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Within precision psychiatry, there is a growing interest in normative models given their ability to parse heterogeneity. While they
are intuitive and informative, the technical expertise and resources required to develop normative models may not be accessible to
most researchers. Here we present Neurofind, a new freely available tool that bridges this gap by wrapping sound and previously
tested methods on data harmonisation and advanced normative models into a web-based platform that requires minimal input
from the user. We explain how Neurofind was developed, how to use the Neurofind website in four simple steps
(www.neurofind.ai), and provide exemplar applications. Neurofind takes as input structural MRI images and outputs two main
metrics derived from independent normative models: (1) Outlier Index Score, a deviation score from the normative brain
morphology, and (2) Brain Age, the predicted age based on an individual’s brain morphometry. The tool was trained on 3362
images of healthy controls aged 20–80 from publicly available datasets. The volume of 101 cortical and subcortical regions was
extracted and modelled with an adversarial autoencoder for the Outlier index model and a support vector regression for the Brain
age model. To illustrate potential applications, we applied Neurofind to 364 images from three independent datasets of patients
diagnosed with Alzheimer’s disease and schizophrenia. In Alzheimer’s disease, 55.2% of patients had very extreme Outlier Index
Scores, mostly driven by larger deviations in temporal-limbic structures and ventricles. Patients were also homogeneous in how
they deviated from the norm. Conversely, only 30.1% of schizophrenia patients were extreme outliers, due to deviations in the
hippocampus and pallidum, and patients tended to be more heterogeneous than controls. Both groups showed signs of
accelerated brain ageing.
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INTRODUCTION
Psychiatric and neurological disorders represent 10.4% of the
global burden of disease and account for 258 million DALYs per
year [1]. Until recently, the investigation of the brain correlates of
these disorders has relied mostly on analytical methods based on
mass-univariate comparisons between groups (e.g., statistical
parametric mapping) [2–4]. However, this approach is not aligned
with the complex, widespread and heterogeneous alterations
which are typical of these disorders and the need for individual-
level decisions in clinical practice [2, 5, 6]. This discrepancy may
explain the limited translational impact of neuroimaging findings
in neurology and psychiatry so far [7]. In recent years, a growing
number of studies have attempted to address this issue by using
multivariate predictive methods that allow statistical inferences at
the individual level [8–11]. Within this movement, there is a
growing interest in normative models given their added ability to
parse heterogeneity [12–14]. Here, the aim is to first model the
variability of a measure (e.g., brain morphology) or relationship
(e.g., brain morphology and age) of interest in a reference cohort.
Because the latter is typically a group of healthy controls (HC), it is

assumed that the variability captured by the model corresponds
to the ‘norm’, i.e., expected pattern in the absence of illness. A new
and unseen individual can then be mapped against this model,
and the distance of this individual from the norm can be
quantified. Within this approach, individuals with the same
diagnosis can differ from healthy controls in their own unique
way or, importantly, not differ at all (i.e., not deviate from the
norm) [15]. This is a significant departure from the traditional case-
control design, where the ‘average patient’ is compared with the
‘average control’, under the assumption that they represent
qualitatively different groups. This may be a reasonable assump-
tion when the patient group is characterised by consistent and
well-defined alterations. However, a growing number of studies
using normative modelling are revealing that a surprisingly large
proportion of patients fall within the normative range for several
brain features [16, 17] and that there is substantial heterogeneity
within diagnoses [6, 16, 18–22] as well as overlap between
diagnoses [18].
Following these advances and potential for clinical translation,

several web-based tools have been developed. However, as we
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discuss in a recent systematic review [23], these tools were
designed to support the diagnosis of neurological disorders
namely dementia (ADABOOST [24], Jung Diagnostistics [25, 26],
NeuroQuant [27], Quantib [28], volBrain [29, 30]), multiple sclerosis
(Jung Diagnostics [31], Quantib [32], volBrain [33]), traumatic brain
injury (Icobrain [34], NeuroQuant [35–38]), temporal lobe epilepsy
(NeuroQuant [39, 40]) and intracranial hemorrhages and mass
effects in the brain (Qure [41]). These tools map known biomarkers
for these disorders including atrophy of hippocampal/sub-cortical
structures and ventricles (NeuroQuant, Jung Diagnostics), white-
matter lesions (Icobrain, Jung Diagnostics, Quantib, volBrain) or
gross abnormalities with computed tomography (Qure). Therefore,
to our knowledge, there are no easy-access tools to map
deviations from normative whole-brain morphology without
making assumptions about a possible diagnosis of a neurological
disorder. This hinders the use of existing tools in psychiatry, where
disorders are characterised by a heterogeneous, subtle and
widespread pattern of abnormalities across the brain. Here we
present Neurofind, a new user-friendly and freely available web-
based tool that outputs an individualised report based on
normative modelling from high-resolution structural magnetic
resonance (MRI) images. This individualised report includes two
main components: (1) Outlier Detection - overall deviation from
the normative brain morphology as well as deviations for each
brain region, and (2) Brain Age - predicted age based on an
individual’s brain morphology. The Outlier Detection model uses
an adversarial auto-encoder (AAE), a deep learning approach that
has shown promising results in clinical neuroimaging [42, 43].
Specifically, we developed an AAE that learns a latent representa-
tion of the input data by first reducing its dimensionality via
consecutive layers of non-linear transformations (encoder); this
reduced representation is then used to reconstruct the input
(decoder). By constraining this reconstruction to be as similar as
possible to the input data, the autoencoder is forced to learn a
good representation of the input data [44]. Therefore, the AAE will
be able to reconstruct new data with minimal difference between
input and reconstruction if it is similar to the data used to learn
the latent representation. In Neurofind, we used an AAE to learn a
latent representation of the normative brain morphology. It is
expected that, when presented with new images, the AAE will be
able to reconstruct data from healthy controls, but it will be less
precise when processing data from patients, i.e., the reconstruc-
tion error (i.e., difference between input and reconstruction) will
be larger in patients compared to healthy controls. Therefore, the
reconstruction error can be thought of as a proxy for deviation
from the normative disease-free brain morphology. The Brain Age
model, on the other hand, measures the effects of ageing on the
brain and builds on the well-established relationship between age
and neuroanatomy across the lifespan [45]. Brain age is often used
to calculate the brain age gap (BAG), i.e., the difference between
the predicted brain age and chronological age. A positive BAG
means that the individual’s predicted brain age was higher than
their actual age, suggesting ‘accelerated’ ageing; conversely, a
negative BAG indicates ‘delayed’ ageing. There has been a surge
in the investigation of BAG as a potential biomarker [46] after
several studies showing an higher brain ages in psychosis [47–51],
bipolar disorder [50–53], Alzheimer’s disease (AD) [51, 54, 55],
among others. In addition to providing these two informative and
complementary metrics, Neurofind uses a novel method –
Neuroharmony [56] – to mitigate scanner effects of new incoming
images. This overcomes the limitation of popular harmonisation
methods, such as ComBat [57, 58], that require a representative
sample from each scanner, which is not suitable for clinical
translation, as new patients’ scans will likely originate from
previously unseen scanners. Therefore, Neurofind combines our
previous work on the use of AAE to build a normative model of
brain morphology [59], brain age [60] and harmonisation of
unseen scanners [56] into a user-friendly web-based tool targeted

at researchers who wish to apply normative modelling to their
morphological data. In the following sections, we present (1) the
development of the models in Neurofind, (2) a guide on how to
use Neurofind in four simple steps, and (3) exemplar applications
of the tool in AD and schizophrenia (SZ).

MODEL DEVELOPMENT
Datasets
Data for training the web-based normative models used in
Neurofind consisted of four publicly available datasets of healthy
controls, namely the Human Connectome Project [61, 62], the
Human Connectome Project Aging [63], Biobank [64] and IXI
(http://brain-development.org/ixi-dataset/).

MRI data acquisition and pre-processing
The initial total sample included 13,918 T1-weighted MRI images
from 7 scanners (see Supplementary Materials for image acquisi-
tion parameters). Participants with missing data and younger than
20 and older than 80 years old were excluded. Poor quality images
were excluded based on the MRIQC tool [65]. This tool uses 68
image quality metrics (IQMs) such as the presence of movement,
artefacts, and signal-to-noise ratio to determine the probability of
an image being unusable. Images with a probability higher than
0.7 were discarded. The remaining images were pre-processed
using the recon-all pipeline with standard parameters in Free-
Surfer (version 6.0) [66]. The cortical surface was parcellated using
the Desikan-Killiany cortical atlas [67] and segmented into 68
cortical regions (34 per hemisphere). An additional 33 neuroana-
tomical structures were extracted using the ASEG atlas in
FreeSurfer [66, 67] totalling 101 brain regions (ROIs) (full list of
extracted regions in the Supplementary Materials). We estimated
the relative brain region volumes (ROIrel) for each subject by
dividing the original brain region volumes by the total intracranial
volume (also computed with FreeSurfer). The final pre-processed
data included 13,187 participants. However, there was an
imbalanced distribution between the number of younger and
older healthy controls, mostly due to the Biobank dataset (Fig. 1).
The largest scanner of the Biobank dataset was under-sampled
such that a maximum of 55 participants per age group were
selected at random. Since outliers are unexpected in healthy
subjects and are likely to be due to artefacts, healthy controls in
the train set with at least 10 ROIrel more than 3 standard deviations
(σ) away from the sample mean (μ) were considered outliers and
excluded. This process was repeated iteratively, recalculating μ
and σ until no additional participant met the criteria for being an
outlier. This process was implemented within each scanner to
ensure that participants would not be considered outliers simply
due to differences between scanners. The final data for the train
set comprised 3362 participants (Fig. 1, Table 1, Supplementary
Materials for sample size/scanner).

Fig. 1 Distribution of age and sex in the train set before and after
addressing data imbalance.
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Scanner harmonisation
Scanner effects on the ROIrel were mitigated using the Neurohar-
mony method [56]. Briefly, Neuroharmony uses a random forest
model to capture the relationship between IQMs and the
corrections for each brain region prescribed by ComBat, a popular
harmonisation approach that uses an empirical Bayes framework
to correct for additive and multiplicative batch effects [68]. Once
this relationship is learned, Neuroharmony predicts and applies
the ComBat corrections for a new set of IQMs extracted from an
unseen T1-weighted image. Neuroharmony was trained twice to
accommodate the specific needs of the Outlier Detection and
Brain Age models. For the former, Neuroharmony was trained
whilst controlling for the effects of age and sex, whereas for Brain
Age, only sex was added as a covariate. Neuroharmony was
trained in the same train datasets as used for the development of
the outlier detection and brain age models. Results of the
harmonisation are shown in the Supplementary Materials.

Outlier detection
Our outlier detection model uses an adversarial autoencoder (AAE)
to learn a representation of disease-free brain morphology. Briefly,
AAE combines a standard autoencoder with adversarial learning
to improve the learned latent representation by forcing it to have
a distribution similar to a desired prior distribution. In our
approach, we used a Gaussian distribution. This is achieved by
adding a third element to the standard autoencoder, the
discriminator, responsible for deciding whether its input data
comes from random numbers sampled from the predefined prior
distribution or the latent code. A successful AAE will be able to
generate a latent code capable of fooling the discriminator into
inferring that the encoded samples come from the prior
distribution (i.e., the discriminator will not be able to distinguish
the two distributions). Therefore, the aim is to produce a latent
representation that yields a low reconstruction error whilst also
having a similar shape to the desired prior distribution. The AAE
was trained in the harmonised ROIrel from the train set following
the same approach described in previous work [59] (see
Supplementary Materials for details on model training). The
reconstruction error for each ROIrel was estimated by calculating
the squared error between the inputted value and its reconstruc-
tion. An overall reconstruction error was then generated for each
participant by calculating the mean squared error between the
reconstruction and the inputted data. The distributions for all ROI-
level and overall reconstruction errors in the train set were
positively skewed. Therefore, all values were scaled by subtracting
the median and dividing by the interquartile range such that the
median of the overall and ROI-level scaled errors was 0.0
(IQR= 1.0) (Supplementary Materials). The final scaled errors,
which we named Outlier Index Score (OIS), represent the number
of interquartile ranges away from the median in the train set. The
OIS is categorised into: Within the norm (<0.26), Low (≥0.26),
Medium (≥1.1) and High (≥2.3) deviations from the norm (values
indicate number of interquartile ranges away from the median in
the train set). Cut-off values were extracted from the train set by
first dividing the distribution of OIS into centiles and then
grouping them into quartiles.

Brain age
To predict brain age, harmonised and scaled ROIrel from the train
set were inputted to a linear support vector regression (SVR)

model as implemented in the Python package scikit-learn [69]
with a similar approach as described previously [60]. A systematic
hyperparameter search for C was conducted using a ten-fold
cross-validated grid-search over the search space 2−7, 2−5, 2−3,
2−2, 2−1, 20, and 21. The C value with the best performance, as
determined by the scoring parameter negative mean absolute
error (MAE), was then applied to the whole training set (C= 2−2).
The parameters epsilon and tolerance for stopping criterion were
0.1 and 1e–3, respectively. In the train set, the MAE was 10.5 ± 9.8
years.

HOW TO USE NEUROFIND
Neurofind is a web-based research tool available at
www.neurofind.ai. This section provides a step-by-step guide on
how to get started, upload your images, check the status of your
analyses as well as download and interpret the results. A graphical
illustration of these steps can be found in Fig. 2. Details regarding
how the data are stored and managed can be found in the Privacy
Policy: https://neurofind.ai/privacy-policy.

Step 1. Registration
To use Neurofind, you will first need to register a user account.
You will be asked to provide simple key information (e.g., name,
institution, role) and to read and accept the privacy policy. You will
receive an email confirmation that your registration is approved.

Step 2. Upload image(s)
Neurofind allows the processing of a single image or several
images in bulk. To upload one image, choose Single upload from
the top menu and fill in the necessary information. Upload your
image by dragging it or clicking on Select files and navigating to
the folder where the image is stored. Images can only be in NIfTI
(.nii, .nii.gz) format. It is important that you have the subject’s
consent to analyse their data in Neurofind, so the upload page
also asks you to confirm that you have the necessary approvals
before you can select Submit. To upload several images at once,
select Multiple upload from the top menu. You will be asked to
upload all your images at once along with a CSV file with all the
relevant information about the images. To do this, select
Download CSV to view the instructions on how to fill in the CSV
file and download the template. It is important that you do not
include any identifiable information in the CSV file or elsewhere
on the website. Once completed, upload it by pressing Upload
CSV. Next, click on Upload scans to upload the images. The
processing of the image(s) will start as soon as the upload is
completed.

Step 3. Check progress
To monitor the progress of your analyses, go to My scans in the
top menu. You will see the status of all images submitted for
processing as well as ID, key demographic information, and time
when processing began. The status of each image will be one of
the following: Missing information, Processing, Completed or
Failed. If any of the information requested in Step 2 is missing,
processing will not begin automatically, and the status will be
Missing information. To add missing information, go to My scans,
find the image with the status Missing information and select Info.
Once the missing information has been entered, processing will
begin automatically, and the status will change to Processing.
Processing includes the entire analysis, from image upload to
results. This means that the pre-processing of the images (e.g.,
segmentation into different brain volumes) is also done auto-
matically by Neurofind. If there is a problem during processing,
the status will be changed to Failed. Possible reasons for this
include poor-quality images or issues with network connection. If
this occurs, you will need to reupload the image(s) from the
beginning. When Processing is finished, the status will change to

Table 1. Demographic characteristics of the train set used in model
development.

Train set (N= 3362)

Sex F/M, N (%) 1893 (56.3) / 1469 (43.7)

Age, median [Q1, Q3] 52.0 [15.2]
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Completed and an individualised report will be available to view
and download as a PDF file. You will also be notified via email
once processing is complete.

Step 4. Obtaining the results
The individualised report contains three main outputs: Brain Age,
Outlier Index Score and Regional deviations from the norm. For
Brain Age, the predicted and chronological ages are given. The
difference between the two represents the BAG. A positive BAG
means that the individual’s predicted brain age was higher than
their chronological age, suggesting ‘accelerated’ ageing; conver-
sely, a negative BAG indicates ‘delayed’ ageing. The Outlier Index
Score conveys the magnitude of the overall deviation from the
normative brain morphology. As the deviation increases, the
Outlier Index Score will be classified as Within the norm, Low,
Medium and High deviation from the norm (see Section ‘Outlier
detection’ for explanation of cut-off values). The brain regions with

the largest deviations from the norm are shown in a glass brain
and shown in full in a table at the end of the report.

EXEMPLAR APPLICATIONS
Datasets used for exemplar applications
Exemplar applications were carried out in three clinical datasets: the
Australian Imaging, Biomarkers and Lifestyle Study (AIBL), the MIND
Clinical Imaging Consortium (MCIC) and the Center for Biomedical
Research Excellence (COBRE) dataset. The AIBL dataset includes
patients diagnosed with AD and healthy controls; the latter two
datasets include patients diagnosed with SZ and corresponding
healthy controls; for details about recruitment see [70–73].

MRI data acquisition and pre-processing
The initial total sample for exemplar applications included 759 T1-
weighted MRI images from 10 scanners (see Supplementary

Fig. 2 Main steps to use Neurofind.
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Materials for image acquisition parameters). Data were cleaned
and pre-processed in line with the steps outlined for the model
development data in Section ‘Model development’. In addition,
healthy controls from AIBL were randomly subsampled to match
the sample size of AD patients to address the large class
imbalance. The final data comprised 364 participants in the
clinical datasets (Fig. 3, Table 2, Supplementary Materials for
sample size/scanner). Age did not follow a normal distribution in
all sub-groups according to the Shapiro-Wilk test (ADAD= 0.9,
p < 0.001; ADHC= 1.0, p < 0.05; SZSZ= 0.9, p < 0.001; SZHC= 0.9,
p < 0.01). Differences in sex and age between patients and healthy
controls in the clinical data were tested using chi-square test and
Mann-Whitney U test, respectively; this revealed no statistically
significant differences between the two groups (Table 2).

Scanner harmonisation
The Neuroharmony model (trained in the model development
data, as described in Section ‘Model development’) was applied
separately to the clinical datasets used for exemplar applications.
Results of the harmonisation are shown in the Supplementary
Materials.

Statistical analyses in exemplar applications
The overall and ROI-level reconstruction errors in the clinical
sample were scaled according to the median and interquartile
range obtained in the train set (see Section ‘Outlier detection’).
Differences in overall and ROI-level OIS and BAG between patients
and respective controls were investigated using an independent-
sample t-test or Mann-Whitney U Test depending on whether the
distribution for both groups was normally distributed or not,
respectively. Normality was tested using the Shapiro-Wilk test. For
the ROI-level comparisons the p-value was adjusted using the
Benjamini-Hochberg correction for multiple comparisons. The
association between OIS and BAG with symptom severity was
tested with Pearson’s correlation coefficient (r) or Spearman’s rho
(ρ) depending on the outcome of the Shapiro-Wilk test for the
symptoms. Statistical significance was set at 0.05. Patients’
symptom severity was assessed with the Mini Mental State
Examination (MMSE) [74] (AIBL), the Scale for the Assessment of
Negative Symptoms (SANS) [75] and the Scale for the Assessment
of Positive Symptoms (SAPS) [76] (MCIC) or the Positive and
Negative Syndrome Scale (PANSS) [77] (COBRE). Lower scores in

the MMSE and higher scores in the psychosis scales indicate worse
illness severity. The positive (PANSS Positive and SAPS) and
negative (PANSS Negative and SANS) symptoms scales were
normalised to ensure comparability across sites using the formula
[4]:

New score ¼ Individual raw score�Minimum
Maximum�Minimum

where Minimum and Maximum refer to the lowest and highest
score allowed for either PANSS or SAPS/SANS. The resulting
symptom severity scores were normalised by subtracting the
mean from every item and then dividing the resulting value by the
standard deviation of the item (i.e., zero mean unit variance
normalization). To investigate heterogeneity of deviations from
the normative brain morphology amongst participants, we
calculated the mean pairwise cosine similarity (CS) across all
individual ROI-level OIS and within predefined brain regions based
on the Desikan-Killiany atlas: frontal, temporal, parietal and
occipital lobes, insula, cingulate, subcortical structures, cerebel-
lum, corpus callosum and ventricles (Supplementary Materials).
Briefly, CS quantifies the similarity between two vectors by
calculating the cosine of the angle between the two. The
magnitude varies from 0 (low similarity between individuals, i.e.,
vectors are 90 degrees or perpendicular to each other) and 1
(perfect similarity between individuals). BAG was calculated by
subtracting the chronological age from the predicted brain age
and normalised according to the train set used for model
development.

Results from exemplar applications
Quantifying deviation from the normative brain morphology. The
overall and ROI-level OIS did not follow a normal distribution,
whilst the BAG did (Supplementary Materials). AD patients
(Median= 2.46, IQR= 2.50) showed a significantly larger OIS
compared to HC (Median= 0.91, IQR= 1.36) (Mann-U= 1361;
p < 0.001) (Fig. 4A). AD patients showed significantly larger
median OIS for individual ROIs relative to respective HC for
bilateral amygdala (Mann-ULeft Amyg= 1196, p < 0.01; Mann-URight

Amyg= 1246, p < 0.001), hippocampus (Mann-ULeft Hipp= 1476,
p < 0.001; Mann-URight Hipp= 1425, p < 0.001), inferior temporal
gyrus (Mann-ULeft Inf Temp= 1245, p < 0.001; Mann-URight Inf

Temp= 1343, p < 0.001) and inferior lateral ventricle (Mann-ULeft

Inf. Lat. Ven.= 1519, p < 0.001; Mann-URight Inf. Lat.Ven.= 1382,
p < 0.001), left inferior parietal gyrus (Mann-U= 1185, p < 0.05)
(Fig. 4C; see Supplementary Materials for detailed results).
Conversely, there was no statistically significant difference in
overall OIS between SZ patients (Median= 1.38, IQR= 1.83) and
respective HC (Median= 1.10, IQR= 1.76) (Mann-U= 7657;
p= 0.091) (Fig. 4A). However, patients showed significantly larger
median deviations from HC in bilateral hippocampus (Mann-U Left

Hipp= 8077, p < 0.01; Mann-URight Hip= 7384, p < 0.05) and left
putamen (Mann-U= 7846, p < 0.05) (Fig. 4D, see Supplementary
Materials for detailed results).
Only 3.4% of AD patients against 25.9% HC had an overall OIS

within the norm (Fig. 5). The proportion of AD patients with low,
medium and high deviation relative to HC increased steadily such
that 55.2% of patients and only 13.8% HC had high deviations

Fig. 3 Distribution of age and sex in the clinical datasets used for
exemplar applications.

Table 2. Demographic characteristics of the clinical datasets used for exemplar applications.

Clinical datasets (N= 367)

Alzheimer’s disease (N= 122) Schizophrenia (N= 245)

AD (N= 61) HC (N= 61) p SZ (N= 134) HC (N= 111) p

Sex F/M, N (%) 37 (60.7) / 24 (39.3) 43 (70.5)/ 18 (29.5) 0.341 30 (22.4) / 104 (77.6) 32 (28.8) / 79 (71.2) 0.314

Age, median [Q1,Q3] 73.0 [69.0,77.0] 71.0 [68.0,75.0] 0.244 35.0 [25.0,46.0] 37.0 [27.0,47.0] 0.282
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from the norm. Conversely, 15.8% of SZ patients and 20.6% of HC
had an overall normative brain morphology. However, there was
higher proportion of SZ patients in the medium and high
deviation categories compared to HC.

Estimating brain age gap. The overall performance of the brain
age model in the healthy controls of the clinical datasets was MAE

10.0 ± 6.3 years. The mean scaled BAG was significantly larger for
AD (M=−0.1, SD= 0.4) compared to their respective HC
(M=−0.6, SD= 0.4) (p < 0.001) as well as for SZ (M= 0.8,
SD= 0.5) compared to their respective HC (M= 0.6, SD= 0.4;
p < 0.01). This indicates that for both illnesses, the predicted brain
age was higher than their expected age based on the control
groups, suggesting ‘accelerated’ ageing (Fig. 4D).

Fig. 5 Proportion of patients with overall OIS within the norm, low, medium, or high deviation. A In the Alzheimer’s disease group, only a
small fraction of patients exhibited an overall OIS within the normative range. The percentage of patients classified with deviations increased
progressively, with the majority falling into the high deviation category. B In the schizophrenia group, a greater proportion of patients
displayed deviations from the norm, with more individuals classified in the medium and high deviation categories than in the low deviation
range.

Fig. 4 Results from the exemplar applications for AD and SZ. A Outlier Index Score (OIS) for AD and SZ. B BAG for patients and HC.
C, D Median difference between OIS for schizophrenia / Alzheimer’s disease and respective controls for ROIs with a statistically significant
difference between the two. Plots show the mean difference between patients and respective controls and the 95% confidence interval (CI)
for this difference. The 95% CI was calculated with bootstrapping (1000 repetitions). ***p ≤ 0.001, **p ≤ 0.010, *p < 0.05, ns p > 0.05.
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Investigating the neural correlates of symptom severity. Severity of
AD was negatively associated with the left hippocampus
(ρ=−0.28, p < 0.05), left amygdala (ρ=−0.28, p < 0.05) and left
inferior temporal gyrus (ρ=−0.34, p < 0.05). As expected, these
negative associations indicate that the larger the deviation from
the norm, the more severe the symptoms. In SZ, there was a
significant positive association between right hippocampus and
positive (ρ= 0.22, p < 0.05) and negative (ρ= 0.20, p < 0.05)
symptoms (Fig. 6, see Supplementary Materials for detailed
results). The association between BAG and symptom severity
was statistically significant in SZ for positive (ρ= 0.20, p < 0.05) but
not negative symptoms (ρ= 0.04, p= 0.680) nor MMSE in AD
(ρ=−0.16, p= 0.266).

Estimating heterogeneity. Across all ROIs, AD patients were more
homogeneous (Mean CS= 0.54, SD= 0.22) than their correspond-
ing HC (Mean CS= 0.31, SD= 0.25). Higher homogeneity in
patients was found for the ventricles (Mean CSHC= 0.56, SD=
0.24); Mean CSAD= 0.72, SD= 0.20) and subcortical regions (Mean
CSHC= 0.42, SD= 0.20; Mean CSAD= 0.60, SD= 0.20). Conversely,
SZ patients were slightly more heterogeneous (Mean CS= 0.32,
SD= 0.15) than HC (Mean CS= 0.40, SD= 0.17) across all ROIs.
This was most visible in the ventricles (CSHC= 0.62, SD= 0.23;
CSSZ= 0.55, SD= 0.22) and subcortical regions (CSHC= 0.47,
SD= 0.21); CSSZ= 0.38, SD= 0.20) (Fig. 7, see Supplementary
Materials for detailed results).

DISCUSSION
The recent widespread interest in personalised psychiatry and
neurology, combined with the increasing availability of large
imaging datasets, has propelled a renewed interest in normative
modelling [12, 15, 78]. This approach involves first modelling a
feature of interest in a reference cohort, usually healthy controls,
and then mapping patients against this model. It is then possible
to calculate the deviation from the reference cohort, also known
as the ‘norm’, for each individual patient. Interesting findings
include evidence that a large proportion of psychiatric and

neurological patients fall within the normative range for brain
morphology [16, 17], and that there is high degree of
heterogeneity within a diagnosis [6, 18, 19] and overlap between
diagnoses [18]. These results are consistent with the current
understanding of mental health disorders as dimensional con-
structs [79], and challenge the premise of the widely used case-
control design.
An important next step is to further explore ‘deviation from the

norm’ as a potential biomarker. This might involve, for example,
estimating deviation from the norm in several clinical populations,
investigating what drives extreme deviations within a diagnosis
and how such deviations relate to clinical outcomes or other
relevant variables such as genetic risk and cognitive performance.
On the one hand, the typical output of a normative model is
intuitive, informative and easy to use in further statistical analyses.
On the other hand, the development of normative models may
not be feasible for most researchers due to lack of technical
expertise, adequate datasets or/and computational resources.
Neurofind was developed to bridge this gap and make normative
modelling accessible to the wider research community. A number
of strategies were adopted to maximise the usability and utility of
the tool [80]. Firstly, Neurofind was developed as a user-friendly
web-based tool with minimal technical requirements. The tool
only requires a good internet connection, good quality MRI scans
in the appropriate format and key information about the images
from the user. This makes the tool suitable for non-experts in
imaging and/or normative modelling. Secondly, Neurofind
requires no prior processing of the images from the user. The
only preprocessing necessary is to convert the scan into the
required format (i.e., NIfTI), which is already standard practice in
the field and accessible to most researchers. Thirdly, Neurofind
can be applied to any adult population. By using whole-brain data
across a large age range, Neurofind can be used to investigate
brain morphology of psychiatric diagnoses. This differs from
existing tools that are targeted at neurological disorders and
therefore focus on relevant metrics and/or narrower age range
such as gray matter of sub-cortical structures to detect AD or
white matter tracts to detect multiple sclerosis. Finally, the tool

Fig. 6 Spearman’s correlation between regions of interest (ROIs) with significantly larger deviations from the norm in patients and
symptom severity. A In Alzheimer’s disease, greater deviations from the norm in the left hippocampus, left amygdala, and left inferior
temporal gyrus were associated with increased disease severity, as indicated by significant negative correlations. B In schizophrenia, larger
deviations in the right hippocampus were significantly associated with greater positive and negative symptom severity.
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provides two complementary normative metrics. Interest in
anomaly detection and brain age is growing rapidly in transla-
tional brain sciences. Making these models easily accessible to the
wider research community will hopefully accelerate the field of
normative modelling in psychiatric and neurological research.
Notably, both metrics are transdiagnostic and derived from whole-
brain data, allowing Neurofind to be applied to a group of
individuals of interest without making any assumptions about
their diagnoses. This will hopefully facilitate research on unique
and shared brain morphology between diagnoses for example, as
encouraged by dimensional approaches to psychopathology such
as the Research Domain Criteria [79].
To illustrate the potential of Neurofind to investigate different

aspects of any disorder of interest, we provided examples of
possible analyses in AD and SZ. As expected, we found that AD
patients have larger overall deviations from the normative brain
morphology than comparable controls. Deviations were more
pronounced in the ventricles and limbic-temporal regions.
Alterations in these regions are well documented in literature on
AD [81, 82]. In addition, the magnitude of the deviation from the
norm for two of these regions - hippocampus and middle
temporal gyrus - were negatively associated severity of dementia,
such that patients with larger deviations from the norm presented
with worse symptoms. We also showed that AD patients tended to
be more homogeneous than comparable controls. This is an
interesting finding that highlights the well-established morpholo-
gical changes in AD. Consistent with the results from the group
comparisons, homogeneity between patients was most pro-
nounced in the ventricles and subcortical regions, which further
emphasises the role of these brain regions in AD. In the analysis of
brain age, AD patients had an older-appearing brain than
comparable healthy controls consistent with the literature [46].
The results for SZ were not as clear cut. This is not unexpected
given that, compared with AD, SZ has less clear morphological
markers [83]. This may explain why the overall deviation from the
norm was not statistically different from comparable controls,
while specific regions namely the hippocampus and putamen
were. These findings are also consistent with well documented
brain alterations in SZ. Abnormal hippocampal volume in SZ is
thought to be implicated in cognitive [84–86] and emotional
processing [87, 88] deficits as well as in the dysregulation of the

hypothalamic-pituitary-adrenal axis [89]. Similarly, the pallidum
also plays a central role in the dopaminergic dysfunction in SZ
[90]. Finally, SZ patients tended to be more heterogenous than
controls across all regions and most of the high-level regions.
Inter-individual variation in SZ is well-known but only recently
have there been systematic efforts to quantify it [2, 91–93]. SZ
patients also showed signs of accelerated ageing consistent with
previous studies [46]. Taken collectively, these results indicate that
Neurofind is capable of identifying meaningful deviations from
the norm and can be a useful tool to parse heterogeneity in brain-
based disorders. The less clear-cut results for schizophrenia are
consistent with the literature on normative modelling, showing
that only a small portion of patients fall outside the norm and that
patients are highly heterogenous in how they deviate from the
expected [16, 18, 94]. Our aim with these exemplar analyses was
to illustrate how Neurofind can be used to explore psychiatric and
neurological disorders. There are many ways in which Neurofind
can be explored further. For example, clustering patients based on
region-level deviations, identifying differences in clinical presenta-
tion between within the norm and extreme patients, stratifying
patients in terms of longitudinal outcomes, or investigate the
association of brain deviations and behavioural/cognitive/health
traits in healthy controls, such as BMI, substance use, cognitive
performance. We encourage researchers to always use Neurofind
in patients in combination with a group of comparable healthy
controls, as shown in our examples, to control for biases specific to
their sample. Inferences in patients scores should then be made in
relation this comparison group.
The development of a practical tool for the wider research

community, such as Neurofind, comes with a number of
limitations and assumptions. Neurofind was designed to make
normative modelling accessible and therefore it is not customi-
sable. Advanced users may prefer to have more control over
certain aspects of the data and/or model training. In addition,
Neurofind was developed to provide general purpose and
transdiagnostic metrics that can be used across psychiatric and
neurological research. It was not developed to identify specific
disorders or predict clinical outcomes in a real-world clinical
setting. To maintain simplicity and interpretability of the findings,
the brain age model in Neurofind did not take its statistical
dependency on chronological age into account. Because of this

Fig. 7 Within-group mean pairwise cosine similarity for high-level brain regions. A Alzheimer’s disease patients exhibited greater
homogeneity in brain morphology compared to healthy controls, with the highest similarity observed in the ventricles and subcortical
regions. B In contrast, Schizophrenia patients were slightly more heterogeneous than their respective controls, with the greatest differences in
cosine similarity found in the ventricles and subcortical regions.
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so-called ‘regression to the mean’ or ‘age bias’, the ages of
younger subjects tend to be overestimated, while the ages of
older subjects tend to be underestimated. We recommend that
any further analysis of brain age uses age as a covariate or
addresses this issue in another way [95]. Neuroharmony, the
method used to minimise the impact of scanner-related bias,
relies on a learned association between image quality metrics and
needed corrections. For Neuroharmony to work effectively, it is
necessary that the quality metrics of the images fall within a
certain range; conversely, Neuroharmony may not be able to
predict the required adjustments if the quality metrics are unusual
(for more information see [56]). Similarly, Neurofind may not be
suitable for analysis of subjects that are very different from our
training range, i.e., outside of ages 20–80, non-white ethnicities, or
MRI scans acquired with fields of strength considerably lower or
higher than 1.5 T or 3 T. Finally, it is important to note that
Neurofind is a research tool, so results should not be used to make
clinical decisions.
In conclusion, Neurofind is a new freely available tool that aims

to facilitate research in normative modelling in psychiatry and
neurology. It is aimed at the wider community and non-expert
researchers who wish to use this approach in their research. It
relies on sound methods previously published on data harmonisa-
tion, brain age algorithms and deep learning. We have presented
exemplar applications showing that Neurofind can produce
interpretable and meaningful results in line with the literature
on AD and SZ. We have also provided a how-to guide that
illustrates the use Neurofind in four simple steps. Neurofind can be
accessed via www.neurofind.ai and relevant publications and
materials that describe the scanner harmonization, AAE and brain
age methods in detail are also available [56, 59, 60].

DATA AVAILABILITY
All data used in this study were obtained from pre-existing datasets with varying
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(https://www.humanconnectome.org/study/hcp-lifespan-aging/data-releases), Human
Connectome Project Young Adults (https://www.humanconnectome.org/study/hcp-
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