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Emerging evidence has highlighted that olfactory dysfunction, a common feature of aging, is increasingly linked to cognitive
decline in older adults. However, research on the underlying mechanism, particularly the role of nasal microbiome, remains limited.
In this study, we investigated the associations between olfactory function, the nasal microbiome, and cognition among 510 older
adults with an average age of 77.9 years. Olfactory function was assessed using the brief Chinese Smell Identification Test, and
cognitive assessments were conducted via the Mini-Mental State Examination and the Revised Hasegawa Dementia Scale. Nasal
microbiome profiles were generated through 16S RNA gene sequencing. We observed that olfactory dysfunction (i.e., hyposmia)
was associated with a higher richness of nasal bacteria, and such observation was replicated in an external dataset. A total of 18
nasal bacterial genera were identified to be associated with olfactory function, with eight genera such as Acidovorax and Morganella
being enriched in the hyposmic group. A composite microbial index of nasal olfactory function significantly improved the
reclassification accuracy of traditional risk model in distinguishing hyposmic from normosmic participants (P= 0.008). Furthermore,
participants with a nasal biotype dominated by Corynebacterium had a lower prevalence of mild cognitive impairment compared to
those dominated by Dolosigranulum or Moraxella. Our findings suggested that the nasal microbiome may play a role in the
association of olfactory function with cognition in older adults, providing new insights into the microbial mechanisms underlying
hyposmia and cognitive decline.
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INTRODUCTION
Cognitive decline, commonly associated with aging, represents a
rapidly growing public health challenge. The global population of
dementia patients is projected to increase from 55 million in 2019
to an estimated 139 million by 2050 [1]. The detection rate of
cognitive decline is relatively low, indicating the need to develop
universal and accurate detection biomarkers. Epidemiological
studies have demonstrated a significant association between
impaired olfactory function and cognitive decline [2, 3]. However,
this relationship may not be causal and could instead result from
share underlying mechanisms, such as aging or neurodegenera-
tive processes. One hypothesis was that changes in the olfactory
system might lead to neuronal death in various brain regions,
suggesting that olfactory dysfunction could be an early sign of
neurodegenerative diseases [4]. Notably, human olfactory function
naturally diminishes with age, resulting in a high prevalence of
olfactory dysfunctions in older adults [5]. Research further
suggests that olfactory dysfunction was also a significant predictor
of mortality risk in older adults, emphasizing its importance as a
focal point for early diagnostic strategies [6–9].

The nasal microbial ecosystem, essential for the normal
development of the olfactory epithelium [10], plays a crucial role
in this context. While research on the nasal microbiome and
olfactory function is still in its early stages, emerging studies
suggest that nasal microbes contribute to maintaining a healthy
microenvironment by limiting pathogenic invasions and modulat-
ing immune responses to respiratory infections [11, 12]. Most
previous research has focused on the gut-brain axis in the context
of neurological diseases [13, 14]; however, the potential associa-
tion of nasal microbiota with olfactory and cognitive functions
warrants further exploration [10, 15]. Understanding these
interactions could help provide new insights into the mechanisms
of cognitive decline and open novel preventative and therapeutic
avenues targeting the nasal microbiome.
In this study, we aimed to explore the potential role of the nasal

microbiome underlying the association between olfactory dys-
function and mild cognitive impairment (MCI). By analyzing nasal
microbiome data, along with olfactory and cognitive functions
measurements from approximately 500 older adults aged 66 to 95
years, we investigated the intricate relationships between
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olfactory function, the nasal microbiome, and cognitive decline in
older adults. Our findings suggest a microbial mechanism that
may contribute to the link between hyposmia and cognitive
decline in older adults.

MATERIALS AND METHODS
Study populations
This cross-sectional analysis was performed based on participants from the
Rugao Longitudinal Ageing Study (RLAS). Detailed information about the
study design and inclusion and exclusion criteria in RLAS has been
previously described [16]. In the fourth follow-up examination conducted
from December 2019 to January 2020, a total of 2200 participants were
recruited, and 510 participants who provided nasal swab samples were
included in the current analysis. Among them, 457 participants completed
cognition screening using the Mini-Mental State Examination (MMSE) and
the Revised Hasegawa Dementia Scale (HDS-R), and 430 participants
completed olfactory function assessment using the brief version of the
Chinese Smell Identification Test (B-CSIT) [17] (Supplementary Fig. 1).
To replicate the nasal microbial associations with olfactory function, we

performed the same analysis in an external population [15]. The replication
population included 67 participants (50 women) with an average age
(standard deviation) of 27 (6.8) years and an average body mass index
(BMI) (standard deviation) of 22.7 (3.8) kg/m2, and they provided complete
nasal microbial 16S rRNA gene amplicon (V4) sequencing data and
olfactory function measurement using the Sniffin’ Sticks.

Assessment of olfactory function
Olfactory function was assessed using the B-CSIT designed based on local
dietary culture [9], comprising 14 validated odors [18] and four locally
relevant odors (vinegar, Florida water, longyan, and milk). The B-CSIT score
for each participant, ranging from 0 to 18, was determined by the number
of correct answers. Participants with a B-CSIT score of ≤3 were classified as
hyposmic, while those above this threshold were considered normosmic
based on previous definition criteria (10%) using the Sniffin’ Sticks [19].

Assessment of cognitive function
Cognitive performance was measured using the MMSE [20] and HDS-R
[21]. MCI was defined as an MMSE score of ≤17 for illiterate individuals, ≤20
for those with 1–6 years of education, and ≤24 for individuals with more
than 6 years of education [20], or an HDS-R score of ≤21.5 [22].

Measurement of nasal microbiome
Nasal samples were obtained from both nares with nasal swabs (CY-98000,
HCY Technology, China) according to a pre-defined protocol [23].
DNA was processed using high-thought Illumina amplicon sequencing

of the V4 variable region of the microbial 16S rRNA gene according to
established protocols [23]. A total of 104.83 million sequences were
obtained, with an average of 210,750 reads per sample, ranging from
10,794 to 772,196 reads. Samples with <10,000 16S rRNA gene sequencing
reads (n= 14) were considered of low quality and removed from the
following analysis.
Raw sequence data for each sample were processed consistent with

procedures described in previous articles published in our laboratory [24].
Briefly, to analyze the microbial community structure and taxonomic
diversity, raw reads were processed using QIIME2 (version 2022.8) [25].
Paired-end sequencing reads were quality-filtered, trimmed, de-noised,
and merged using the DADA2 software [26], then summarized into
amplicon sequence variants (ASVs) in a feature table. Taxonomic assign-
ments were made using the Naïve Bayes classifier trained on the SILVA 138
database [27], and functional profiles of the microbial communities were
predicted by using PICRUSt2 [28]. Three α diversity indices were calculated
based on the ASV level: ACE index, Chao1 index, and Shannon index. The
microbial composition β-diversity was calculated based on ASV-level Bray-
Curtis dissimilarity metrics and visualized via principal coordinate analysis
(PCoA). Microbial genera with a relative abundance <0.01% in over 90% of
samples and pathways with a relative abundance <0.001% in over 90% of
samples were excluded from the downstream analyses. Eventually, a total
of 87 genera and 355 pathways were included. Based on methods
described for human gut microbiome enterotypes [29], we also performed
the clustering of the nasal microbiome. Samples were clustered using the
Partitioning Around Medoids algorithm with Jensen-Shannon Divergence

distance, implemented in the “cluster” R package (version 2.1.4). The
optimal number of clusters was determined using the Calinski-Harabasz.

Nasal olfactory index
The nasal olfactory index (NOI) was calculated regarding to the calculation
of the gut aging index [30]. The olfactory-associated nasal genera were
grouped into two sets MP and MN, where MP was the set of nasal genera
positively associated with olfactory function and vice versa for MN. The NOI
for each sample was defined as:

NOI ¼ log 10
RMP;i

MPj j
X

j2MP
xj;i=

RMN;i

MNj j
X

j2MN
xj;i

� �

where RMP;i denotes the prevalence of MP (or the number of present genera
of MP in sample i) in sample i, |MP| is the size of set MP (or the overall
number of genera in MP), xj;i denotes the relative abundance of genera j in
sample i and the same for RMN;i and |MN|. The calculation integrated both
the prevalence and relative abundance of olfactory-associated nasal
genera. For each sample, the NOI balanced these two factors by
incorporating the average relative abundance of relevant genera,
weighted by their prevalence within MP and MN. This approach ensured
that the NOI reflected not only the composition but also the prevalence of
nasal genera associated with olfactory function. The logarithmic transfor-
mation emphasized proportional differences between MP and MN. A higher
NOI indicates a nasal microbiota composition more favorable to olfactory
function.

Statistical analysis
Differences in demographic factors and characteristics between the
hyposmic and normosmic participants were examined using t-test or
Wilcoxon rank-sum test for continuous variables and chi-square-test for
categorical variables. Linear regression models were used to measure the
associations between olfactory and cognitive functions, with both MMSE or
HDS-R scores being standardized in the models. Differences in α-diversity
indices between the two groups were examined using the Wilcoxon rank-
sum test. Differences in microbial composition across different groups
were determined using permutational multivariate analysis of variance
(PERMANOVA) with 9999 permutations, implemented in the R package
“vegan” (version 2.6–4). Multivariate analysis by linear models (MaAsLin,
version 1.12.0) [31] was used to examine the associations of bacterial
genera and pathways with olfactory function. The relative abundance of
bacterial genera and pathways was transformed by centered log-ratio
(CLR) before association analysis with adjustments of age and sex.
Significance was established using a false discovery rate (FDR) of <0.05.
To address potential confounding by age and sex, we conducted a
sensitivity analysis using propensity score matching (PSM). Participants in
the hyposmic and normosmic groups were matched at a 1:1 ratio based on
their age and sex. Spearman correlation coefficients were used to measure
correlations between genera and pathways. Logistic regression models
were used to conduct comparisons between different biotypes.
The classification performance of NOI and traditional risk factors (such as

sex, age, BMI, and smoking status) on hyposmia were estimated using
logistic regression and visualized by the receiver operating characteristic
(ROC) area under the curve (AUC). The significance of the difference
between model performances was evaluated using the Delong test,
implemented via the “roc. test” function of the R package “pROC” (version
1.18.0).
Mediation analyses examined the potential mediation effects of

microbial structure on the associations between olfactory function and
cognitive function. The first two eigenvalues from PCoA, which jointly
explained approximately 50% of the microbial community variation, were
used to represent the overall nasal microbial structure in the mediation
models. Mediation analysis was performed using the R package “media-
tion” (version 4.5.0).
All statistical analyses were performed using R version 4.2.3, and a P-

value < 0.05 was considered statistically significant unless otherwise specified.

RESULTS
Olfactory function correlated significantly with cognitive
function
Among the 1381 participants (aged 65–95 years) with complete
B-CSIT data and cognitive function measurements (Table S1), the
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cognitive function measured by either MMSE or HDS-R was
significantly reduced in the hyposmic group (B-CSIT ≤ 3) com-
pared to those with normal olfactory function. With further
adjustments of age, sex, and BMI, hyposmia remained significantly
associated with inferior cognitive function as assessed by HDS-R or
MMSE (both P < 0.05, Fig. 1). With further adjustments of lifestyle
factors, including smoking status, drinking status, and marital
status, the hyposmic group showed a decline of 0.31 standard
deviation (SD) in MMSE scores and 0.20 SD in HDS-R scores
compared to the normosmic group (Fig. 1).

Microbial community composition differs between the
normosmic and hyposmic groups
Among the 430 participants (aged 66–95 years) with both nasal
microbiome data and olfactory function measurements, 386
participants were categorized as normosmic and 44 as hyposmic
(B-CSIT ≤ 3; Table 1). Compared to the normosmic group,
hyposmic participants were more likely to be older and ever
smokers (P < 0.05) and tended to have a higher BMI (P= 0.07).
The nasal microbial profile of these participants was dominated

by phyla Firmicutes (43.7%), Actinobacteria (41.1%), and Proteo-
bacteria (12.8%) (Supplementary Fig. 2). Participants in the
hyposmic group exhibited a trend toward higher richness of
nasal bacteria, as indicated by the ACE and Chao1 indices
(P < 0.05, Fig. 2a), and such association became borderline
significant with adjustment of sex, age, BMI and smoking status
(Supplementary Table 2). Significant differences in β diversity
between hyposmic and normosmic groups were observed, and
such differences persisted significantly even with adjustment for
sex, age, BMI, and smoking status (P < 0.05, Fig. 2b). The nasal
microbial composition explained 1.25% of the variation in
olfactory function, ranking only lower than age and education,
but higher than BMI, lifestyle factors such as smoking status, and
diseases (Fig. 2c). In the MaAsLin analysis, incorporating adjust-
ments of age, sex, BMI, and smoking status, 41 of the 87 analyzed
genera from eight phyla were identified to be associated with the
olfactory function (FDR < 0.05, Fig. 2d), with 18 genera exhibiting
particularly significant associations (FDR < 0.01, Supplementary
Fig. 3). For example, Acidovorax, a well-established bacterial
biomarker for lung cancer [32], has been demonstrated to
promote inflammation [33]. Furthermore, 15 predicted microbial
pathways had different abundances between the hyposmic and
normosmic groups (FDR < 0.05, Supplementary Fig. 4). Notably, all
the differential pathways were more abundant in the hyposmic
group, primarily including pathways of aromatic compound
degradation, and biosynthesis of cofactors, carriers, and vitamins.

To corroborate our findings, we performed external replication
using an independent dataset. The differences and trends in the
richness of nasal bacteria between the normosmic and hyposmic
groups were consistently observed in the external replication set
(Fig. 2e). Moreover, after adjusting sex, age and BMI, we observed a
significantly decreased microbial richness in the normosmic group
using the replication dataset, (Supplementary Table 2). Notably, 25
out of the 41 genera identified in our study were detected in the
external replication set, with 13 genera demonstrating consistent
associations with olfactory function (Fig. 2f).
Among the 88 sex- and age-matched participants (Supple-

mentary Table 3), alpha diversity indices remained significantly
lower in the normosmic group than the hyposmic group
(Supplementary Fig. S5a), while beta diversity did not differ
significantly, likely due to the reduced sample size (Supplemen-
tary Fig. S5b). Among the 18 genera used to construct the NOI,
significant differences between groups remained even after
adjusting for sex, age, BMI, and smoking status (all FDR < 0.05,
Supplementary Fig. S5c).

The nasal microbiome-based signature effectively
discriminated between the hyposmic and normosmic groups
To generate a composite indicator reflecting the olfactory
function-related nasal bacterial profile, we calculated the NOI
from the above-identified 18 differential genera. As expected, the
normosmic group exhibited a significantly higher NOI compared
to the hyposmic group, females had higher NOI scores compared
to males, while there were no significant differences in NOI scores
across participants of different age, BMI, and smoking status
(Fig. 3a). In general, the correlation among differential genera was
not high, and the average correlation coefficient was 0.31.
Clostridium_sensu_stricto_1 had the highest number of significant
correlations with other differential genera. Prevotella has the
highest average correlation coefficient with other differential
genera, reaching 0.46. (Fig. 3b).
The reclassification model based on NOI demonstrated compar-

able performance to that of the model based on traditional risk

Fig. 1 Association between olfactory function and cognitive
scores in the RLAS cohort. Model 1 adjusted for no covariable;
Model 2 adjusted for sex, age, and BMI; Model 3 further adjusted for
lifestyle factors including smoking, drinking, and marital status.
Cognitive measures included the Mini-Mental State Examination
(MMSE) and the Hasegawa Dementia Scale-Revised (HDS-R). Sample
sizes and beta coefficients with 95% confidence intervals (CIs) were
displayed for each model. The beta values represented the extent of
cognitive decline in the hyposmic group compared to the
normosmic group, quantified in standard deviations of cognitive
scores in the population.

Table 1. Basic characteristics of participants.

Olfactory Function Groupa P-value

hyposmic normosmic

N= 44 N= 386

Male 23 (52.3) 177 (45.9) 0.52

Age, mean (SD), y 79.70 (5.83) 77.60 (4.60) 0.005

BMIb, mean (SD), (kg/m2) 23.26 (3.53) 24.27 (3.50) 0.07

Illiterate 22 (52.4) 184 (49.1) 0.81

Married 26 (63.4) 244 (65.4) 0.93

Smoker 16 (40.0) 85 (23.0) 0.03

Drinker 19 (47.5) 140 (37.7) 0.30

Stroke 0 (0.0) 24 (6.2) 0.18

Diabetes 6 (13.6) 57 (14.8) 0.99

Hypertension 20 (45.5) 165 (42.7) 0.86

Glucose, mean (SD),
mmol/l

5.46 (1.84) 5.76 (1.67) 0.25

B-CSIT score, mean (SD) 0.48 (0.95) 13.30 (2.82) <0.001

MMSE, mean (SD) 20.24 (6.96) 21.56 (5.62) 0.21

HDS-R, mean (SD) 20.15 (6.06) 20.76 (5.32) 0.51

Cognitive Impairment 18 (48.6) 184 (51.4) 0.88
aData are expressed as No. (%) unless otherwise indicated.
bThe body mass index is the weight in kilograms divided by the square of
the height in meters.
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factors (i.e., sex, age, BMI, and smoking status) in distinguishing
hyposmic participants from normosmic ones (AUC [95%CI] 0.88
[0.80–1.00] vs. 0.75 [0.63–0.90], P= 0.09, Fig. 3c). Notably, the
addition of NOI into traditional risk factors significantly enhanced
the model’s discriminatory power (AUC improved from 0.75
[0.63–0.90] to 0.93 [0.89–1.00], P for difference= 0.008, Fig. 3c).

The nasal bacterial biotypes were associated with mild
cognitive impairment
Given the observed associations of olfactory function with both
nasal microbiome and cognitive function, we conducted investi-
gations to explore the connection between nasal microbiome and
cognitive function. Although there was no significant difference
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between the groups in terms of community richness represented
by ACE and Chao1 indices, significant differences were observed
between the two groups in the Shannon index, which combines
richness and evenness of the community (Fig. 4a), and in the
bacterial compositional structure (P= 0.001, Fig. 4b). After
clustering the participants based on the nasal microbial commu-
nity characteristics at the genus level, we observed significant

differences in the prevalence of MCI among different nasal bio-
types (P < 0.05, chi-square-test, Fig. 4c). For example, the
participants who were dominated by the genus Corynebacterium
exhibited a lower prevalence of MCI compared to clusters
dominated by the genera Dolosigranulum and Moraxella
(P < 0.05, Fig. 4d). This significance remained even after adjusting
for sex, age, and BMI.

Fig. 2 Differences in nasal microbiome between the hyposmic and normosmic groups. a Boxplots illustrated α diversity indices (ACE,
Chao1, and Shannon) in the hyposmic and normosmic groups, with statistical significance indicated by P-values. b Principal Coordinates
Analysis (PCoA) plot based on Bray–Curtis distance visualized differences in microbial community structure between groups. Results from
PERMANOVA (Adonis R² and P-value) were displayed. c Bar graph showed the proportion of variance in olfactory function explained by nasal
microbiome composition, lifestyle factors, and other covariates, with significant contributors marked by ‘+’ (P < 0.05) and ‘*’ (P < 0.01).
d Phylogenetic tree of nasal microbiome, highlighted genera differentially abundant between groups, with coefficient values from MaAsLin
analysis: blue for higher abundance in the hyposmic group and red for lower. The outermost ring indicated the prevalence of each genus in
the subjects. Significant genera were flagged with ‘+’ (FDR < 0.05) or ‘*’ (FDR < 0.01). e Boxplots of α diversity in the replication dataset with P-
values. f Bar graph displayed the MaAsLin analysis coefficients for 13 genera that showed consistent associations with olfactory function
between the discovery and replication datasets.

Fig. 3 Differences in the nasal olfactory index (NOI) between hyposmic and normosmic groups and its performance in reclassification
accuracy of olfactory dysfunction. a Violin plots depicted the distribution of the NOI across various different demographic and behavioral
factors, with P-values indicating statical differences. b Heatmap illustrated the Spearman correlation coefficients between differentially
abundant nasal genera and NOI. Significant correlations were marked with ‘+’ (FDR < 0.05) or ‘*’ (FDR < 0.01). c Receiver Operating
Characteristic (ROC) curves demonstrated the enhancement in reclassification accuracy for hyposmia by incorporating the NOI alongside
traditional factors (sex, age, BMI, and smoking status). Area under the curve (AUC) values for each model were provided, with statistically
significant differences indicated by ‘*’ (P < 0.01).
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Fig. 4 Differences in the nasal microbiome between mild cognitive impairment (MCI) and cognitively healthy groups. a Boxplots
illustrated α diversity indices (ACE, Chao1, and Shannon) in MCI and cognitive healthy groups, with statistical significance indicated by
P-values. b Principal Coordinates Analysis (PCoA) plot based on Bray–Curtis distance visualizes differences in microbial community structure
between groups. Results from PERMANOVA (Adonis R² and P-value) were displayed. c Cluster analysis of the nasal microbiome biotypes,
depicted in different colors (C1 in red, C2 in blue, D in green, M in purple, and S in orange), with key genera characterizing each biotype. d Bar
graph compared the prevalence of MCI across different nasal microbiome biotypes, with statistical significance denoted by P-values.
e Mediation analysis diagram demonstrated the mediating effects of the nasal microbiome on the associations between olfactory and
cognitive functions, quantified by β coefficients and P-values.
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Considering that only microbial composition but not individual
genera (all FDR > 0.05, Supplementary Table 4) was linked to
cognitive function in our population, we explored the potential
role of the overall nasal microbial structure indicated by PCoA as a
mediator in the association between olfactory function and
cognitive function. Of note, the microbial structure PCoA2
potentially mediated approximately 14% of the association of
olfactory dysfunction with MCI (P= 0.04), although further
adjustment of age attenuated such mediation (Fig. 4e).

DISCUSSION
Among community-based older adults, we observed distinct
microbial structural compositions and abundances of bacterial
genera between the hyposmic and normosmic groups. In
addition, we identified five nasal biotypes, and the biotype
dominated by Corynebacterium was associated with lower odds of
MCI compared to the biotypes dominated by the genera
Dolosigranulum and Moraxella. Moreover, our results indicated a
potential association between olfactory function and nasal
microbiome composition in older adults, with the nasal micro-
biome potentially mediating the association of olfactory function
with cognitive function.
Given that 75–95% of early neurodegenerative patients exhibit

impaired olfactory function [34, 35], the molecular mechanisms
linking olfactory function to neurodegenerative progression
warrant further investigation. The nasal cavity, a portal for
pathogens and toxins, hosts a diverse microbiota. In our study,
significant differences in 41 genera between the two olfactory
groups were primarily found in the phyla Firmicutes (Streptococ-
cus, Granulicatella), and Proteobacteria (Pseudomonas, Acidovorax),
aligning with results from a smaller study (n= 67) [15]. The
composite NOI significantly enhanced the performance of the
model with traditional risk factors to reclassify olfactory function
groups among older adults, further supporting the importance of
nasal microbiota in maintaining healthy olfactory function.
Furthermore, previous studies indicated that the nasal micro-

biome, particularly in the nasopharynx and oropharynx, plays a
crucial role in neuro-regulation [36, 37]. In older adults, immune
senescence and weakened immune responses may facilitate the
upward spread of nasal bacteria, escalating proinflammatory
markers and diminishing immune stress management [38].
Additionally, microorganism-human tissue interactions are
mediated by microbial metabolites, such as short-chain and
branched-chain amino acids, and hormone-like molecules [39–41].
Over the past decade, evidence has shown that microbiota could
affect the central nervous system’s physiology and neurochem-
istry [42, 43]. When pathogenic microbiota penetrates the brain
via the nasal cavity, they can significantly alter cerebral
metabolism and endocrine signaling pathways [44, 45]. Therefore,
the nasal microbiome’s composition, changes, and interactions are
crucial for cognitive functions [46].
Similar to the enterotypes [47], biotypes using the nasal

microbiome data may also have health implications. Our study
observed that the biotype dominated by Corynebacterium was
positively associated with cognition, and prior evidence suggested
that immunoregulatory mechanisms might underlie such an
association. For example, Corynebacterium accolens has been
shown to modulate dermal γδ T cell populations, especially the IL-
17A-producing Vγ4+ γδ T cells [48]. IL-17A plays a vital role in
enhancing host immune responses by interacting with various
immune cells [49], and it is crucial for maintaining systemic energy
homeostasis and emerges as a significant factor in neuroimmu-
nometabolism [50]. Moreover, Corynebacterium pseudodiphtheriti-
cum, a commensal found in the human nasopharyngeal mucosa,
has been recognized for its immunomodulatory properties that
confer health benefits [51, 52], including increased resistance to
bacterial and viral pathogens [53]. These mechanisms might help

explain the observed beneficial cognitive associations with
biotype dominated by Corynebacterium.
Previous evidence suggested that nasal microbiomes can enter

the brain via the olfactory pathway, potentially damaging
neurons and contributing to neurodegenerative diseases
[46, 54]. The nasal microbiome originates at the cribriform plate,
extends through the olfactory epithelium, and then spreads to
other brain regions, impacting brain metabolism and neuronal
physiology [55, 56]. Previous studies have linked nasal pathogenic
flora to Alzheimer’s and Parkinson’s diseases, affecting central
nervous and immune systems [57, 58]. Thus, differences in nasal
microbiomes could be a putative microbial mechanism explain-
ing differences in cognitive abilities among older adults. The
inconsistencies in study results arise from variations in nasal swab
collection methods, as well as small, culturally diverse study
populations [34, 58, 59].
To our knowledge, this study is among the largest to explore

the association of nasal microbiome’s diversity and structure with
olfactory function, and the first study to explore the underlying
role of the nasal microbiome in the association between olfactory
and cognitive functions. However, due to its observational design,
our study cannot establish a causal link among these associations.
While we observed significant associations, the specific underlying
mechanisms of these relationships remain unclear. Additionally,
the cross-sectional design is subject to residual confounding, even
after adjustments for key covariates. Longitudinal studies are
needed to establish temporal sequences and causal links. Future
research incorporating longitudinal cohorts could provide deeper
insights into the dynamics of nasal microbiome, olfactory function
and cognitive function. Furthermore, our method for assessing
olfactory function was not the gold standard, specifically the
comprehensive Sniffin’ Sticks test. However, the questionnaire
employed was validated for reliability and validity, demonstrating
a high correlation with gold standard scores has proved to be
cost-effective for use in large population-based studies [60].
Additionally, we only sampled the anterior nostril for microbiome
analysis, and our microbiome data may not be generalized to the
overall nasal microbiome.

CONCLUSION
This study provides evidence for a potential link between olfactory
function and the nasal microbiome, suggesting a microbial
mechanism associated with hyposmia and MCI in older adults.
Clustering analysis reveals significant differences in the prevalence
of MCI among older adults with different biotypes. Furthermore,
the results support further study into the role of the nasal
microbiome in mediating the association between olfactory and
cognitive functions.

DATA AND MATERIALS AVAILABILITY
Sequencing data during the current study can be viewed in
NODE database (https://www.biosino.org/node/project/detail/
OEP005489) and are available upon acceptance of the publica-
tion, and code will be made available upon reasonable request.
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