2016;167:1111–.e13. https://doi.org/10.1016/j.cell.2016.10.018.

32. Schmidt FM, Weschenfelder J, Sander C, Minkwitz J, Thormann J, Chittka T, et al.
Inflammatory cytokines in general and central obesity and modulating effects of
physical activity. PLoS ONE. 2015;10:e0121971. https://doi.org/10.1371/
journal.pone.0121971.

33. Wright KP Jr, Drake AL, Frey DJ, Fleshner M, Desouza CA, et al. Influence of sleep
deprivation and circadian misalignment on cortisol, inflammatory markers, and

E.R. Butelman et al.

7

Translational Psychiatry          (2024) 14:414 

http://www.olink.com
https://doi.org/10.1038/s41386-023-01601-8
https://blogs.cdc.gov/nchs/2023/05/18/7365/
https://blogs.cdc.gov/nchs/2023/05/18/7365/
https://doi.org/10.1001/jamanetworkopen.2019.20622
https://doi.org/10.1001/jamanetworkopen.2019.20622
https://doi.org/10.1093/pm/pnz361
https://doi.org/10.1093/pm/pnz361
https://doi.org/10.1177/08897077231186216
https://doi.org/10.1021/acschemneuro.5b00067
https://doi.org/10.3390/biom11121824
https://doi.org/10.3390/biom11121824
https://doi.org/10.1016/S2215-0366(24)00068-3
https://doi.org/10.1016/S2215-0366(24)00068-3
https://doi.org/10.1038/s41746-022-00664-z
https://doi.org/10.1038/s41746-022-00664-z
https://doi.org/10.1111/bph.15475
https://doi.org/10.1038/s41398-021-01668-1
https://doi.org/10.1038/s41398-021-01668-1
https://doi.org/10.1038/s41380-022-01457-2
https://doi.org/10.3389/fnmol.2022.919773
https://doi.org/10.3389/fnmol.2022.919773
https://doi.org/10.3389/fimmu.2019.02904
https://doi.org/10.1016/j.ejphar.2003.10.033
https://doi.org/10.1038/nri.2016.123
https://doi.org/10.1016/j.cell.2022.12.030
https://doi.org/10.1016/j.cell.2022.12.030
https://doi.org/10.1126/sciadv.abo7044
https://doi.org/10.1126/sciadv.abo7044
https://doi.org/10.1016/j.celrep.2023.112383
https://doi.org/10.1016/j.neuroscience.2023.07.031
https://doi.org/10.1016/j.neuroscience.2023.07.031
https://doi.org/10.1111/ejn.14143
https://doi.org/10.1111/ejn.14143
https://doi.org/10.1016/j.addicn.2022.100057
https://doi.org/10.1007/s00213-017-4657-y
https://doi.org/10.1007/s00213-017-4657-y
https://doi.org/10.1016/j.intimp.2022.108696
https://doi.org/10.1016/j.intimp.2022.108696
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994232
https://doi.org/10.3389/fimmu.2021.730300
https://doi.org/10.3389/fimmu.2021.730300
https://doi.org/10.3389/fneur.2022.889647
https://doi.org/10.1016/j.drugalcdep.2019.107657
https://doi.org/10.1016/j.drugalcdep.2019.107657
https://doi.org/10.1038/npp.2016.90
https://doi.org/10.1016/j.cell.2016.10.018
https://doi.org/10.1371/journal.pone.0121971
https://doi.org/10.1371/journal.pone.0121971


cytokine balance. Brain Behav Immun. 2015;47:24–34. https://doi.org/10.1016/
j.bbi.2015.01.004.

34. Langstengel J, Yaggi HK. Sleep deficiency and opioid use disorder: trajectory,
mechanisms, and interventions. Clin Chest Med. 2022;43:e1–e14. https://doi.org/
10.1016/j.ccm.2022.05.001.

35. McLellan AT, Kushner H, Metzger D, Peters R, Smith I, Grissom G, et al. The fifth
edition of the addiction severity index. J Subst Abuse Treat. 1992;9:199–213.
https://doi.org/10.1016/0740-5472(92)90062-s.

36. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-
International Neuropsychiatric Interview (M.I.N.I.): the development and validation
of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psy-
chiatry. 1998;59:22–33. https://www.ncbi.nlm.nih.gov/pubmed/9881538.

37. Valdes-Marquez E, Clarke R, Hill M, Watkins H, Hopewell JC. Proteomic profiling
identifies novel independent relationships between inflammatory proteins and
myocardial infarction. Eur J Prev Cardiol. 2023;30:583–91. https://doi.org/10.1093/
eurjpc/zwad020.

38. Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-
inflammation modulation and post-traumatic brain injury lesions: from bench to
bed-side. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms231911193.

39. Park J, Jang W, Park HS, Park KH, Kwok S-K, Park S-H, et al. Cytokine clusters as
potential diagnostic markers of disease activity and renal involvement in sys-
temic lupus erythematosus. J Int Med Res. 2020;48:300060520926882. https://
doi.org/10.1177/0300060520926882.

40. Liang J, Xu Y, Gao W, Sun Y, Zhang Y, Shan F, et al. Cytokine profile in first-
episode drug-naïve major depressive disorder patients with or without anxiety.
BMC Psychiatry. 2024;24:93. https://doi.org/10.1186/s12888-024-05536-2.

41. Cohen S. Perceived stress in a probability sample of the United States. The social
psychology of health. 1988;251: 31–67. https://psycnet.apa.org/fulltext/1988-
98838-002.pdf.

42. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J
Health Soc Behav. 1983;24:385–96. https://www.ncbi.nlm.nih.gov/pubmed/
6668417.

43. Beck AT, Steer RA, Ball R, Ranieri W. Comparison of Beck Depression Inventories
-IA and -II in psychiatric outpatients. J Pers Assess. 1996;67:588–97. https://
doi.org/10.1207/s15327752jpa6703_13.

44. Butelman ER, Bacciardi S, Maremmani AGI, Darst-Campbell M, Correa da Rosa J,
Kreek MJ. Can a rapid measure of self-exposure to drugs of abuse provide
dimensional information on depression comorbidity? Am J Addict.
2017;26:632–9. https://doi.org/10.1111/ajad.12578.

45. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical
anxiety: psychometric properties. J Consult Clin Psychol. 1988;56:893–7.

46. Handelsman L, Cochrane KJ, Aronson MJ, Ness R, Rubinstein KJ, Kanof PD. Two
new rating scales for opiate withdrawal. Am J Drug Alcohol Abuse.
1987;13:293–308. https://doi.org/10.3109/00952998709001515.

47. Chan YY, Yang SN, Lin JC, Chang JL, Lin JG, Lo WY. Inflammatory response in
heroin addicts undergoing methadone maintenance treatment. Psychiatry Res.
2015;226:230–4. https://doi.org/10.1016/j.psychres.2014.12.053.

48. Lu R-B, Wang T-Y, Lee S-Y, Chen S-L, Chang Y-H, See Chen P, et al. Correlation
between interleukin-6 levels and methadone maintenance therapy outcomes. Drug
Alcohol Depend. 2019;204:107516. https://doi.org/10.1016/j.drugalcdep.2019.06.018.

49. Struglics A, Larsson S, Lohmander LS, Swärd P. Technical performance of a proximity
extension assay inflammation biomarker panel with synovial fluid. Osteoarthr Cartil
Open. 2022;4:100293. https://doi.org/10.1016/j.ocarto.2022.100293.

50. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol.
1995;57:289–300.

51. Jolliffe IT, Cadima J. Principal component analysis: a review and recent devel-
opments. Philos Trans A Math Phys Eng Sci. 2016;374:20150202. https://doi.org/
10.1098/rsta.2015.0202.

52. Josse J, Husson F. missMDA: a package for handling missing values in multi-
variate data analysis. J Stat Softw. 2016;70:1–31. https://doi.org/10.18637/
jss.v070.i01.

53. Liu J, Chen B, Lu H, Chen Q, Li J-C. Identification of novel candidate biomarkers
for acute myocardial infarction by the Olink proteomics platform. Clin Chim Acta.
2023;548:117506. https://doi.org/10.1016/j.cca.2023.117506.

54. Drożdż K, Nabrdalik K, Kwiendacz H, Hendel M, Olejarz A, Tomasik A, et al. Risk
factors for cardiovascular disease in patients with metabolic-associated fatty liver
disease: a machine learning approach. Cardiovasc Diabetol. 2022;21:240. https://
doi.org/10.1186/s12933-022-01672-9.

55. Nahm FS. Receiver operating characteristic curve: overview and practical use for
clinicians. Korean J Anesthesiol. 2022;75:25–36. https://doi.org/10.4097/kja.21209.

56. Rogers TJ. Bidirectional regulation of opioid and chemokine function. Front
Immunol. 2020;11:94. https://doi.org/10.3389/fimmu.2020.00094.

57. Zhang G-F, Ren Y-P, Sheng L-X, Chi Y, Du W-J, Guo S, et al. Dysfunction of the
hypothalamic-pituitary-adrenal axis in opioid dependent subjects: effects of

acute and protracted abstinence. Am J Drug Alcohol Abuse. 2008;34:760–8.
https://doi.org/10.1080/00952990802385781.

58. Li S-X, Shi J, Epstein DH, Wang X, Zhang X-L, Bao Y-P, et al. Circadian alteration in
neurobiology during 30 days of abstinence in heroin users. Biol Psychiatry.
2009;65:905–12. https://doi.org/10.1016/j.biopsych.2008.11.025.

59. Dunn AJ. The HPA axis and the immune system: a perspective. In: NeuroImmune
biology. Elsevier; 2007. pp. 3–15. https://doi.org/10.1016/S1567-7443(07)00201-3.

60. Dhabhar FS. Enhancing versus suppressive effects of stress on immune function:
implications for immunoprotection and immunopathology. Neuroimmunomo-
dulation. 2009;16:300–17. https://doi.org/10.1159/000216188.

61. Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti- and pro-
inflammatory effects of glucocorticoids. Neuroimmunomodulation.
2015;22:20–32. https://doi.org/10.1159/000362724.

62. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease.
Cold Spring Harb Perspect Biol. 2014;6:a016295. https://doi.org/10.1101/
cshperspect.a016295.

63. Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central
nervous system. Int J Biol Sci. 2012;8:1254–66. https://doi.org/10.7150/ijbs.4679.

64. Browne CJ, Futamura R, Minier-Toribio A, Hicks EM, Ramakrishnan A, Martínez-
Rivera FJ, et al. Transcriptional signatures of heroin intake and relapse throughout
the brain reward circuitry in male mice. Sci Adv. 2023;9:eadg8558. https://doi.org/
10.1126/sciadv.adg8558.

65. Yan Y, Truitt B, Tao J, Boyles SM, Antoine D, Hulme W, et al. Single-cell profiling of
glial cells from the mouse amygdala under opioid dependent and withdrawal
states. iScience. 2023;26:108166. https://doi.org/10.1016/j.isci.2023.108166.

66. Pawlik K, Ciechanowska A, Ciapała K, Rojewska E, Makuch W, Mika J. Blockade of
CC chemokine receptor type 3 diminishes pain and enhances opioid analgesic
potency in a model of neuropathic pain. Front Immunol. 2021;12:781310. https://
doi.org/10.3389/fimmu.2021.781310.

67. Zhang L, Belkowski JS, Briscoe T, Rogers TJ. Regulation of mu opioid receptor
expression in developing T cells. J Neuroimmune Pharmacol. 2012;7:835–42.
https://doi.org/10.1007/s11481-012-9396-6.

68. Brack A, Rittner HL, Machelska H, Beschmann K, Sitte N, Schäfer M, et al. Mobi-
lization of opioid-containing polymorphonuclear cells by hematopoietic growth
factors and influence on inflammatory pain. Anesthesiology. 2004;100:149–57.
https://doi.org/10.1097/00000542-200401000-00024.

69. Nelson AM, Battersby AS, Baghdoyan HA, Lydic R. Opioid-induced decreases in rat
brain adenosine levels are reversed by inhibiting adenosine deaminase. Anesthe-
siology. 2009;111:1327–33. https://doi.org/10.1097/ALN.0b013e3181bdf894.

70. Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH, Roy S. Morphine
modulates lymph node-derived T lymphocyte function: role of caspase-3, -8, and nitric
oxide. J Leukoc Biol. 2001;70:527–36. https://www.ncbi.nlm.nih.gov/pubmed/11590188.

71. Ucha M, Coria SM, Núñez AE, Santos-Toscano R, Roura-Martínez D, Fernández-
Ruiz J, et al. Morphine self-administration alters the expression of translational
machinery genes in the amygdala of male Lewis rats. J Psychopharmacol.
2019;33:882–93. https://doi.org/10.1177/0269881119836206.

72. Fox HC, D’Sa C, Kimmerling A, Siedlarz KM, Tuit KL, Stowe R, et al. Immune
system inflammation in cocaine dependent individuals: implications for
medications development. Hum Psychopharmacol. 2012;27:156–66. https://
doi.org/10.1002/hup.1251.

73. Liu Y-Z, Wang Y-X, Jiang C-L. Inflammation: the common pathway of stress-
related diseases. Front Hum Neurosci. 2017;11:316. https://doi.org/10.3389/
fnhum.2017.00316.

74. Kreek MJ, Reed B, Butelman ER. Current status of opioid addiction treatment and
related preclinical research. Sci Adv. 2019;5:eaax9140. https://doi.org/10.1126/
sciadv.aax9140.

75. Nilsonne G, Lekander M, Åkerstedt T, Axelsson J, Ingre M. Diurnal variation of
circulating interleukin-6 in humans: a meta-analysis. PLoS ONE.
2016;11:e0165799. https://doi.org/10.1371/journal.pone.0165799.

76. Kuo H-W, Liu T-H, Tsou H-H, Hsu Y-T, Wang S-C, Fang C-P, et al. Inflammatory
chemokine eotaxin-1 is correlated with age in heroin dependent patients under
methadone maintenance therapy. Drug Alcohol Depend. 2018;183:19–24.
https://doi.org/10.1016/j.drugalcdep.2017.10.014.

77. Goldstein RZ. Neuropsychoimaging measures as alternatives to drug use out-
comes in clinical trials for addiction. JAMA Psychiatry. 2022 [cited 27 Jul 2022].
https://doi.org/10.1001/jamapsychiatry.2022.1970.

78. Byrne JF, Mongan D, Murphy J, Healy C, Föcking M, Cannon M, et al. Prognostic
models predicting transition to psychotic disorder using blood-based biomarkers:
a systematic review and critical appraisal. Transl Psychiatry. 2023;13:333. https://
doi.org/10.1038/s41398-023-02623-y.

ACKNOWLEDGEMENTS
We are very grateful to all the clinical coordinators of the NARC laboratory.

E.R. Butelman et al.

8

Translational Psychiatry          (2024) 14:414 

https://doi.org/10.1016/j.bbi.2015.01.004
https://doi.org/10.1016/j.bbi.2015.01.004
https://doi.org/10.1016/j.ccm.2022.05.001
https://doi.org/10.1016/j.ccm.2022.05.001
https://doi.org/10.1016/0740-5472(92)90062-s
https://www.ncbi.nlm.nih.gov/pubmed/9881538
https://doi.org/10.1093/eurjpc/zwad020
https://doi.org/10.1093/eurjpc/zwad020
https://doi.org/10.3390/ijms231911193
https://doi.org/10.1177/0300060520926882
https://doi.org/10.1177/0300060520926882
https://doi.org/10.1186/s12888-024-05536-2
https://psycnet.apa.org/fulltext/1988-98838-002.pdf
https://psycnet.apa.org/fulltext/1988-98838-002.pdf
https://www.ncbi.nlm.nih.gov/pubmed/6668417
https://www.ncbi.nlm.nih.gov/pubmed/6668417
https://doi.org/10.1207/s15327752jpa6703_13
https://doi.org/10.1207/s15327752jpa6703_13
https://doi.org/10.1111/ajad.12578
https://doi.org/10.3109/00952998709001515
https://doi.org/10.1016/j.psychres.2014.12.053
https://doi.org/10.1016/j.drugalcdep.2019.06.018
https://doi.org/10.1016/j.ocarto.2022.100293
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.18637/jss.v070.i01
https://doi.org/10.18637/jss.v070.i01
https://doi.org/10.1016/j.cca.2023.117506
https://doi.org/10.1186/s12933-022-01672-9
https://doi.org/10.1186/s12933-022-01672-9
https://doi.org/10.4097/kja.21209
https://doi.org/10.3389/fimmu.2020.00094
https://doi.org/10.1080/00952990802385781
https://doi.org/10.1016/j.biopsych.2008.11.025
https://doi.org/10.1016/S1567-7443(07)00201-3
https://doi.org/10.1159/000216188
https://doi.org/10.1159/000362724
https://doi.org/10.1101/cshperspect.a016295
https://doi.org/10.1101/cshperspect.a016295
https://doi.org/10.7150/ijbs.4679
https://doi.org/10.1126/sciadv.adg8558
https://doi.org/10.1126/sciadv.adg8558
https://doi.org/10.1016/j.isci.2023.108166
https://doi.org/10.3389/fimmu.2021.781310
https://doi.org/10.3389/fimmu.2021.781310
https://doi.org/10.1007/s11481-012-9396-6
https://doi.org/10.1097/00000542-200401000-00024
https://doi.org/10.1097/ALN.0b013e3181bdf894
https://www.ncbi.nlm.nih.gov/pubmed/11590188
https://doi.org/10.1177/0269881119836206
https://doi.org/10.1002/hup.1251
https://doi.org/10.1002/hup.1251
https://doi.org/10.3389/fnhum.2017.00316
https://doi.org/10.3389/fnhum.2017.00316
https://doi.org/10.1126/sciadv.aax9140
https://doi.org/10.1126/sciadv.aax9140
https://doi.org/10.1371/journal.pone.0165799
https://doi.org/10.1016/j.drugalcdep.2017.10.014
https://doi.org/10.1001/jamapsychiatry.2022.1970
https://doi.org/10.1038/s41398-023-02623-y
https://doi.org/10.1038/s41398-023-02623-y


AUTHOR CONTRIBUTIONS
Study conception and design: (RZG, NAK, YH, ERB); data collection and sample
preparation (YH, PR, FC); analysis and interpretation of results (FC, SJR, YH, ERB, NAK,
RZG); draft manuscript preparation: (ERB, YH, NAK, RZG, POG). All authors reviewed
the results and approved the final version of the manuscript.

FUNDING
This work was supported by NIDA U01DA053625 (ERB), R01DA049547 (NAK),
R01DA047880 (PR), NCCIH R01AT010627 (RZG), NIMH R01MH104559 (SJR),
R01MH127820 (SJR), and NIA R01AG067025 (PR).

COMPETING INTERESTS
The authors declare no competing interests.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
All methods were performed in accordance with the relevant guidelines and
regulations. Approval was obtained by the Icahn School of Medicine Institutional
Review Board (IRB), protocol #19-00621. Informed consent was obtained from all
participants.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-024-03119-z.

Correspondence and requests for materials should be addressed to
Eduardo R. Butelman.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,

which permits any non-commercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if youmodified
the licensed material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third partymaterial in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

E.R. Butelman et al.

9

Translational Psychiatry          (2024) 14:414 

https://doi.org/10.1038/s41398-024-03119-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Serum cytokines and inflammatory proteins in individuals with heroin use disorder: potential mechanistically based biomarkers for diagnosis
	Introduction
	Methods
	Participants and diagnostic procedures
	Inclusion criteria for all participants
	Other medication use and comorbidities
	Demographic, behavioral, and clinical variables
	Cytokine and inflammatory protein assay
	Statistical analyses for demographic and clinical variables
	Analyses of individual targets
	Principal component analysis based on 19 cytokines that differed significantly between iHUD and HC
	Multiple logistic regression with group diagnosis (iHUD vs HC) as a binary outcome

	Results
	Demographics
	Cytokine and inflammatory target data
	Comparison of iHUD versus HC
	Summary of 29 targets showing significant differences between the iHUD vs. HC
	Principal component analysis (PCA) on the 19 cytokines that differed significantly between iHUD vs. HC
	Multiple logistic regression for HUD and HC as binary diagnostic outcomes, examining cytokine PC1 scores and major demographic and clinical variables
	Correlations of cytokine PC1 scores with demographic and clinical variables


	Discussion
	Cytokines with higher levels in iHUD vs. HC
	Cytokines with lower levels in iHUD vs. HC
	Other inflammatory targets (not part of canonical cytokine families)
	Developing a &#x0201C;cytokine biomarker score&#x0201D; to differentiate iHUD from HC
	Methodological considerations
	Future directions
	Conclusions and future studies

	References
	Acknowledgements
	ACKNOWLEDGMENTS
	Author contributions
	Funding
	Competing interests
	Ethics approval and consent to participate
	ADDITIONAL INFORMATION




