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Growth and differentiation factor 15 (GDF15) is a significant player in cellular stress and energy homeostasis. GDF15 is elevated in
cancer cachexia, chemotherapy-induced anorexia, hyperemesis gravidarum, and mitochondrial disorders. Here we analyze GDF15
in anorexia nervosa (AN), a psychiatric disorder characterized by low weight and persistent restriction of food intake. While no
significant difference in plasma GDF15 concentration was seen across the three included groups; active AN, recovered AN, and
healthy controls, a subgroup of study participants with high GDF15 plasma was noted to a significantly higher extent in the AN
groups. Sparse partial least squares discriminant analysis (sPLS-DA) identified six markers related to inflammatory processes or
cellular stress from a set of 74 markers that distinguished AN with high GDF15 from the rest, with fibroblast growth factor 21
(FGF21) being the most important contributor. Moreover, FGF21 plasma concentration was significantly higher in the group with
high GDF15, suggesting an involvement of mitochondrial dysfunction. In fact, mitochondrial polygenic risk score (PRS) was
significantly associated with AN risk in a large AN case-control cohort. In line with this, we also report elevated liver expression of
GDF15 in the anx/anx mouse displaying anorexia associated with mitochondrial dysfunction. We conclude that mitochondrial
dysfunction should be further explored in AN. Clinical trials of GDF15 immunoneutralization in patients with AN and high levels of
GDF15 are worthy of consideration.
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INTRODUCTION hindbrain to co-ordinate an “iliness response” including

Anorexia, i.e., low appetite and/or food intake, accompanies
several conditions including cachexia of cancer and inflamma-
tory disorders, chemotherapy-induced anorexia, nausea and
vomiting of pregnancy, hyperemesis gravidarum, and the
psychiatric disorder anorexia nervosa (AN). The potent
appetite-inhibiting cytokine growth and differentiation factor
15 (GDF15), previously known as macrophage inhibitory
cytokine-1 (MIC-1) [1], has been reported as elevated in all
these conditions [1-4], although to our knowledge, only two
studies with small sample sizes (n=16/20) have explored
GDF15 in AN [5, 6]. This cytokine, originally identified as a
product of activated macrophages, is now well established as a
cellular and nutritional stress-induced hormone that acts on the

anorexia, nausea, vomiting, physical inactivity, and the activa-
tion of neuroendocrine stress responses [3, 71. It is increased in
obesity [8, 9] and overfeeding appears to activate a stress
response in the liver, the major source for systemic elevations of
this hormone [10]. Nevertheless, animals and humans lacking
GDF15 are not obese [11], while overexpressing GDF15 in mice
results in reduced body weight [12]. Additionally, data indicate
that GDF15 causes anorexia by inducing nausea and/or by
engaging emetic neurocircuitry in the area postrema and
nucleus tractus solitarius [1]. The receptor for GDF15, glial cell-
derived neurotrophic factor receptor alpha-like (GFRAL), is
exclusively expressed in these two brain regions [13-15].
Activation of GFRAL reduces food intake and body weight in
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animal models [12]. Inhibition of GDF15 in mice and humans
reverses cancer cachexia [16, 17], including reducing anorexia
and emesis [4], restoring muscle function as well as physical
performance [18]. Lastly, intense exercise has been shown to
increase circulating GDF15 in humans [19, 20].

The two small studies that previously explored GDF15 in
females with active AN reported increased serum levels [5, 6]. Two
months of nutritional therapy leading to partial weight recovery
significantly decreased GDF15 in AN, even if the concentrations
remained significantly higher in AN compared with healthy
controls [5]. AN is a severe mental disorder with a high mortality
rate, characterized by persistent restriction of food intake, fear of
gaining weight, and concerns about body weight and shape [21].
The twin-based heritability of AN is estimated to be 50-60% and
genome-wide association studies (GWAS) have to date identified
eight variants in the genome significantly associated with AN risk
[22]. A puzzling part of AN is a seemingly paradoxical response to
negative energy balance, wherein patients actively strive to
consistently expend more energy than they consume, resulting
in continued loss of body weight and low energy stores. Loss of
weight promotes changes in hormonal and other signals from
adipose tissue (e.g., reduced leptin) and gut to instruct the brain to
increase appetite and reduce energy expenditure, thus restoring
energy stores and ensuring survival [23]. However, individuals with
AN reside in persistent severe starvation, emaciation, and negative
energy balance often for many years, and frequently revert to that
state even after therapeutic weight restoration as if their biology
defends their low weight state. The definition of the molecular
underpinnings of anorexia, i.e,, the loss or absence of appetite,
might therefore define drug targets supporting renourishment
and weight gain in AN.

The anx/anx mouse is a genetically spontaneously arisen model
mimicking central aspects of AN; starvation and underweight [24].
The mouse eats less compared with its healthy littermates despite
unrestricted access to food, subsequently becomes emaciated,
and dies prematurely around three weeks of age. A range of
deviations in hypothalamic neuropeptidergic and neurotransmit-
ter systems have been documented in the anx/anx mouse [25].
The mouse exhibits a dysfunction in complex | of the oxidative
phosphorylation system of the mitochondria present before the
anorectic phenotype develops [26]. A small study in humans also
described a similar mitochondrial dysfunction in leukocytes from
patients with AN [27]. Interestingly, GDF15 is reported to be
elevated in other animal models of mitochondrial dysfunction
[28, 29], and human mitochondrial disorders [30] and has
therefore been proposed as a biomarker to screen for mitochon-
drial disorders [31].

Based on our hypothesis that elevated plasma GDF15 in AN
disrupts energy homeostatic regulation, because of mitochondrial
dysfunction, we evaluated plasma levels of GDF15 in the to date
largest cohort of women with active (n =70) or recovered from
AN (n = 89) and normal-weight women with no histories of eating
disorders (n=72). We explored potential contributors to the
difference of GDF15 in the two AN groups by feature selection
using a large set of circulating proteins many of but not all of
which are involved in inflammation. Given the genetic basis of AN
[22, 32-34], we further evaluate the association between
mitochondrial function polygenic risk score (PRS), a personalized
genetic risk score based on single nucleotide polymorphisms
(SNPs) within the gene regions associated with mitochondrial
function, and the risk of AN in a larger AN case-control cohort.
Furthermore, we analyze correlations between plasma GDF15 and
the adipose-derived hormone leptin and perform stratified
analyses of typical AN characteristic such as purging behaviors.
Lastly, we evaluated expression of GDF15 and an associated
marker in the liver of the anorectic anx/anx mouse with
established mitochondrial dysfunction.
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MATERIALS AND METHODS

Study participants and design

The study participants were identified from the Swedish sample of the
Anorexia Nervosa Genetics Initiative (ANGI-SE, including in total 4118 AN
cases and 4035 controls). Details on the recruitment procedure for ANGI-SE
have been described previously [35].

For the subcohort that provided plasma, the AN group comprised
women at least 18 years of age at recruitment, meeting DSM-IV criteria for
AN [36] except for amenorrhea, and a minimum of one year since AN onset
(n =70). For those recovered from AN, the inclusion criteria were a history
of DSM-IV AN followed by weight restoration (BMI>20kg/m? and no
eating disorder behaviors for at least a year (AN-REC, n=89). The age-
matched normal-weight controls reported no history of disordered-eating
behavior (CTRL, n = 72).

Exploratory analyses of the two AN groups were done investigating
subtypes: defined by episode(s) of binge eating with loss of control as AN
with binge eating (AN-B, n=26, AN-REC-B n=59) compared to the
complete absence of such episodes as AN without binge eating (AN-noB,
n =37, AN-REC-noB, n = 24); episodes of laxative use (AN-LAX, n =11, AN-
REC-LAX, n = 18) compared to without laxative use (AN-noLAX, n = 58, AN-
REC-noLAX, n = 69); documented self-induced vomiting (AN-VOM, n =29,
AN-REC-VOM, n =46) compared to without self-induced vomiting (AN-
noVOM, n =40, AN-REC-noVOM, n = 41); reported episodes with use of
diuretics (AN-DIU, n = 6, AN-REC-DIU, n = 5) compared to without diuretics
use (AN-noDIU, n =43, AN-REC-noDIU, n =55); and reported compensa-
tory exercise (AN-EXE, n=41, AN-REC-EXE, n=54) compared to
without compensatory exercise (AN-noEXE, n =5, AN-REC-noEXE, n=7).
See Table 1 for detailed characteristics of the study participants. The ANGI-
SE study was approved by the Regional Ethics Review Board in Stockholm.
All participants gave written informed consent. When applicable the
investigators were blinded to group allocation when conducting the
analyses.

Blood sampling

Blood samples were collected in EDTA tubes at a hospital near the
participant’s home address, sent to Karolinska Institutet Biobank with
overnight mail, and processed upon arrival. After centrifugation, plasma
samples were stored at —80 °C. All samples were exposed to two freeze-
thaw cycles prior to analyzing GDF15 concentrations.

Plasma GDF15 concentrations

We measured GDF15 in plasma by quantitative sandwich enzyme
immunoassay (n=6 plates, R&D Systems Quantikine® ELISA assay,
Minneapolis, MN). In brief, plasma samples were diluted fourfold. Samples
and standards were pipetted in duplicates into the wells and any GDF15
present was bound by the immobilized antibody on the bottom of the
wells. After adding horseradish peroxidase (HRP)-conjugated polyclonal
antibody recognizing GDF15 followed by a substrate solution, color
developed in proportion to the amount of GDF15 bound in the initial step.
The absorbance was measured on a plate reader (Spectramax Plus,
Molecular Devices, San Jose, CA).

A very common histidine to aspartate variant at position 202 of the
GDF15 pro-peptide in humans substantially affects its measurement by the
R&D assay [37]. We here corrected the concentration of GDF15 based on
this variant as described by Karusheva et al. [37], utilizing the genetic data
collected in ANGI-SE [35]. All statistical analyses were conducted on the
genotype-corrected concentrations.

Plasma leptin

We measured leptin in plasma by an in-house quantitative sandwich time-
resolved fluorescence (DELFIA") immunoassay (n=7 plates) using
antibodies and standards from R&D Systems, Minneapolis, MN, and
Europium-labelled Streptavidin, buffers and enhancement solution from
Revvity, Waltham, MA). In brief, the microtiter plate was coated with a
monoclonal anti-leptin capture antibody. Standards, controls, and samples
were added to the plate in duplicate. After incubation and washing, a
biotinylated polyclonal anti-leptin detection antibody was added to the
plate. After incubation and washing, Europium-labelled Streptavidin was
added. After another wash Enhancement Solution was added to the wells
which allowed the fluorescence to be generated in the wells when
illuminated. The intensity of the time-resolved fluorescence is directly
proportional to the concentration of leptin in the standards, controls, and
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Table 1. Sex, age, BMI, years since AN onset, and eating disorder
behaviors of the study participants by group, significant differences
are marked in bold and with a AN vs CTRL, b AN vs AN-REC.

Characteristics AN AN-REC CTRL
n 70 89 72
Women (%) 100 100 100
Age at sample (years) 26 26 26
(median [IQR]) (24.0-31.0) (24.0-31.0)  (24.0-31.0)
Age of first AN onset 16 16
(years)
(median [IQR]) (14.0-19.0) (14.0-19.0)
BMI at sample (kg/m?) 16 22 23
(median [IQR]) (15.2-16.7)>>  (20.8-24.5)  (22.0-26.0)
Minimum BMI during 13.7 16.7
AN (kg/m?)
(median [IQR]) (12.2-14.4)° (14.9-17.9)
Years since AN onset 10 10
(median [IQR]) (6.0-14.0) (6.0-15.0)
Length of amenorrhea 4.5 1.5
(years)
(median [IQR]) (2.0-9.0)° (0.5-3.0)

Subtype (n [%])
with Binge-eating 26 (41.3%)

37 (58.7%)

59 (71.1%)
without Binge-eating 24 (28.9%)
Laxative use;

Never 58 (84.1%)
Ever 11 (15.9%)

Self-induced vomiting;

69 (79.3%)
18 (20.7%)

Never 40 (58%) 41 (47.1%)

Ever 29 (42%) 46 (52.9%)
Diuretic;

Never 43 (87.8%) 55 (91.7%)

Ever 6 (12.2%) 5 (8.3%)
Compensatory exercise;

Never 5 (10.9%) 7 (11.5%)

Ever 41 (89.1%) 54 (88.5%)

samples. The leptin analysis was undertaken on the AutoDELFIA” analyzer
(Revvity, Waltham, MA).
We analyzed the correlation between plasma leptin and plasma GDF15.

Plasma markers related to inflammatory processes and
cellular stress

In a recent paper from our group exploring the Olink Proteomics
inflammation panel (Uppsala, Sweden) utilizing the same cohort as here,
we quantified the plasma concentrations of 74 immune activation markers
[38]. The log2-transformed normalized expression data of these markers,
together with leptin and GDF15, were used to select the most
discriminative features that distinguished individuals with high GDF15
(>800 pg/ml) from the remaining individuals (<800 pg/ml) by sparse partial
least squares discriminant analysis (sPLS-DA).

Mitochondrial polygenic risk score

We constructed a PRS of mitochondrial genes for each individual in ANGI-
SE, which aggregates genetic risk for each individual from single
nucleotide polymorphisms (SNPs) located within the regions of mitochon-
drial genes, using PRS-continued shrinkage (CS) [39]. Mitochondrial genes
(n=1136) were obtained from MitoCarta 3.0 database [40]. MitoCarta is an
inventory of human and mouse genes with strong evidence for
mitochondrial function. Genotype quality control of the ANGI-SE sample
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has been described in detail previously [22, 41] which resulted in 4054 AN
cases and 3922 controls. AN GWAS summary statistics [22] without
Swedish participants were used as the discovery dataset providing effect
sizes and standard errors for PRS-CS [39] to get posterior SNP effect size
estimates. We included common non-ambiguous SNPs within the listed
regions with genes related to mitochondrial function (Supplementary
Table 1) with high imputation quality (INFO>0.8) and minor allele
frequency (MAF) = 0.01 in the PRS calculation, resulting in a subset of 2475
SNPs. The 1000 Genomes Project Phase 3 EUR reference was used as
linkage disequilibrium reference panel. After applying the posterior SNP
effect size estimates from PRS-CS across chromosomes to get individual
PRS via PLINK 1.9 [42], these scores were then standardized in R (version
4.3.2) [43] for further regression analyses.

Animals

Experiments involving animals followed the procedures approved by the
ethical committee (Stockholms norra djurforsoksetiska namnd) and were
designed to minimize suffering. An intercross was set up using
heterozygous anx breeding pairs (B6C3Fe-a/a—anx A/+a) acquired from
the Jackson Laboratory (Bar Harbor, ME). All mice were genotyped using
simple sequence length polymorphism markers mapped to the subchro-
mosomal region, where the anx mutation is located. Phenotypic
characterization was based on body weight. The mice were housed in
ventilated cages at 25°C in an animal room with a 12 h light-dark cycle
(lights on at 7:00 AM) and with unrestricted access to the mother’s milk.
Pups were sacrificed by decapitation between postnatal days (P) 19-21,
with the day of delivery considered P1. The liver was rapidly dissected and
frozen in ice-cold isopentane. We included seven liver samples from anx/
anx and six from healthy wild-type siblings (+/+ or anx/+), all females. All
analyses were conducted blinded of genotype.

Quantitative polymerase chain reaction (qPCR)

Liver tissues were homogenized with ZR BashingBead Lysis Tubes
(S6012-50, Zymo Research, Irvine, USA) in Trizol Reagent (15596018,
Invitrogen, Carlsbad, USA). Total RNA was extracted using Direct-zol™ RNA
Miniprep (R2050, Zymo Research) according to the manufacturer’s
instructions. DNase-treated RNA was reverse transcribed to ¢cDNA using
SuperScript™ Il First-Strand Synthesis System (18080051, Invitrogen).
Reactions were performed in three replicates with primers for GDF15 (5'-
AACCCCTGGTCTGGGGATAC-3’ (forward); 5/-CATGTCGCTTGTGTCCTTTCAG-
3'(reverse)), FGF21 (5-CCTTGAAGCCAGGGGTCATT-3" (forward); 5-GGAT
CAAAGTGAGGCGATCCA-3/(reverse)), and GAPDH (5-ACCCTTAAGAGG
GATGCTGC-3' (forward); 5'-CCCAATACGGCCAAATCCGT-3'(reverse)) using
iTaq™ Universal SYBR® Green PCR kit (1725124, Bio-Rad, Hercules, USA) on
a QuantStudio™ 6 Real-Time PCR Instrument (ThermoFisher, Waltham,
USA). The PCR consists of 95 °C for 10 min, 95°C 15s —> 60 °C for 60 s for
40 cycles, and 72 °C for 5 min. The measured GDF15 transcript abundance
was normalized to GAPDH using the delta-delta Ct method.

Statistical analyses

Group differences in plasma concentrations of GDF15 and leptin in AN, AN-
REC, and CTRL were analyzed using the Kruskal-Wallis test since the
concentrations were not normally distributed. This was followed by post-
hoc Dunn's test with Bonferroni correction to evaluate pairwise
comparisons. ANCOVA was used to control for the effect of BMI when
comparing the leptin levels of AN and AN-REC, followed by Tukey’s test.
Associations among GDF15, body mass index (BMI), leptin, and immune
activation markers were assessed using Spearman correlation. Principal
component analysis (PCA) was used to identify multi-dimensional outliers
in the immune activation markers dataset. sPLS-DA was then used to
discriminate the groups of individuals with high GDF15 (>800 pg/ml) and
the rest of the individuals (<800 pg/ml). A five-fold, ten-repeat cross-
validation procedure was used to select the number of components and
variables of the sPLS-DA model, and balanced error rate to evaluate model
performance. The sPLS-DA results were supported by other feature
selection techniques such as Lasso regression (data not shown). Group
differences in plasma concentrations of GDF15 in AN-B vs. AN-noB, AN-
REC-B vs. AN-REC-noB, AN-LAX vs. AN-noLAX, AN-REC-LAX vs. AN-REC-
noLAX, AN-VOM vs. AN-noVOM, AN-REC-VOM vs AN-REC-noVOM, AN-DIU
vs AN-noDIU, AN-REC-DIU vs AN-REC-noDIU, AN-EXE vs AN-noEXE, AN-REC-
EXE vs AN-REC-noEXE were tested using the nonparametric Mann-Whitney
U test, and effect sizes were measured by Cohen’s d. To evaluate the
associations between high plasma GDF15 and AN diagnosis and behaviors,
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Fig. 1

Growth and differentiation 15 (GDF15) concentration in plasma. A Plasma GDF15 in anorexia nervosa (AN), recovered anorexia

nervosa (AN-REC), and healthy controls (CTRL). The median is shown as a straight line and the box denotes the interquartile range.
B Correlations between plasma GDF15 and body mass index (BMI) in AN (—0.32, p = 0.0084, 95% CI [-0.53, —0.079]), AN-REC (0.29, p = 0.0058,
95% CI [0.082, 0.48]), CTRL (—0.15, p = 0.21, 95% Cl [—0.38, 0.09]), and all groups combined (—0.031, p = 0.64, 95% Cl [—0.16, 0.10]). The
colored lines correspond to the correlation for all groups, and for the AN, AN-REC, and CTRL groups separately. The shaded area around each

linear fit line represents a 95% confidence interval (Cl).

the Chi-square test was used, whereas Fisher’s exact test was used when at
least one cell of the contingency tables contained values below 5. Phi
Coefficient (@) and odds ratio (OR) were reported as effect size estimates
for the Chi-square and Fisher’s exact test, respectively. Logistics regressions
were conducted to examine the associations between AN risk and
mitochondrial function PRS, including the first ten genetic principal
components (PCs) as covariates. The ANGI-SE cohort was then divided into
quartiles based on the mitochondrial PRS level (i.e., low, medium-low,
medium-high, and high), with the lowest quartile serving as the reference
group. The risk of AN was then compared across these mitochondrial PRS
quartiles using logistic regressions, adjusting for the first ten genetic PCs.
Finally, linear regression was conducted to test the association between
GDF15 and FGF21 level and mitochondrial PRS. All analyses were carried
out using R programming language version 4.3.2. Graphs were made using
the R package ggplot2 [44]. sPLS-DA was carried out by R package
mixOmics (v6.26.0) [45].

RESULTS

The demographic and clinical characteristics of the cohort are
summarized in Table 1. BMI at sampling and minimum BMI during
AN were significantly lower, whereas the duration of amenorrhea
was significantly longer in AN vs. AN-REC. The other characteristics
were not significantly different between the two patient groups.
Note that BMI at sampling was not significantly different between
AN-REC and CTRL.

Plasma GDF15

Analysis of the genotype-corrected plasma concentration of
GDF15 revealed no significant differences across groups
(Fig. 1A). However, a subgroup of individuals had high concentra-
tions of GDF15 (>800 pg/ml), with a significantly larger proportion
found in the AN (n =9) and AN-REC groups (n = 10) compared to
CTRL (n=2) (p=0.038). Plasma GDF15 levels were negatively
correlated with BMI in the AN group (p = 0.0084), while a positive
correlation was found in the AN-REC group (p = 0.0058), (Fig. 1B).
Inter-assay variability ranged between 13-15%.

Plasma leptin and GDF15

The plasma concentration of leptin was significantly reduced in
AN and AN-REC compared with healthy controls, despite no
difference in mean BMI at the time of sampling between the latter

SPRINGER NATURE

two groups. The plasma concentration of leptin in AN-REC was
significantly higher than in the AN group (p < 0.001) (Fig. 2A) even
after controlling for BMI (p =0.01). Plasma leptin concentration
was significantly correlated with BMI in all groups (Fig. 2B).
Furthermore, plasma GDF15 was positively correlated with leptin
concentration only in the AN-REC group (p = 0.028) (Fig. 2C).

Plasma markers of inflammatory processes or cellular stress
and GDF15

A preliminary unsupervised PCA identified no major multi-
dimensional outliers but also showed no separation between
the group with high GDF15 concentration and the others
(Supplementary Fig. 1). sPLS-DA revealed discrimination between
the profiles of markers related to inflammatory processes or
cellular stress of the two groups (Fig. 3A). The tuned sPLS-DA
model (balanced error rate =0.21), yielded by component and
variable selection, consisted of two components, of which the first
one best separated the group with high GDF15 from the rest by
explaining 13% of the variance in GDF15 status. Six proteins
constituted the first component, of which FGF21 was the major
contributor (Fig. 3B). Furthermore, differential protein expression
analysis identified that FGF21 was significantly higher in the high
GDF15 group vs. the rest and was the only protein with a log2 fold
change larger than 1.5 (Fig. 3C). Plasma FGF21 was significantly
higher in the group of individuals with a high concentration of
GDF15 in plasma (>800 pg/ml), compared with the rest of the
individuals (p = 0.001). Group differences of other plasma markers
identified by sPLS-DA and their correlation estimates with plasma
GDF15 concentration are included in Supplementary Fig. 2.

As a proxy for recent physical exercise, we also reevaluated
plasma levels of IL6 reported in our previous publication [38] and
detected no significant difference between individuals with high
GDF15 and the rest of the individuals. We also saw no significant
correlation between plasma concentrations of IL.-6 and GDF15
(Supplementary Fig. 2K, L).

Mitochondrial PRS

Based on GDF15 and FGF21 in combination being used as markers
of mitochondrial disorders [31] we evaluated PRS of mitochondrial
function. Each standard deviation increase in the mitochondrial
PRS was associated with 1.05 times greater odds of AN risk (95% Cl

Translational Psychiatry (2025)15:215
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(CTRL). The median is shown as a straight line and the box denotes the interquartile range. B Correlations between plasma leptin and BMI in
AN (0.28, p = 0.021, 95% ClI [0.037, 0.49]), AN-REC (0.59, p = 1.94e-09, 95% ClI [0.43, 0.71]), CTRL (0.55, p = 5.54e-07, 95% ClI [0.36, 0.70]), and all
groups combined (0.81, p 2.20e-16, 95% Cl [0.75, 0.85]). C Correlations between plasma GDF15 and leptin in AN (—0.053, p = 0.67, 95% ClI
[—0.30, 0.20]), AN-REC (0.24, p = 0.028, 95% CI [0.020, 0.43]), CTRL (—0.16, p = 0.18, 95% CI [—0.39, 0.08]), and all groups combined (—0.013, p =
0.85, 95% Cl [—0.15, 0.12]). The colored lines correspond to the correlation for all groups, and for the AN, AN-REC, and CTRL groups separately.
The shaded area around each linear fit line represents a 95% confidence interval.
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TGF-a Transforming Growth Factor alpha.

[1.00, 1.09], p=0.045). Individuals in the highest quartile of
mitochondrial PRS had 1.13 times higher odds of AN compared to
those in the lowest quartile (95% CI [1.00, 1.28]). There was a trend
that the risk of AN increased across the mitochondrial PRS
quartiles (Fig. 4), though larger sample sizes are needed to confirm
these findings. However, no significant correlation was found
between PRS scores and GDF15 level (p = 0.75) as well as FGF21
level (p =0.29).

GDF15 and FGF21 expression in anx/anx liver

The relative expression of GDF15 in the liver of the anorectic anx/
anx mouse was significantly higher compared with their wild-type
siblings (Fig. 5A), while FGF21 was significantly lower (Fig. 5B).

Plasma GDF15 and eating disorder characteristics

To further analyze GDF15 in relation to AN, we performed an
exploratory analysis of plasma levels and eating disorder
characteristics.  Nominally  significantly  higher  plasma
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concentrations of GDF15 were detected in the group of active
AN patients who reported laxative use (p =0.010, d = 0.91), self-
induced vomiting (p =0.017, d = 0.75), or compensatory exercise
(p=0.002, d=0.74) compared with patients who reported no
history of these behaviors (Supplementary Fig. 3). No significant
differences were found in the group of AN-REC comparing those
with and those without these behaviors, nor were any differences
seen between those with vs without reported binge-eating
behavior, or with vs without diuretic use in AN or AN-REC.

Supplementary Table 2 summarizes the clinical and eating
disorder characteristics in the groups with elevated (>800 pg/ml)
vs normal plasma GDF15(<800 pg/ml). Supplementary Table 3
shows the associations with these traits of the same two groups.
Reported use of diuretics was nominally significantly associated
with high plasma GDF15. Only two individuals in the full cohort,
both within the group with high GDF15, were diagnosed with type
2 diabetes and cancer, thus no analysis of a potential association
with these diagnoses was possible.
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DISCUSSION

In contrast to smaller studies [5, 6], we did not detect any
significant differences in plasma GDF15 concentration across the
three groups; AN, AN-REC, and healthy controls. However, we
found that a subgroup of women of a significantly larger number
in the AN groups, have increased plasma GDF15 concentrations.
We also observed a significant positive correlation between
GDF15 and BMlI, as well as with plasma leptin, in the AN-REC
group. In the active AN group we only see a significant negative
correlation between GDF15 and BMI, but not leptin, which may be
explained by the near-zero concentrations of plasma leptin in this
group. We speculate that the opposing correlations between
GDF15 levels in plasma and BMI in AN (negative) vs AN-REC
(positive) may be related to the history of starvation in the latter,
since no correlation is seen in the control group with similar BMIs.
When combining this plasma GDF15 and leptin data with data on
74 markers related to inflammatory processes or cellular stress
from a previously published report from our group [38] in a sPLS-
DA, we identified six markers that distinguished individuals with
high plasma GDF15 from the rest of the individuals in the AN
groups. Of these, FGF21 was defined as the most important
contributor (see Supplementary Text). Plasma FGF21 was sig-
nificantly higher only in the group of individuals with high GDF15.
As mentioned above, FGF21 and GDF15 are elevated in animals
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Fig. 4 Odds Ratio (OR) with 95% confidence interval (95% Cl) for
anorexia nervosa (AN) by mitochondrial polygenic risk score (PRS)
quartiles in ANGI-SE. The risk of AN is estimated using OR with 95%
Cl, with the lowest PRS quartile (1) as the reference group. The
mitochondrial polygenic risk score (PRS) quartiles are defined as
follows: 1 =low, 2 = mid-low, 3 = mid-high, and 4 = high.
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[28, 29] as well as humans with mitochondrial dysfunction [30],
and have been proposed to be used in combination as biomarkers
to screen for pediatric mitochondrial disorders [31]. It is
established that complex | dysfunction within the liver seen in
e.g., Cockayne syndrome, gives rise to high concentrations of
circulating GDF15 and FGF21 resulting in suppressed food intake,
which is reversed by blocking GDF15 alone [46]. Thus, we
speculate that mitochondrial dysfunction may be a factor in
explaining the elevated plasma GDF15 seen in individuals
predominantly belonging to the patient groups. In line with this,
PRS calculated with SNPs within genes associated with mitochon-
drial function show a significant association with AN status in the
full ANGI-SE cohort, suggesting a potential role of mitochondrial
genes in AN risk and highlighting possible shared genetics
between mitochondrial dysfunction and AN. The lack of correla-
tions between the PRS scores and plasma levels of GDF15 and
FGF21 were expected based on the in the context of PRS
calculations small sample size used here. We also show
significantly higher GDF15 expression in the liver from the anx/
anx mouse compared to their wild-type siblings, whereas the liver
expression of FGF21 was significantly lower in the anx/anx mouse,
which was not in line with our hypothesis. We were however
unable to measure the two proteins in anx/anx plasma, due to the
small blood volume of these young and emaciated mice and thus
cannot with certainty say that the plasma levels of FGF21
correspond to the level of expression of FGF21 in liver. The
anorectic mouse model also displays dysfunction in complex | of
the mitochondrial oxidative phosphorylation system [26], which
has similarly been reported in a small cohort of patients with AN
[27]. This indicates that further studies on mitochondrial dysfunc-
tion in AN should be prioritized.

FGF21 is another important energy metabolic regulator [47].
Animal studies show that the injection of FGF21 leads to elevated
energy expenditure and adiponectin secretion from adipose tissue
[48]. By simple diffusion, FGF21 can cross the blood-brain barrier
and bind to its receptor expressed throughout the brain,
particularly in the hypothalamus [49], which is the central control
of feeding and energy expenditure. For example, FGF21 targets
the lateral hypothalamus and acts on GABAergic neurons, which
in turn stimulates thermogenesis and energy expenditure that
leads to reduced weight gain [50]. FGF21 also activates
glutamatergic neurons in the ventromedial hypothalamus to
reduce sugar intake [51]. Moreover, subcutaneous administration
of FGF21 increases the expression of the orexigenic neuropeptide
AgRP and NPY in the arcuate nucleus of the hypothalamus [52]. In
the context of AN, contradictory results on FGF21 levels in patients
compared to controls have been reported. In a cohort of 11
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Fig. 5 Liver expression of growth and differentiation factor 15 (GDF15) and fibroblast growth factor 21 (FGF21) in anorectic mice.
A Relative expression levels of GDF15 and B FGF21 in anx/anx and wild-type female mice determined by qPCR. The bar charts present values

as mean = SD.
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patients and 12 controls, Pouneh et al. [53] reported significantly
higher FGF21 in active AN patients, while Ivana et al. [54] showed
reduced plasma FGF21 in AN patients in a cohort with 17 patients
and controls. In Nilsson et al. we detected no difference in plasma
FGF21 in active AN (n = 113), recovered AN (n = 113) and controls
(n = 114) [36]. This despite that FGF21 expression is reported to be
strongly induced by fasting [55] and protein restriction [56], and
regulates energy homeostasis during starvation [55]. Based on this
we were again surprised to see FGF21 expression not upregulated,
but rather downregulated, in the anx/anx mouse liver.

Of note, lower plasma leptin levels were observed not only in
AN but also in AN-REC compared to healthy controls, despite the
latter two groups having similar mean BMI. Previous data on leptin
in individuals recovered from AN have been mixed, while some
studies have reported that serum leptin rises with weight recovery
[57, 58] and even reaches values above those observed in controls
matched for BMI [59], others report normal leptin in both
cerebrospinal fluid and serum with long term recovery [60]. Thus,
the potential role of leptin in AN recovery remains to be
established.

As with leptin, GDF15 is related to physical activity. Although
low leptin is speculated to play a role in the increased physical
activity of AN [61], GDF15 is reported to markedly increase with
intense exercise in humans as well as mice [19, 20], and we here
detected increased plasma GDF15 in the group with active AN
reporting compensatory exercise. However, we lack information
on physical activity directly prior to sampling. As a proxy for recent
intense exercise [62], we compared plasma concentration of the
exercise-induced myokine IL6 in the group of individuals with
high vs. normal plasma GDF15 but saw no differences. Thus, this
indicates that the increased GDF15 seen in the group of
individuals here is unlikely to be related to intense exercise prior
to sampling.

In stratified analyses, we found that individuals with active AN
who report compensatory behaviors, i.e., laxative use, self-induced
vomiting, and as already mentioned compensatory exercise, have
nominally significantly higher plasma GDF15 than individuals with
active AN reporting no such behaviors. Purging behaviors were
not associated with higher plasma GDF15 in AN-REC.

This is the to date largest study evaluating GDF15 levels in AN.
The inclusion of samples from individuals recovered from AN, data
from anorectic animals as well as genetic data gives strength to
the study. A limitation of this study is that we did not have
information about the state of the participants, in particular fasted
vs fed, when sampling was done. However, little variation in
GDF15 concentration has been reported with meals [63], fasting,
and refeeding [64]. One study reported peak plasma GDF15
concentration after 48 h of severe caloric restriction [63], while
other studies have shown no change in plasma GDF15 following
8 weeks or 6 months of low-calorie dietary plans, despite a total
body weight loss of 11 and 13.5%, respectively [65, 66]. We also
did not have information on the time of the day of sampling. But
even if circulating levels of GDF15 vary in a diurnal pattern with
10% plus or minus [64], this should not account for the high
plasma concentrations seen for some individuals in this study.
With the exception of cancer and diabetic diagnoses, we were
limited by having had no information on other factors/conditions
that could influence GDF15 levels in plasma e.g., smoking [67] and
medications. Lastly, due to the small blood volume of the young
and anorectic anx/anx mouse we were restricted to measuring
GDF15 expression in liver rather than GDF15 protein in plasma.

To conclude, we observed no differences in plasma GDF15
across the AN, AN-REC, or CTRL groups, but identified a subgroup
of individuals almost exclusively within the two patient groups
who have high plasma GDF15 concentrations. This leads us to
hypothesize that, if our results are replicated, neutralizing GDF15
may have the potential to support appetite and aid in normalizing
food intake in some individuals with AN. The group of individuals
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with high plasma GDF15 also had higher concentrations of FGF21
in plasma. FGF21 was the main distinguishing contributor of the
group of individuals with high GDF15, which may suggest
mitochondrial dysfunction in this group of individuals with current
or past AN. Associations between mitochondrial PRS and AN risk
further support the potential shared genetic basis between AN
and mitochondrial dysfunction. In line with this, we report
markedly increased GDF15 expression, while FGF21 surprisingly
is reduced, in the liver from the anorectic anx/anx mouse
previously reported to display mitochondrial dysfunction. Thus,
our findings support the continued evaluation of mitochondrial
function in AN, and clinical trials of GDF15 immunoneutralization
in patients with AN and high levels of GDF15 are worth
consideration.

DATA AVAILABILITY
Data supporting the findings of this study can be made available from the
corresponding authors upon request.
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