
ARTICLE OPEN

Disruption of the gut microbiota-inflammation-brain axis in
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The relationships of the gut microbiota-inflammation-brain axis in depressive bipolar disorder (BD) remains under-elaborated. Sixty-
five unmedicated depressive patients with BD II and 58 controls (HCs) were prospectively enrolled. Resting-state functional MRI
data of static and dynamic amplitude of low-frequency fluctuation (ALFF) was measured, and abnormal ALFF masks were
subsequently set as regions of interest to calculate whole-brain static functional connectivity (sFC) and dynamic functional
connectivity (dFC). Fecal samples were collected to assess gut diversity and enterotypes using 16S amplicon sequencing. Blood
samples were also collected, serum was assayed for levels of cytokines (interleukin [IL]-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor
[TNF]-α). Patients with BD II exhibited decreased static ALFF values in the left cerebellum Crus II, and decreased cerebellar sFC and
dFC to the right inferior parietal lobule and right superior frontal gyrus, respectively. Moreover, higher pro-inflammatory and anti-
inflammatory cytokines levels, and increased proinflammatory bacteria and glutamate and gamma-aminobutyric acid metabolism
related bacteria were identified in BD II. The interaction of Parabacteroides levels × IL-8 levels was an independent contributor to
static ALFF in the left cerebellar Crus II. The findings bridged a gap in the underlying pathophysiological mechanism of the gut
microbiota-inflammation-brain axis in BD II depression.
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INTRODUCTION
Bipolar disorder (BD) is characterized by alternating episodes of
depression and mania (bipolar disorder type I [BD I])/ hypomania
(bipolar disorder type II [BD II]), and is one of the leading
contributors to disability worldwide [1]. The global prevalence of
BD II is estimated to be 1.57% [2], with approximately 75% of the
symptomatic period being characterized by depressive episodes
or symptoms [1]. BD II depression is capable of affecting
interpersonal connections, finances, and physical health [1, 2].
Timely identification and intervention are linked to a more
favorable prognosis [2, 3], but early and accurate diagnosis of
BD II depression is still challenging in clinical practice [3, 4],
resulting in suboptimal treatment, escalated healthcare expenses,
and unfavorable clinical outcomes [3]. Actually, the pathophysio-
logical basis of BD II depression remains under-elaborated.
Resting-state functional magnetic resonance imaging (rs-fMRI)

contributes to functional characterization of neuronal activity that
enhances our comprehension in the fields of the neuropathophy-
siological mechanisms underlying BD [5, 6]. Static amplitude of
low-frequency fluctuation (sALFF) reflects regional intensity of
spontaneous fluctuations [7, 8], static functional connectivity (sFC)
calculates the interaction across the whole brain [9]. Numerous rs-
fMRI studies have reported regional sALFF and sFC alterations in
the cerebellum, default mode network (DMN), anterior cingulate
cortex, and medial frontal gyrus in patients with BD [10–13]. More

recently, dynamic ALFF (dALFF) and dynamic FC (dFC) have
emerged as important complements to traditional static measures
that could quantify the spatial dynamic organization variability
and capture time-varying characteristics throughout the entire
scan period [14, 15]. Previous rs-fMRI studies from dynamic
perspectives had showed that patients with BD displayed reduced
dALFF and dFC variability in the DMN and central executive
network relative to healthy controls (HCs) [16–18]. However, the
findings were inconsistent or conflicting, which could attribute to
mixed samples with BD I and BD II, distinct mood states, medical
comorbidity, or medication effect. Investigations with a much
purer sample may minimize the potentially confounding effects.
The reciprocal interaction between the gut microbiota and the

brain, referred to as the “gut-brain axis” (GBA), has been supposed
to be regarded as a key branch to understand BD pathogenesis
[19–22]. The dynamic bidirectional influence of the GBA is
primarily thought to involve immunomodulatory mechanisms
(intestinal, systemic and brain inflammation) [23–25], thereby
influencing host emotion, behavior, and brain function [26–28]. A
prior study had found a positive correlation between Clostridium
bartlettii levels and hippocampal ALFF in patients with BD [29]. BD-
dysfunctional connectomes were identified to associated with
multiple microbial abundance in depressive patients with BD [30].
The composition of gut microbiota community exhibited lower
alpha-diversity and significant altered beta-diversity in BD
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compared to HCs [30–32]. According to prior systematic reviews
and meta-analyses, proinflammatory bacteria (Ruminococcus,
Eggerthella, Enterobacteriaceae, Proteobacteria) and glutamate
(Glu) and gamma-aminobutyric acid (GABA) metabolism related
bacteria (Bifidobacterium, Escherichia, Bacteroides, Parabacteroides,
Eggerthella) were commonly reported to increase in relative
microbial abundance in BD compared to HCs [32–34]. However,
the composition of gut microbiota varies across different clinical
manifestations (types and phases) of BD [23], and pharmacological
treatment can have an important impact on gut microbiota
[35, 36]. So far, alterations in gut microbiota in individuals with
unmedicated BD II depression are not well documented.
Cytokines serve as key signaling molecules involved in the

mediation of inflammatory responses [37, 38], they could access the
central nervous system to influencing the neuroendocrine system,
neurogenesis, and the metabolism of neurotransmitters relevant to
mood [39, 40]. Previous systematic reviews and meta-analyses had
reported elevated concentrations of pro-inflammatory cytokines
(e.g., interleukin [IL]-1-β, IL-2, IL-6, IL-8, tumor necrosis factor [TNF]-α,
interferon [INF]-γ) [38, 41–44] and anti-inflammatory cytokines (e.g.,
IL-4, IL-10) [38, 42, 43] in patients with BD relative to HCs. A prior
work of our team found an association in BD II between increased IL-
6 levels and decreased sFC of the insula, a region crucial for
emotional regulation [45]. Another study had found significant
associations among DMN network measures, gut microbiota, and
inflammatory cytokines in end-stage renal disease [46]. The study
had also identified a mediation effect of Roseburia levels on sFC in
the DMN through IL-6 in patients with end-stage renal disease [46].
However, the gut microbiota-inflammation-brain axis in BD II
depression was not further investigated, and the mechanisms
underlying the collaborative interaction among gut microbiota
changes, inflammation and immune dysregulation, and brain
dysfunction in BD II depression remain be elucidated.
To date, the investigation of patients with BD II has been

sporadic. Patients with BD II suffer from more depressive episodes
and longer depressive state compared to those with BD I [47].
Distinct symptoms and severity between BD I and BD II could be
attributed to diverse pathophysiological and neurobiological
mechanism [48], the distinction between BD I and BD II has
genetic validity [49]. Therefore, it is essential to conduct
investigations utilizing a homogeneous sample of BD II to enhance
comprehension of the disorder.
Given above considerations, we thus aimed to explore

interaction and association among gut microbiota composition,
inflammation, and spontaneous neural functional alterations in
unmedicated patients with BD II depression. In this study, mood
scales were obtained; rs-fMRI data were collected for sALFF and
dALFF analysis, with subsequent sFC and dFC being further
performed based on ALFF findings; stool samples and blood
samples were collected for the purpose of analyzing the
composition of gut microbiota and cytokines levels (IL-2, IL-4, IL-
6, IL-8, IL-10, TNF-α), respectively. In additions, the classification of
patients with BD II depression and HCs was performed using the
support vector machine (SVM) method, utilizing the aforemen-
tioned separate and fusion features. On the basis of previous
studies, we hypothesized that patients with BD II depression
relative to HCs showed altered spontaneous neural function in the
cerebellum and the DMN, dysbiosis of proinflammatory and Glu
and GABA metabolism related bacteria, as well as altered
proinflammatory cytokines levels. Moreover, the fusion features
of altered gut microbiota composition, cytokines and rs-fMRI
measures had a good performance in the classification.

METHODS AND MATERIALS
Participants
From March 2022 to March 2023, a total of 65 patients with BD II
depression and 65 healthy controls were recruited from the psychiatry

department, First Affiliated Hospital of Jinan University, Guangzhou,
China. The inclusion criteria for patients with BD II depression were as
follows: (1) met the diagnostic criteria of BD II without other Axis-I
psychiatric disorders, according to the Diagnostic and Statistical Manual
of Mental Disorders (DSM)-V, the Structured Clinical Interview for DSM-V
Patient Edition (SCID-P) was conducted by two experienced psychiatrists
(Y.J. and S.Z., with 23 and 8 years of experience, respectively); (2) the 24-
item Hamilton Depression Rating Scale (HDRS-24) score >21 and the
Young Mania Rating Scale (YMRS) score <7, HDRS-24 and YMRS were
used to assess the clinical state of patients; (3) The age ranged from 18 to
55 years; (4) At the time of testing, all patients were either medication-
naïve, or had not been medicated for at least 6 months; (5) no history of
neurological diseases, alcohol/substance abuse, cardiovascular diseases,
or major physical illness; (6) right-handed; (7) the absence of contra-
indication to MRI; (8) did not take any probiotics, antibiotics,
immunosuppressive drugs, or catharsis drugs for at least 1 month before
the recruitment. The inclusion criteria for HCs were as follows: (1) no
history of any psychiatric disorders in individuals, nor in their first-degree
relatives; (2) no history of neurological diseases, alcohol/substance
abuse, cardiovascular diseases, or major physical illness; (3) the absence
of contraindication to MRI; (4) did not take any probiotics, antibiotics,
immunosuppressive drugs, or catharsis drugs for at least 1 month before
the recruitment.
The ethics committee of the First Affiliated Hospital of Jinan University

(Guangzhou, China) conducted a thorough review and granted approval
for this study. Prior to their participation, all individuals involved provided
written informed consent after receiving comprehensive written and
verbal explanations regarding the study. Additionally, two experienced
clinical psychiatrists assessed and confirmed the participants’ capacity to
provide consent for their involvement in the examination.

MRI data acquisition and preprocessing
All brain imaging data were performed on the GE Discovery MR750 3.0 T
System with an 8-channel phased array head coil. During the scanning
procedure, participants were required to maintain a state of relaxation
and keep their eyes closed without falling asleep. Subsequently, each
participant was confirmed to stay awake after the experiment. Detailed
parameters of the rs-fMRI data were reported in supplementary
materials.

Functional image preprocessing
The preprocessing was carried out using Data Processing Assistant for
Resting-State fMRI (DPABI_V3.0, http://restfmri.net/forum/DPABI) [50]
which is based on Statistical Parametric Mapping (SPM12, http://
www.fil.ion.ucl.ac.uk/spm/) (see the supplementary materials).

Static ALFF and FC analysis
For sALFF analysis, the time series was first converted to the frequency
domain using a fast Fourier transform for a given voxel after functional
data preprocessing. Subsequently, the square root of the power spectrum
was computed and then averaged across a predefined frequency interval
(0.01–0.1 Hz) for routine ALFF calculation. This averaged square root was
termed ALFF at the given voxel [51]. The ALFF maps were smoothed with a
6mm full width at half maximum (FWHM) Gaussian kernel.
For sFC analysis, we selected the identified result clusters in the sALFF

and dALFF analysis as regions of interest (ROIs) to calculated the sFC to the
whole brain voxels. The Pearson’s correlation coefficients were calculated
between the mean time series of the ROIs and the time series of each voxel
in the whole brain to generate individual rs-FC maps. The subject-level
correlation maps were converted into z-value maps by Fisher’s r-to-z
transform to improve the normality. The sFC maps were smoothed with a
6mm FWHM Gaussian kernel.

Dynamic ALFF and FC analysis
Using the sliding-window method based on the Temporal Dynamic
Analysis (TDA) toolkits integrated in the DPABI software (http://rfmri.org/
DPABI), the Hamming sliding window was selected for the whole-brain
BOLD signal time series; a window length of 50 TRs and a step width of 1
TRs were chosen for the dALFF and dFC analysis (see the supplementary
materials).
Additionally, two supplementary window lengths (30 TRs and 70 TRs)

were conducted to validate the main results of dALFF and dFC with the
window length of 50 TRs.
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Fecal samples collection, DNA extraction, intestinal flora 16S
ribosomal DNA gene sequencing and analysis
Fecal samples were collected from the subjects within a three-day window
before or after the MR examination. No instances of apparent diarrhea or
constipation were observed among all subjects. Participants were
instructed to provide a stool sample by depositing it into a collection
bowl, which was then handed over to a clinical assistant. The sample was
subsequently aliquoted using a scoop into a tube, snap-frozen in dry ice,
and promptly stored at −80 °C within 30min of collection. The extraction
of microbial community DNA was conducted in accordance with the
manufacturer’s instructions, utilizing the MagPure Stool DNA KF kit B
(Magen, China). For PCR amplification, the variable regions V4 of the 16 s
rRNA gene were chosen, following the Illumina protocol, and performed
on the Illumina MiSeq platform. Clean reads were generated after
removing adaptor sequences, short length, ambiguous bases and low
complexity [52]. Vsearch was employed joining of paired-end reads, quality
control and dereplication. Following this, the sequences that underwent
quality filtering were mapped to the chimera-free amplicon sequence
variants (ASVs) using Usearch [53]. ASVs were acquired as a reference for
quantification via alignment using Vsearch. The taxonomy of ASVs was
classified with the Ribosomal Database Project (RDP, Version 16) reference
database with a minimum confidence threshold of 0.8. Analysis of alpha
diversity, including the abundance-based coverage estimator, Shannon
index, and Simpson index, as well as beta diversity (principal coordinate
analysis [PCoA] based on Bray-Curtis distances) was performed based on
output normalized data within RStudio software (version 4.1). Moreover,
we employed the Linear discriminant analysis Effect Size (LEfSe) analysis to
discern the variations in the abundance of bacterial taxa between patients
with BD II depression and HCs. Taxa that obtained a log linear discriminant
analysis (LDA) score > 2.0, and p < 0.05 in the Wilcoxon test were
considered significant differences in group comparison.

Cytokines measures
Blood samples were acquired from individuals diagnosed with BD II
depression and HCs in the morning, following a fasting period and
abstention from alcoholic beverages for at least 24 hours prior to testing.
The samples were then processed and frozen by trained technicians.
Fasting serum samples were collected in serum tubes, allowed to clot for a
duration of 30min, and subsequently stored at a temperature of −80
degrees Celsius until further utilization. A panel of 6 types immune
cytokines (IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α) were measured using the Bio-
Plex Pro Human Cytokine Assay kit (Bio-Rad Laboratories Inc., Hercules, CA,
USA). Samples were assayed in duplicate. The data acquisition was
performed using Bio-Plex Manager Software, version 6.1, on a Bio-Plex 200
array reader (Bio-Rad), following the manufacturer’s instructions.

Statistical Analysis
Independent-sample t-test (normal variable) and Mann-Whitney U test
(skewed variables) were used to compare demographic data (except for
gender), and mood scale (HDRS-24, Hamilton Anxiety Scale [HAMA], YMRS)
between patients with BD II depression and HCs. A chi-square test was
conducted to compare the distribution of sex. All tests were two-tailed,
and a significant level of p < 0.05 was considered statistical significance.
The statistical software IBM SPSS Statistics 22 (Armonk, NY, USA) was
utilized for data analysis.
For sALFF and dALFF, a two-sample t-test was conducted to identify

significant differences between patients with BD II depression and HCs.
Age, sex, education years and FD were included as nuisance covariates.
Cluster-level multiple comparisons correction based on Gaussian random
field (GRF) theory (voxel p-value < 0.001; cluster p-value < 0.05, GRF
corrected) was applied. For sFC and dFC, a one-sample t-test was
performed on z-score maps for each ROI to demonstrate within-group
FC spatial distribution for patients and HCs within a brain mask (p < 0.05,
uncorrected). Then, a two-sample t-test was performed to assess the
significant differences of the whole brain FC in each region between
patients and HCs within the union mask of one-sample t-test results of
both groups, by also controlling for age, sex, years of education and mean
frame-wise displacement. The cluster-level multiple comparison correction
was conducted using GRF theory correction (voxel p-value < 0.001; cluster
p-value < 0.05/n, GRF corrected, n was defined as the number of identified
clusters in the ALFF analysis). Appropriate statistics methods for group
comparison of the gut microbiota were mentioned above.
For cytokines analysis, deviations from normality were tested using the

Shapiro-Wilk test. Independent-sample t-test (normal variable) and Mann-

Whitney U test (skewed variables) were used to compare levels of
cytokines between patients with BD II depression and HCs.
For an exploratory analysis, significant altered brain functional

measures (sALFF, dALFF, sFC, and dFC values), gut microbiota (relative
abundance), cytokines, and clinical variables (onset age of illness,
number of episodes, duration of illness, HDRS-24 scores, HAMA scores,
and YMRS scores) in the group comparison were further used to explore
the relationship among these factors in partial correlation analyses. Age,
sex and years of education were included as nuisance covariates.
Further, multiple linear regression was employed to model the relation-
ship between psychopathological variables, rs-fMRI measures, gut
microbiota, and cytokines levels. The significant level was set as
p < 0.05, two tailed.

SVM classification
SVM was executed with the LIBSVM software (https://www.csie.ntu.edu.tw/
~cjlin/libsvm/) to determine whether the separate or fusion features of the
altered relative abundance of gut microbiota, levels of cytokines, and rs-
fMRI measures could be used to discriminate patients with BD II depression
from HCs. Briefly, a Gaussian radial basis function (GRBF) SVM model is a
hyperplane separating distinct classes of features (i.e., data from rs-fMRI
measures, gut microbiota, and cytokines) in the most optimal manner. The
grid search method was performed to seek the best c (penalty coefficient)
and width parameter g (gamma). Furthermore, the “10-fold” cross-
validation technique was employed to achieve optimal accuracy,
sensitivity, and specificity. The classification performance of each
established model was evaluated by applying the area under the curve
(AUC) of the receiver-operating characteristic (ROC). The SVM results were
also verified by a permutation test (10,000 times).

RESULTS
Demographic and clinical characteristics
The demographic and clinical data of all participants in this study
were presented in Table 1. Seven HCs were excluded from
subsequent analyses due to excessive head motion. A total of 65
patients with BD II depression and 58 HCs were included in the
analysis. No significant differences were observed in age, sex,
years of education, and FD parameters between patients with BD
II depression and HCs (p > 0.05). In the present study, stool
samples were obtained from a total of 42 patients and 46 HCs,
while blood samples were collected from 34 patients and 45 HCs.
The demographic and clinical data of participants whose stool and
blood samples collected were presented in Tables S2 and S3, no
significant differences were observed in age, sex, years of
education, and FD parameters in the group comparisons either
(p > 0.05).

Static and dynamic ALFF
As shown in Table 2 and Fig. 1A, compared to HCs, patients with
BD II depression displayed decreased sALFF values in the left
posterior lobe of cerebellum (mainly in cerebellar Crus II) (voxel
p < 0.001; cluster p < 0.05, GRF corrected). No significant altered
dALFF cluster was identified in the group comparison (p > 0.05).

Static and dynamic FC
The one-sample t test revealed the sFC patterns for the left
cerebellar Crus II in two groups (Figure. S1), respectively.
Compared to HCs, patients with BD II depression displayed
decreased sFC between the left cerebellar Crus II and the right
inferior parietal lobe (IPL) (voxel p < 0.001; cluster p < 0.05, GRF
corrected) (Table 2, Fig. 1B).
The one-sample t test revealed the dFC variability patterns for

the left cerebellar Crus II in two groups (Figure. S1), respectively.
Compared to HCs, patients with BD II depression displayed
decreased dFC between the left cerebellar Crus II and the right
medial prefrontal cortex (mPFC) (voxel p < 0.001; cluster p < 0.05,
GRF corrected) (Table 2, Fig. 1B). The dFC results of 30 TRs and 70
TRs sliding-window length validated the main dFC results (50 TRs)
(Figure S2, and Figure S3).
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Gut microbiota analysis
The alpha-diversity analysis (Fig. 2A) included the calculation of
ACE, Shannon and Simpson indices, however, no significant
difference was found between patients with BD II depression and
HCs (all p > 0.05). In addition, the beta-diversity analysis base on
Bray-Curtis further showed a distinct clustering of the microbiota
structural composition between patients with BD II depression and
HCs (p < 0.001) (Fig. 2B). The histogram of the microbial
composition of the genus level showed that sequences from the
BD II group were mainly assigned to Phocaeicola and Bacteroides,
followed by Prevotella and Faecalibacterium; and sequences from
HCs group were mainly assigned to Phocaeicola and Prevotella,
followed by Bacteroides and Faecalibacterium (Fig. 2C). By using
the LEfSe differential analysis based on the all levels of species
abundance, it was found that the BD II group was mainly enriched
in the Proteobacteria, Actinobacteria, Bifidobacteriaceae, Porphyr-
omonadaceae, Enterobacteriaceae, Bifidobacterium, Bacteroides,
Parabacteroides, Lachnospiracea and Pseudescherichia; while HCs

group was mainly enriched in the Bacteroidetes, Clostridium and
Dialister (Fig. 2D–F).

Cytokines measures
The levels of IL-2, IL-4, IL-6, IL-8, IL-10 and TNF-α of the two groups
are shown in Table 1. Compared to HCs, patients with BD II
depression displayed increased levels of IL-6 (z=−2.122, p= 0.034),
IL-8 (z=−2.691, p= 0.007), IL-10 (z= -3.276, p= 0.001), and TNF-α
(z=−2.319, p= 0.023). No significant difference was found in the
levels of IL-2 and IL-4 in group comparison (Table 1).

Correlation analyses
The relative abundance of genus Bacteroides was positively
correlated with HDRS-24 score (r= 0.411, p= 0.022) in patients

Table 1. Demographic and clinical data for patients with BD II
depression and HCs.

BD II
depression

HCs p-value

Demographic

Number of
participants

65 58 N/A

Sex (male/female) 29/36 24/34 0.718†

Age (years) 29.12 (8.88) 30.07
(11.22)

0.603 a

Education (years) 14.18 (2.88) 14.53 (4.19) 0.587 a

Age at onset (years) 23.85 (2.02) N/A N/A

Number of episodes 2.78 (1.80) N/A N/A

Duration of illness
(months)

36.78 (53.12) N/A N/A

FD (mm) 0.05 (0.02) 0.05 (0.03) 0.783 a

Mood scales

HDRS-24 score 27.30 (3.94) N/A N/A

HAMA score 13.14 (7.05) N/A N/A

YMRS score 3.81 (1.45) N/A N/A

Biomarkers of
inflammation

IL-2 (pg/ml) 4.71 (4.09, 5.33) 4.50 (4.09,
4.92)

0.149 b

IL-4 (pg/ml) 0.97 (0.82, 0.97) 0.97 (0.82,
0.97)

0.192 b

IL-6 (pg/ml) 2.57 (2.18, 2.83) 2.31 (2.05,
2.57)

0.034 b*

IL-8 (pg/ml) 11.00 (7.85,
21.21)

7.85 (6.72,
11.00)

0.007 b*

IL-10 (pg/ml) 7.50 (6.54, 9.10) 6.54 (5.69,
7.39)

0.001 b*

TNF-α (pg/ml) 22.90 (16.73,
25.01)

18.13
(16.73,
20.90)

0.039 b*

Mean (S.D.) or Median (LQ, UQ) are reported. BD Bipolar disorder, HCs
healthy controls, HDRS Hamilton Depression Rating Scale, HAMA Hamilton
Anxiety Scale, YMRS Young Mania Rating Scale, FD framewise displacement
for in-scanner head motion, IL-2 interleukin 2, IL-4 interleukin 4, IL-6
interleukin 6, IL-8 interleukin 8, IL-10 interleukin 10, TNF-α tumor necrosis
factor alpha, †The p-value for gender distribution was obtained by chi-
square test. aThe p-values were obtained by independent-sample t-tests.
bThe p values were obtained by Mann-Whitney U tests. *p < 0.05.

Table 2. The areas of altered sALFF and its corresponding FC between
patients with BD II depression and HCs.

Brain region Cluster
size
(voxels)

MNI Peak t
value

x y z

sALFF

L Cerebellum
Crus II

52 −33 −69 −45 −4.5154

sFC

R inferior
Parietal
Lobule

136 36 −45 39 −4.3277

dFC

R Medial
Frontal Cortex

43 21 57 9 −4.4424

sALFF static amplitude of low-frequency fluctuation, FC functional
connectivity, BD Bipolar disorder, HCs healthy controls, sFC Static FC, dFC
dynamic FC, MNI Montreal Neurological Institute, L left, R Right.

Fig. 1 Resting-state functional alterations between BD II depres-
sion and HCs. A The sALFF value differences. B The whole brain sFC
and dFC differences for cerebellar Crus II seed. BD bipolar disorder,
HCs healthy controls, sALFF static amplitude of low-frequency
fluctuation, sFC static functional connectivity, dFC dynamic func-
tional connectivity.
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with BD II depression (Fig. 3A). The relative abundance of genus
Parabacteroides was positively correlated with the IL-10 levels
(r= 0.430, p= 0.032) in patients with BD II depression (Fig. 3B). No
significant correlation was observed between clinical variables, the
relative abundance of gut microbiota, the cytokine levels, and rs-
fMRI measures in HCs. Multiple regression analysis indicated that
interaction effect of relative abundance of genus Parabacteroides
levels and IL-8 levels (genus Parabacteroides levels × IL-8 levels)
was associated with the sALFF values in the left cerebellar Crus II
(β= 0.567, t= 2.22, p= 0.038) in patients with BD II depression
(Table S3).

SVM classification
Both separate and fusion features of the altered relative
abundance of gut microbiota, levels of cytokines, and rs-fMRI
measures had well performance in the SVM models to
distinguish patients from HCs (Table S4). The fusion features
of altered rs-fMRI measures and gut microbiota had the best
performance in classification (with a 0.892 AUC, an 80.4%
accuracy, an 80.4% specificity, and an 81.0% sensitivity)
(Fig. 3C, D, Table S4).

DISCUSSION
To the best of our knowledge, this is the first study to explore the
mechanisms underlying the collaborative interaction among brain
dysfunction, gut microbiota changes, and inflammation and
immune dysregulation in BD II depression. The main findings
are the following: (i) compared to HCs, patients with BD II
depression displayed decreased sALFF values in the left cerebellar
Crus II, as well as decreased cerebellar sFC to the right IPL, and
decreased cerebellar dFC to the right mPFC; (ii) significant
differences were found in beta-diversity between BD II depression
and HCs; LEfSe analysis identified increased relative abundance of
proinflammatory bacteria (i.e., Proteobacteria, Enterobacteriaceae,
Porphyromonadaceae, Pseudescherichia), and Glu and GABA
metabolism related bacteria (i.e., Bifidobacterium, Bacteroides,
Parabacteroides, Pseudescherichia); (iii) patients with BD II depres-
sion showed increased IL-6, IL-8, IL-10, and TNF-α levels compared
to HCs; (iv) multiple regression analysis indicated that genus
Parabacteroides levels × IL-8 levels was associated with the sALFF
values in the left cerebellar Crus II in BD II depression; the relative
abundance of genus Bacteroide and genus Parabacteroides was
positively correlated with depressive symptoms (HDRS-24 score)

Fig. 2 Gut microbiota analysis between BD II depression and HCs. A Microbial alpha-diversity indices (ACE, shannon and simpson).
B principal coordinate analysis (PCoA) based on Bray-Curtis distances comparing the sample distribution. The red dots represent BD II, and the
green dots represent HCs. C Microbial composition at the phylum and genus levels. D Linear discriminant analysis (LDA) scores derived from
LEfSe analysis, showing the biomarker taxa (LDA scores (log10) > 2.0 and a significance of p < 0.05 determined by the Wilcoxon signed-rank
test. Red and green colors represent an increase of abundance in BD II and HCs. E Cladogram generated from LEfSe analysis showing the
relationship between taxon (the levels represent, from the inner to outer rings, phylum, class, order, family, and genus). BD bipolar disorder,
HCs healthy controls.
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and IL-10 levels in BD II depression, respectively. Moreover, a
combination of altered fMRI measures and relative abundance of
gut microbiota had achieved satisfied classification performance
in distinguish BD II depression from HCs. An overview of our
findings is presented in abstract figure.
In the current study, we found decreased sALFF values in the

left cerebellum (cerebellar Crus II) in patients with BD II
depression, suggesting disrupt spontaneous neural function in
the cerebellum in BD II. Consistent with our finding, decreased
sALFF values in the left cerebellum were evidenced in patients
with BD in a prior meta-analysis of 51 studies [5]. Numerous rs-
fMRI studies had found that patients with BD in a depressive state
displayed cerebellar alterations of function [10, 54, 55] and
structure [56, 57]. It was reported that cerebellar impairments was
directly associated with the onset of BD [12]. Actually, the
cerebellum directly or indirectly receives input from cortical
association areas and the midbrain, as well as generate output to
the limbic system and hypothalamic and thalamic nuclei [58, 59].
These regions are crucial in the field of mood disorders due to
their roles in emotional processing [12]. Moreover, the cerebellum

also establishes communication with the monoamine-producing
brainstem nuclei, which provide the limbic system and the brain
with essential neurotransmitters such as dopamine, serotonin, Glu,
and GABA [12, 60]. Notably, an association between Parabacter-
oides levels × IL-8 levels and the left cerebellar Crus II ALFF values
was identified in the study. Parabacteroides have also been linked
to the production of GABA in human, and microbial-derived GABA
may have the potential to impact the host by modulating
circulating concentrations of GABA [61]. It was reported that BD is
associated with GABAergic deficit [61–63]. More recently, a study
on patients with depressive BD identified that altered neuroactive
microbes (including Parabacteroides) and microbiota-derived
neuroactive metabolites (GABA) were associated with brain
intrinsic function [22]. The study proposed that gut microbiota
may contribute to BD by affecting the metabolism of certain
neuroactive metabolites (GABA), which might, in turn, regulate
function of the bipolar disorder brain [22]. Dysbiosis of gut
microbiota would result in dysfunctions in intestinal permeability,
translocation of commensal microbes, and chronic proinflamma-
tory states [64]. Inflammation in the gut may lead to an

Fig. 3 Correlation analyses and SVM classification performance in BD II depression. A The correlation between the genus Bacteroides levels
and HDRS-24 score. B The correlation between the genus Parabacteroides levels and IL-10 levels. C The ROC curves for separate and fusion
features classifiers. D 3D view of the classified accuracy of fusion features of altered fMRI measures and gut microbiota with the best
parameters (best C= 128, g= 0.008). SVM support vector machine, BD bipolar disorder, ALFF amplitude of low-frequency fluctuation, HDRS-
24 24-item Hamilton Depression Rating Scale, IL-10 interleukin 10, AUC area under the curve.
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upregulation of proinflammatory cytokines (e.g., IL-8), which could
pass the blood–brain barrier and enter the central nervous system
(CNS) [40]. Neuroinflammation may consequently occur, conco-
mitant with neurotoxic effects and an interruption of brain
homeostasis, thereby resulting in a dysfunctional brain in BD
[65, 66]. In short, the interaction effect of microbiota-derived
neuroactive metabolites (specifically GABA) disturbances and gut
dysbiosis-derived up-regulation of systemic inflammation would
affect the cerebellar intrinsic function.
Cortico-cerebellar connections are crucial part of the mood

network of BD [12]. We had also identified the disrupted static and
dynamic cerebellar-DMN FC in BD II depression in the study.
Specifically, patients with BD II depression showed decreased sFC
between the left cerebellar Crus II and right IPL, as well as decreased
dFC between the left cerebellar Crus II and right mPFC. The IPL and
mPFC were major hub nodes of the DMN [67, 68], dysfunction of
which was proposed to be broadly involved in the neuropatholo-
gical mechanisms of BD [13]. Recent meta-analytic evidence from
23 rs-fMRI studies identified that patients with BD displayed
reduced sFC in the IPL relative to HCs [69]. Another cognitive
task-based meta-analysis of 69 studies also reported abnormal
activation in the IPL in patients with BD relative to HCs [70]. DFC
serves as a potent complement to sFC [14, 15], and may more
sensitively detect aberrant connectivity patterns [71]. Previous rs-
fMRI studies had also found reduced dFC variability [72, 73] and
dALFF [74] value in the mPFC in patients with BD relative to HCs.
Therefore, the current investigation provided supplementary
evidence in favor of disrupted cerebellar-DMN connectivity in BD
II depression from both static and dynamic perspectives.
This is the first study to investigate the gut microbiota of BD II

depression with pure samples. The beta-diversity analysis was
employed to assess whether gut microbiota community composi-
tion differed in the group comparison [32], and our finding of
altered beta-diversity in BD II depression was consistent with
previous systematic reviews on BD [31, 32]. In line with prior
systematic reviews and meta-analyses [32, 33], enrichment of
proinflammatory bacteria and Glu and GABA metabolism related
bacteria were also identified in BD. BD is suggested to be a whole-
body disease accompanied with up-regulation systemic inflam-
matory [23, 75] and changed GABAergic deficit profile [61].
Enriched proinflammatory bacteria can will disrupt the intestinal
barrier, and induce the following peripheral and neuro-
inflammation in BD [23, 76]. Moreover, we also identified a
positive correlation between Bacteroide levels and depressive
symptoms (HDRS-24 score) in patients with BD II depression.
Enrichment of Bacteroide may promote utilization of Glu and
synthesis of GABA [32]. GABA is the major inhibitory neurotrans-
mitter in the human brain that enhances GABAergic inhibition of
nearby dopaminergic neurons, thereby contributing to core
depressive symptoms [61, 77]. In line with our results, a prior
systematic review had reported that fecal genus Bacteroide was
consistently positively correlated with depressive symptoms in BD
and depression in most study [21]. Actually, Bacteroide produce
short-chain fatty acids (SCFAs) to maintain intestinal homeostasis
and reduce inflammation that are generally considered beneficial
to the host [78, 79]. The enrichment of Bacteroide may potentially
also serve as a compensatory mechanism, rather than exerting a
negative impact on the host’s mood [21].
Cytokines are key signaling molecules in the regulation of the

inflammatory response, serving as a bridge for the “crosstalk”
between the immune system and all organ systems [37, 40]. In the
current study, increased IL-6, IL-8, IL-10, and TNF-α levels were
found in BD II depression relative to HCs, and increased IL-10
levels were positively correlated with genus Parabacteroides in BD
II depression. In line with our findings, elevated concentrations of
serum pro-inflammatory cytokines (i.e., IL-6, IL-8, and TNF-α) were
reported in previous meta-analyses [41–43], supporting inflam-
matory hypothesis with higher immune activation in BD

[41, 44, 80]. The findings of circulating IL-10 levels in previous
studies were inconsistent [42, 81]. IL-10 is an anti-inflammatory
cytokine that can suppress immune responses [42]. It was
reported that pro-inflammatory cytokines (like IL-6) would induce
an increase in circulating IL-10 levels in the context of pro-
inflammatory conditions [82]. An elevation in IL-10 may contribute
to compensate or counterbalance the effects of an activated
inflammatory response in BD [42, 81, 83]. As with aforementioned
Bacteroide, Parabacteroides also produce SCFAs to reduce inflam-
matory effects and increase anti-inflammatory mediators in the
blood [79, 84]. Therefore, the observed positive correlation
between IL-10 levels and Parabacteroides could be further
interpreted as a compensatory mechanism to the pro-
inflammatory state in BD II depression.
Notably, fusion features of altered fMRI measures and gut

microbiota had achieved the best performance for distinguishing
BD II depression from HCs. Compared to previous studies, the
current classifier exhibited a more satisfactory classified effect
than previous classified models with a single feature of gut
microbiota [20, 29], neuroimaging [85], or cytokines [86] in the
identification of BD from HCs. Intriguingly, a combination of
altered fMRI measures, gut microbiota and cytokines did not
achieve better performance in the classification. A possible
explanation could be attributed to only four specific types of
cytokines included in the classifier. Nevertheless, it could be
somehow suggested that incorporating more miscellaneous but
inefficient information does not necessarily improve classification
performance. Collectively, the integration of gut microbiota and
static and dynamic imaging measures would provide a more
accurate and useful diagnostic value for BD II depression.
There were several limitations in the study. First, the sample size

was relatively small, and the sample recruitment was from a single
center. Moreover, the training set and the test set in the SVM
analysis were not completely separated, as feature selection was
based on the results of inter-group comparisons of all subjects,
which may lead to overfitting. In the future, studies with a larger
multi-center sample are required for further validation. Second,
results of correlation analysis in this study should be considered
exploratory, as they did not survive after multiple comparison
corrections. Thirdly, the causal relationship among gut microbiota,
cytokines and fMRI alterations cannot be studied in the current
cross-sectional designed study. Moreover, dietary is considered
vital to the composition of gut microbiota community. Given the
diversity of dietary patterns observed globally, our findings must
be interpreted with caution. Finally, cytokines (i.e., IL-2, IL-4, IL-6,
IL-8, IL-10, and TNF-α) examined in this study were hypothesis-
driven based on previous literature findings.

CONCLUSIONS
In conclusion, the current study identified disrupted spontaneous
activity and connectivity in cerebellar-DMN in patients with
unmedicated BD II depression. Increased intestinal proinflamma-
tory bacteria, and Glu and GABA metabolism related bacteria, as
well as elevated serum pro- and anti-inflammatory cytokines were
also found in BD II depression. Moreover, the combination of gut
microbiota and functional alterations in the cerebellar-DMN
provided a more accurate and complementary diagnostic value
for depressive BD II. The study provided valuable insights into the
underlying pathophysiological mechanism of the gut microbiota-
inflammation-brain axis, and bridged a gap on this topic among
patients with the BD II depression.
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