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Idiopathic and substance-induced forms of psychotic illness afflict millions of people worldwide, and it is largely unknown whether
these two forms emerge through the same molecular mechanisms. Though genetic studies have implicated thousands of genes in
idiopathic psychotic illnesses (e.g., schizophrenia), consensus is lacking regarding which of these genes are most likely to treat
psychotic illness when modulated pharmacologically and, as a result, antipsychotic medications targeting these genes have yet to
be developed. Previous studies suggest that one way to determine if a candidate target gene is likely to lead to an effective
treatment for a given illness is if the gene is implicated by multiple lines of evidence (e.g., genetic, pharmacologic). Here,
pharmacologic, genetic, and clinical data were leveraged to determine if the idiopathic and substance-induced forms of psychotic
illness are related to one another through a common set of genes. A set of medications that cause psychotic illness as a side effect
(“propsychotics”) were identified by analyzing 15 million medication side effects reports from over 100 countries. Gene products
targeted by propsychotics overlapped significantly with those targeted by antipsychotics and for many of the overlapping targets
propsychotics act through a mechanism that was qualitatively the opposite of the mechanism through which antipsychotics act
(e.g., activation vs. inhibition). Propsychotic and antipsychotic target genes were significantly enriched for genes implicated in
schizophrenia by rare loss-of-function genetic variation but not for genes implicated in schizophrenia by common genetic variation.
Only one gene – GRIN2A, encoding the GluN2A subunit of the NMDA glutamate receptor – was implicated in psychotic illness by
propsychotics, rare loss-of-function genetic variation, and common genetic variation. Mining genetic data from a diverse cohort of
30,000 adults treated in a New York City health system, a carrier of a rare loss-of-function variant in GRIN2A with severe psychotic
illness was identified with a clinical course notable for psychotic symptoms and cognitive deficits that are not targeted by current
antipsychotics. Altogether, this report shows how integrating pharmacologic, genetic, and clinical data from large cohorts can
prioritize target genes for novel drug development and align the prioritized targets with specific clinical presentations.
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INTRODUCTION
The idiopathic and substance-induced forms of psychotic illness
both afflict millions of people worldwide and are defined in the
Diagnostic and Statistical Manual (DSM) by the presence of at least
one of five types of psychotic symptoms: delusions, hallucinations,
disorganized thinking, disorganized behavior, and negative
symptoms [1]. Idiopathic forms include schizophrenia, schizoaf-
fective disorder, and bipolar disorder. Substances that induce
psychosis include amphetamines, phencyclidine, and psilocybin.
The symptomatology and longitudinal course of psychotic illness
can vary widely between affected individuals regardless of the
cause [2–4]. Psychotic symptoms can be improved by “anti-
psychotics,” a class of medications that has been used in routine
clinical practice to treat psychotic illnesses since the 1950s.
Antipsychotics have helped millions of individuals and are
featured in the list of essential medicines maintained by the

World Health Organization to meet minimum needs of a basic
health system [5]. Yet, antipsychotics do not treat all the
symptoms of psychotic illness, do not modify disease progression,
and are ineffective or intolerable in up to 75% of affected
individuals, [6–9]. This figure is supported by several studies. The
Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE)
study found that among 1432 patients who received one or more
doses, 74% discontinued the study medication before 18 months
[7]. A second study found a 72% discontinuation rate within
12 months [10]. A third study found a discontinuation rate of 84%
within 33 months [11]. The primary molecular mechanism through
which most antipsychotics are believed to exert clinical effects –
dopamine receptor antagonism – has remained unchanged since
the first antipsychotic chlorpromazine was introduced. Therefore,
a long-standing and urgent unmet need is the development of a
new generation of antipsychotics.
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To develop a new generation of antipsychotics, target genes
(i.e., the gene products through which a medication exerts clinical
effects) must be prioritized for further investigation. A proven
strategy for prioritizing target genes is to leverage knowledge of
the pharmacology of psychotic illness (i.e., knowledge of the
mechanisms through which substances modulate symptoms of
psychotic illness). Dopamine receptors, serotonin receptors, and
muscarinic receptors – which, collectively, comprise the target
genes of most antipsychotics used in clinical practice – were all
prioritized as target genes based on observations that psychotic
symptoms can be induced and/or treated through pharmacolo-
gical modulation of these receptors [12–14]. Using knowledge of
pharmacology to prioritize target genes for drug development is
now a scalable research strategy, as large databases linking
medications to clinical effects and target genes have been created
that can be mined using computational techniques. Of the many
target genes that can be prioritized using these techniques, only a
small number are likely to result in the development of effective
treatments. Previous studies suggest that one way to determine if
a target gene is likely to lead to an effective treatment is to
consider whether genetic variation linked to that gene contributes
to increased risk of that illness [15].
The most common idiopathic forms of psychotic illness (e.g.,

schizophrenia) are up to 80% heritable [16], and as such these
illnesses have been a major focus of human genetics research.
Studies of large populations have identified many genetic variants
that contribute to schizophrenia and other idiopathic forms of
psychotic illness (“psychosis risk variants”), and these variants are
linked to thousands of genes (“psychosis risk genes”). The class of
psychosis risk variants that make the greatest contribution to the
heritability of psychotic illnesses are common single-nucleotide
polymorphisms (SNPs), which account for up to ~25% of the
heritability of schizophrenia [17]. Risk variants of this class are
identified through genome-wide association studies (GWAS), and
the most recent schizophrenia GWAS – the third GWAS reported
by the Psychiatric Genomics Consortium Schizophrenia Working
Group (“the PGC3SCZ GWAS”) – identified risk SNPs in 287
genomic regions including thousands of genes [17]. Rare loss-of-
function (LoF) variants comprise another class of psychosis risk
variants, and these are variants that are rare in the population and
change the coding sequence of a gene in a manner predicted to
result in a dysfunctional gene product [18, 19]. Recently, the
Schizophrenia Exome Meta-analysis (SCHEMA) study reported 10
genes harboring an excess of rare LoF variants in cases compared
to controls [19] and a subsequent study identified two additional
genes [18]. Rare LoF variants account for a small amount of the
heritability of psychotic illnesses but can contribute substantially
to risk in individual cases. While thousands of genes have been
implicated in psychotic illness through pharmacology and
genetics research only a few antipsychotics have been developed
that target these genes [20], in part because there is a lack of
consensus regarding which of the many genes implicated should
be pursued as a target of novel treatments.
Here, pharmacologic, genetic, and clinical data are leveraged to

prioritize target genes for novel antipsychotic development. A
large database of medication side effect reports is used to identify
medications that cause psychotic illness as a side effect
(“propsychotics”). Using databases that link medications to target
genes, propsychotic target genes are identified and compared to
antipsychotic target genes, revealing a shared set of targets that
propsychotics act on through a mechanism (e.g., activation) that is
qualitatively the opposite of the mechanism exerted by anti-
psychotics on the targets (e.g., inhibition). Significant overlap was
observed between propsychotic target genes and genes impli-
cated in psychotic illnesses by rare LoF variants but not between
propsychotic target genes and genes implicated in psychotic
illnesses by common SNPs. By aggregating pharmacologic and
genetic data, activation of GRIN2A is prioritized as a mechanism to

pursue in the development of novel antipsychotics. To begin to
determine the clinical presentation of psychotic illness that may
be most likely to respond to this pharmacologic mechanism, a
case report of schizophrenia linked to a rare LoF variant in GRIN2A
is presented that is most notable for the prominence of
disorganized thought, disorganized behavior, deficits in cognitive
function, and co-morbid epilepsy. Altogether, this report provides
an approach to prioritize individual target genes to pursue in
developing novel treatments for a highly polygenic and sympto-
matically heterogeneous illness.

RESULTS
Defining propsychotics from side effect reporting
For each database used in the current report to link medications
to clinical effects (i.e., side effects, indications) or target genes, the
medication and clinical effect terms used in the database were
standardized to RxNorm and Medical Dictionary for Regulatory
Activities [MedDRA] terms, respectively (Supplementary Informa-
tion). Psychosis side effects were defined as a manually curated set
of MedDRA terms relevant to psychosis. VigiBase [21], a
medication side effect reporting database with over 15 million
reports maintained by the World Health Organization (WHO), was
used to identify medications that induce psychotic symptoms as a
side effect (i.e., propsychotics) (Fig. 1). Each VigiBase report
represents an instance where a medical professional suspects a
medication has caused a side effect. The statistical significance of
each reported medication side effect in VigiBase was assessed
using disproportionality analysis, which tests if the medication and
side effect co-occur in the reports of the database more than
expected by chance [22, 23]. After excluding antipsychotics from
consideration (Supplementary Table 1), 276 medications were
defined as propsychotics by being linked to >= 1 psychosis side
effect term (66 psychosis side effect terms were linked to >= 1
propsychotic; Supplementary Tables 2–3). The psychosis side
effect terms linked to the greatest number of propsychotics were
hallucinations (n = 111), psychotic disorder (n = 61), visual
hallucinations (n = 54), depersonalization/derealization disorder
(n = 48), and paranoia (n = 35) (Fig. 2; Supplementary Table 4).
Using ATC level 3 categories to group medications into
pharmacological subgroups, propsychotics were found to span
85 different pharmacological subgroups. The five subgroups that
included the most propsychotics were hypnotics and sedatives
(n = 16), antihistamines (n = 15), antidepressants (n = 15),
antiepileptics (n = 13), and dopaminergic agents (n = 12) (Fig. 3;
Supplementary Table 5). The Side Effect Resource (SIDER), a
database that links medications to side effects reported on Food
and Drug Administration (FDA) labels [24], was used to validate
the set of 276 propsychotics defined using VigiBase. Of the 1334
unique medications in SIDER, 412 were linked to at least one
psychosis side effect term and were not an antipsychotic. The
number of medications overlapping this set and the set of
propsychotics identified using VigiBase (N= 148 in both sets)
represented a 2.57-fold increase of the number expected by
chance (hypergeometric p-value= 1.15 × 10−46).

Comparing mechanisms of propsychotics and antipsychotics
Two databases were used to link medications to target genes: (1)
DrugBank, which links medications to target genes through curation
of scientific literature [25]; (2) SeaChange, which predicts the target
genes of a medication based on the chemical structure of the
medication [26]. Of the 276 propsychotics identified in VigiBase, 240
were linked to at least one target gene through either DrugBank or
SeaChange (1134 target genes were linked to at least one
propsychotic). A permutation approach was used to identify genes
significantly overrepresented as targets of propsychotics. For each
putative target gene, the number of propsychotics targeting the
gene was compared to the number of medications targeting the

B. Fennessy et al.

2

Translational Psychiatry          (2025) 15:254 



gene in a randomly selected set of 240 medications. This analysis
yielded 170 propsychotic target genes with an empirical p-value
below 0.05 after 100,000 permutations (Supplementary Table 6).
Using a similar procedure to define propsychotic target genes, 129
antipsychotic target genes were identified with an empirical p-value
below 0.05 after 100,000 permutations (Supplementary Table 6). A
significant overlap was observed between the 170 propsychotic
target genes and the 129 antipsychotic target genes (N= 67 shared
target genes; Fisher’s exact test odds ratio [OR]= 33.3,
p-value= 1.57 × 10−57). This overlap remained significant when
considering (1) only experimentally validated target genes defined
in DrugBank (N= 27, OR= 110.0, p-value= 2.0 × 10−34) and (2) only
propsychotics not classified as nervous system medications (N= 51,
OR= 22.9, p-value= 1.61 × 10−38).
DrugBank contains data on the mechanisms of action of

medications on target genes (i.e., whether a medication activates
or inhibits the activity of a target gene). Each mechanism of
action term in DrugBank (e.g., “agonist”) was classified as either
an activating action or an inhibiting action. Mechanism of action
information was available for 107 of the 170 propsychotic target
genes and for 45 of the 129 antipsychotic target genes. For both
the propsychotic and antipsychotic medication classes, a
permutation procedure was used to determine if for a given
target gene the medications in the class exerted either an
activating or inhibiting action more than expected by chance (i.e.,
more than was observed for random sets of medications chosen

over 100,000 permutations; Supplementary Table 7). Propsycho-
tics were found to exert an activating action on 52 target genes
and an inhibiting action on 63 target genes (for 25 target genes,
propsychotics were found to exert both an activating and
inhibiting action). Antipsychotics were found to exert an
activating action on 6 target genes and an inhibiting action on
45 target genes. As expected, the target gene inhibited by the
largest number of antipsychotics is DRD2 (inhibited by over 75%
of antipsychotics, Fig. 4A). For 24 of the genes targeted by both
propsychotics and antipsychotics (“shared target genes”), prop-
sychotics were found to act on the target through a mechanism
that is qualitatively the opposite of the mechanism through
which antipsychotics were found to act on the target (Fig. 4A).
Target genes were grouped by neurotransmitter receptor class
(Fig. 4A), revealing for dopaminergic, serotonergic, muscarinic,
and adrenergic receptor classes propsychotics exert activating
actions while antipsychotics exert inhibiting actions (Supplemen-
tary Table 8). For several receptor classes, a significant mechanism
of action was found for propsychotics but not for antipsychotics,
and these include gamma-aminobutyric acid (GABA) and
glutamate receptors, upon which propsychotics exert activating
and inhibiting actions, respectively (Fig. 4; Supplementary Table
8). Propsychotics and antipsychotics exert the same action on 27
target genes, the majority of which (N= 20) are also amongst the
24 target genes where propsychotics and antipsychotics exerted
opposing actions.

Fig. 1 Summary of the workflow used to define propsychotics in VigiBase. SE side effect.
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Enrichment of propsychotic and antipsychotic target genes
for psychosis risk genes
Analyses were performed testing whether propsychotic and
antipsychotic target genes are enriched for genes implicated in
psychotic illness through large-scale genetic studies. The strength of
association between psychosis risk and a gene was defined in two
ways: (1) “rare LoF variant psychosis risk” was defined as the p-value
for association between the burden of rare LoF variants in the gene
and schizophrenia in the SCHEMA study [19]; (2) “common SNP
psychosis risk” was defined as the p-value for association between
the gene and schizophrenia (defined using MAGMA) in the
PGC3SCZ GWAS [17]. Only genes that were a target of at least
one medication in the databases used in this report were included in
these analyses. For antipsychotics and propsychotics, two-sample
Wilcoxon tests were run that each compared target genes to non-
target genes – one test to assess if target genes had greater rare LoF
psychosis risk and another test to assess if target genes had greater
common SNP psychosis risk. Confirming findings from prior work
[27], antipsychotic target genes had increased rare LoF psychosis risk
compared to other genes (p-value= 0.006) but no significant
difference in common SNP psychosis risk compared to other genes

(p-value= 0.08). Similarly, propsychotic target genes had increased
rare LoF psychosis risk compared to other genes (p-value= 0.011)
and no difference in common SNP psychosis risk compared to other
genes (p-value= 0.23). High-confidence psychosis risk genes were
defined as genes with statistically significant associations with
schizophrenia in either the SCHEMA study (N= 10 as defined by the
SCHEMA authors; “rare LoF psychosis risk genes”) or the PGC3SCZ
GWAS (N= 636 with significant MAGMA p-values after multiple test
correction; “common SNP psychosis risk genes”). Among the 170
propsychotic target genes, 8 were a high-confidence psychosis risk
gene (GRIN2A, DRD2, CYP2D6, CHRNB4, CHRM4, GABBR1, GRM3,
CHRNA3). All 8 of these were a common SNP psychosis risk gene, but
only a single gene – GRIN2A – was implicated in psychotic illness as
a propsychotic target gene (Fig. 4B), a rare LoF psychosis risk gene,
and a common SNP psychosis risk gene.

Clinical characteristics of psychotic illness in a carrier of a rare
LoF variant in GRIN2A
GRIN2A was associated with schizophrenia through rare LoF
variants in the SCHEMA study, but the clinical presentations of the
schizophrenia cases harboring these variants in that study were
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Fig. 2 Proportion of propsychotics linked to MedDRA terms. The vertical axis shows MedDRA psychosis side effect terms. The horizontal
axis shows the proportion of propsychotics that were linked to each MedDRA psychosis side effect term. Only MedDRA psychosis side effect
terms linked to greater than 1% of propsychotics are shown.
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not described [28]. The results in the previous section suggest
activation of GRIN2A is a promising mechanism to pursue in
developing novel antipsychotics, and since schizophrenia is a
heterogeneous clinical condition, it is possible that activation of
GRIN2A may be most promising for treating individuals with a
specific clinical presentation. As a first step towards characterizing
the schizophrenia clinical presentation that may be most likely to
improve with activation of GRIN2A, whole-exome sequencing
data from approximately 30,000 individuals in a large United
States health system were mined to identify and clinically
characterize carriers of rare LoF variants in GRIN2A (i.e., using
the same definitions of rare and of LoF used in the study that
implicated GRIN2A rare LoF variants in schizophrenia). One carrier
was identified who had a previous diagnosis of schizophrenia,
and the rare LoF variant in this carrier (“the founder”) is located at
position 9,798,422 on chromosome 16 within the exon
ENSE00001304023 (genome build GRCh38/hg38). The founder is
a heterozygote at this position, with one copy of the reference
allele G and one copy of the alternate allele C. The alternate allele
C has a frequency of 0 in the Genome Aggregation Database
(gnomAD; v4.0.0). In the coding sequence of GRIN2A, the
presence of this variant results in a premature stop codon in
four of the known RNA transcript isoforms of GRIN2A
(ENST00000330684, ENST00000396573, ENST00000535259, and
ENST00000562109). A clinical case history was assembled

through chart review. Four notable observations emerged from
this case history. First, the onset of neurological and mental illness
in the founder was in childhood, when the founder was
diagnosed with a seizure disorder and a non-specific intellectual
disability referred to by treating physicians in the medical chart as
“mild mental retardation.” Second, in adolescence, the intellectual
disability persisted, as evidenced by the founder’s placement first
in a high school and later in a job training program designated for
individuals with such disabilities. Third, when the founder
reached the fourth decade of life, psychosis came to dominate
the clinical picture with the first of seven inpatient hospitaliza-
tions for severe psychosis. Of the five domains of psychotic illness
defined in the DSM, the acute psychotic presentations docu-
mented for the founder were most notable for disorganized
thinking (e.g., loosening of associations, incomprehensible
speech) and disorganized behavior (e.g., unpredictable agitation,
going missing from home, inappropriate laughter). The founder
has never experienced hallucinations or delusions, and the
negative symptoms of psychosis (e.g., avolition, anhedonia) –
while not absent altogether – seem to have been moderate.
Fourth, the founder has multiple siblings who also reportedly
have medical histories notable for psychotic illnesses, seizure
disorders, and/or non-specific intellectual disabilities (genotypes
and detailed case histories are not available from these
individuals at the time of writing).

Proportion of propsychotics in medication classes

Proportion of propsychotic drugs
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Fig. 3 Proportion of propsychotics in medication classes. The vertical axis shows ATC Level 3 medication class, with bolded labels indicating
drugs classified under the ATC Level 1 term “Nervous System”. The horizontal axis shows the proportion of propsychotics that were linked to
each ATC Level 3 medication class. Only ATC classes linked to greater than 1% of propsychotics are shown.
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DISCUSSION
This report integrates pharmacologic, genetic, and clinical data
from a total of over 15 million individuals to make four key
observations. First, a set of medications linked to psychotic illness
as a side effect were defined (propsychotics). Second, the target
genes of propsychotics were found to overlap with the
target genes of antipsychotics, and for many of these shared
target genes the action exerted by propsychotics on the gene
(e.g., activation) was found to be the opposite of the action
exerted by antipsychotics (e.g., inhibition). Third, both propsycho-
tic and antipsychotic target genes were found to be enriched for
genes implicated in schizophrenia through rare loss-of-function
genetic variation but not through common genetic variation.
Fourth, activation of GRIN2A was prioritized as a mechanism to
develop new antipsychotics around, and a clinical case report of
schizophrenia in a carrier of a rare LoF variant in GRIN2A provided
clues regarding the schizophrenia clinical presentation to target
with this pharmacological strategy.
Propsychotics were defined by mining a large-scale medication

side effect reporting database. These medications spanned many
classes, including some that were intuitively expected (e.g., classes
of medications that were designed to act in the nervous system
[e.g., dopaminergic agents]) and some that were not (e.g.,
quinolone antibiotics). The set of propsychotics defined using
this approach was validated using independent data, and some of
the less intuitive medication classes represented in propsychotics
had prior literature support for association to psychotic illness [29].

Since VigiBase is limited to reports about medications that are
used in clinical practice, propsychotics defined in this report do
not include substances that are used to induce psychotic
experiences recreationally (e.g., PCP, MDMA, psilocybin). In recent
years, several of these substances have become treatments of
affective illnesses [30–32] but these agents were not represented
by reports in the version of VigiBase analyzed for this report and
therefore are not driving the primary findings of the study.
The approach used to link propsychotics to target genes

highlights one way to systematically identify genes capable of
inducing a complex illness in humans when acted upon
pharmacologically. The 170 propsychotic target genes are highly
overlapping with the 129 antipsychotic target genes found using
this approach, and for many of the genes targeted by both
propsychotics and antipsychotics (“shared target genes”), propsy-
chotics act on the target through a mechanism that is qualitatively
the opposite of the mechanism through which antipsychotics act
on the target. While for a few of the shared target genes this
observation is not novel [14], for most shared target genes there
are no previous reports of the observation. Receptors from most of
the major neurotransmitter systems are represented in both
propsychotic and antipsychotic target genes, illustrating the
complexity of psychosis pharmacology and supporting the notion
that there are multiple pharmacological mechanisms through
which psychotic illness can be both induced and treated.
Interestingly, both antipsychotics and propsychotics were found
to exhibit inhibiting actions on CHRM4 (Fig. 4A), which encodes
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Fig. 4 Comparative analysis of target gene mechanisms of action for antipsychotics and propsychotics. A For every significant
antipsychotic target gene mechanism of action there is an entry on the x-axis. The top panel shows on the y-axis the proportion of
antipsychotics that exerted an activating mechanism of action on the target gene (blue) and the proportion of antipsychotics that exerted an
inhibiting mechanism of action on the target gene (orange; represented as negative values), and only significant values are shown. The
bottom panel shows on the y-axis the proportion of propsychotics that exerted an activating mechanism of action on the target gene (blue)
and the proportion of antipsychotics that exerted an inhibiting mechanism of action on the target gene (orange; represented as negative
values), and significant values are indicated by an asterisk (*). Target genes are grouped by neurotransmitter receptor class as indicated by the
facet labels. B For every significant propsychotic mechanism of action that did not have a significant mechanism of action for antipsychotics
there is an entry on the y-axis. On the x-axis is shown the proportion of propsychotics that exerted an activating mechanism of action on the
target gene (blue) and the proportion of antipsychotics that exerted an inhibiting mechanism of action on the target gene (orange;
represented as negative values), and only significant values are shown.
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the muscarinic acetylcholine receptor M4 and is the primary target
gene of the newly-approved antipsychotic xanomeline that exerts
an activating action on CHRM4 [33] (since xanomeline was just
recently approved for clinical use, it is not in the set of
antipsychotics defined by the ATC used in this report). As
expected, over 75% of antipsychotics exert inhibiting actions on
DRD2 and over 50% of antipsychotics exert inhibiting actions on
HTR2A; in contrast, the percentage of propsychotics that act on a
target gene through the same mechanism is less than 15% for all
target genes. This difference highlights that the method used to
define propsychotics for this report did not simply identify a set of
medications that act through a mechanism that is the inverse of
the primary mechanism of antipsychotics. Indeed, receptors for
several neurotransmitter classes represented in propsychotic
target genes are not represented in antipsychotic target genes,
including receptors for GABA (i.e., the primary inhibitory
neurotransmitter in the central nervous system) and glutamate
(i.e., the primary excitatory neurotransmitter in the central nervous
system). The observation that propsychotics primarily activate
GABA receptors and primarily inhibit glutamate receptors
suggests that (1) a state of psychotic illness can be induced
pharmacologically in an individual either by increasing inhibitory
tone or by decreasing excitatory tone and (2) maintaining a
balance between excitatory and inhibitory tone may be key for
maintaining an individual in a non-psychotic state.
The complex picture of psychosis pharmacology that emerged

from linking propsychotics to their target genes (i.e., the large
number of target genes that included receptors for many
neurotransmitter classes) appeared consistent with the complex
picture of the genetic architecture of psychotic illness that has
been emerging from population genetics over the past two
decades. When this apparent consistency was more deeply
investigated, the target genes of propsychotics were found to
be enriched for genes implicated in psychotic illness through rare
loss-of-function genetic variation but not for genes implicated in
psychotic illness through common genetic variation. This finding
is consistent with an earlier study of antipsychotics only [27] and
validates the notion that propsychotic target genes contribute to
psychotic symptoms. Common genetic variation accounts for a
substantial amount of the heritability of psychotic illnesses at the
population level, while rare loss-of-function genetic variation
accounts for a small amount of the heritability at the population
level but can contribute substantially to risk at the individual level.
The observation that propsychotic target genes overlap with the
genes linked to psychosis through rare loss-of-function genetic
variation may reflect that there is a relatively small subset of genes
in the human genome capable of exerting large effects on
psychosis risk when dysfunctional. These genes, which can be
identified by as the genes implicated in psychotic illness through
both pharmacologic and genetic evidence, may be the most
promising candidate target genes for novel antipsychotics [15].
GRIN2A is a gene located in chromosome 16 that encodes for a

subunit of the N-methyl-D-aspartate (NMDA)-type glutamate
receptor (NMDAR) and was the only gene in the current report
linked to psychotic illness as a propsychotic target gene, a rare LoF
psychosis risk gene, and a common SNP psychosis risk gene.
NMDARs are ionotropic glutamate receptors involved in many
aspects of excitatory neurotransmission [34]. Each NMDAR is
composed of four protein subunits that, together, span the plasma
membrane and form an ion channel pore, and the biological
properties of NMDARs are determined by the combination of
subunits used. The proteins GluN1, GluN2, and GluN3 are the
possible NMDAR subunits, and every NMDAR is composed of two
GluN1 subunits with (1) two GluN2 subunits, (2) two
GluN3 subunits, or (3) one GluN2 subunit and one
GluN3 subunit. The GluN2A subunit encoded by GRIN2A is one
of four distinct types of GluN2 subunits (the other three are
GluN2B, GluN2C, and GluN2D), each encoded by a different gene.

The biological processes that rely on GluN2A-containing NMDARs
are still a matter of debate but may include long-term
potentiation, a type of synaptic plasticity where synaptic activity
induces a chronic increase in signal transmission between two
neurons [35]. GRIN2A is one of only two genes in the genome that
have been linked to schizophrenia through both rare loss-of-
function genetic variation and common genetic variation, and the
other gene, SP4, encodes a transcription factor that regulates
GRIN2A expression [1, 2, 4]. Decreased NMDAR activity is
suggested as a mechanism in the pathogenesis of psychotic
illness not only by the pharmacologic and genetic evidence
presented in this report, but also by (1) clinical immunology,
where autoantibodies against NMDAR subunits (including the
GluN2A subunit) downregulate NMDAR activity and cause a
psychotic illness that clinically can be indistinguishable from
schizophrenia [6] and (2) rodent models of NMDA receptor
hypofunction, where restoring NMDA receptor activity rescues
psychosis-like phenotypes [7]. Taken together, these diverse lines
of evidence support the hypothesis that pharmacologically
increasing GRIN2A activity could treat psychotic symptoms. This
hypothesis has not been adequately tested in human clinical trials.
In addition to identifying target genes, identifying clinical

presentations to target is key for novel antipsychotic development
[36]. The clinical case summary in this report of a carrier of a rare
loss-of-function variant affected with schizophrenia begins to seek
out the presentations of psychotic illness that may be most likely
to respond to pharmacologic activation of GRIN2A. This is not the
first case summary to characterize carriers of putatively disease-
causing genetic variants in GRIN2A [37–39]. What separates the
case described here, however, is the approach used to identify the
carrier: the variant annotation strategy was modeled closely after
the variant annotation strategy used in the study that linked rare
loss-of-function variation in GRIN2A to schizophrenia at the
population level (i.e. the SCHEMA study) [19]. The most prominent
symptoms of the illness in this individual (e.g., disorganized
thought and behavior, cognitive deficits) are amongst the
symptoms of schizophrenia that are the most debilitating and
the least responsive to current antipsychotics. In addition to
schizophrenia, large-scale genetic studies have also implicated
rare loss-of-function variants in GRIN2A to seizure and neurode-
velopmental disorders, and it has been proposed that the illness
that results from a rare loss-of-function variants in GRIN2A (i.e.,
schizophrenia vs. epilepsy vs. intellectual disability) depends on
the specific loss-of-function variant [39]. However, the clinical
course reported here – which included schizophrenia, epilepsy,
and intellectual disability all in the same individual – suggests the
same loss-of-function variant may predispose to all of these
illnesses. As novel antipsychotics that activate GRIN2A are
developed, clinical trials may be more likely to succeed if the
participants included are enriched for those with similar clinical
presentations.
There are several limitations to this work. First, the propsycho-

tics and propsychotic target genes were identified based on the
set of MedDRA terms used to define psychosis. This set of terms
was manually constructed by a single study psychiatrist, and other
experts when presented with the same task may have arrived at a
different set of terms. Second, for most propsychotics defined by
this report psychosis side effects are rare, so use of these
medications to model psychosis in future research may be
challenging. Third, the data linking medications to target genes
and mechanisms of action is incomplete, simplified for interpreta-
tion, and/or lacking with respect to key variables such as binding
affinity. Fourth, knowledge of the genetic architecture of psychotic
illnesses is evolving, and it is possible that some of the findings in
this report may change as the list of specific genes implicated in
psychotic illness expands in the future. Fifth, the clinical
presentation of only a single case of schizophrenia in a carrier
of a rare loss-of-function variant in GRIN2A is examined. As such,
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the features of the clinical presentation may not be typical of all
GRIN2A-linked cases of schizophrenia and larger cohort studies are
needed to validate the observations from this single case and
more rigorously delineate the clinical presentation associated with
dysfunction in this gene.
Historically, whether idiopathic or substance-induced forms of a

disease emerge through the same molecular mechanisms has
been inadequately studied. This report approaches this question
with a focus on psychotic illness and finds that a select set of
genes are implicated through both genetics and pharmacology.
These genes should be prioritized as target genes for developing a
new generation of antipsychotics, with a particular emphasis on
activation of GRIN2A given the multiple lines of evidence that
together show downregulation of this gene induces psychotic
illness in humans. Clinical characterization of psychotic illness in
individuals with rare loss-of-function variants in genes such as
GRIN2A will be crucial to link symptom presentation to potential
therapeutic benefit. This framework provides a pathway to
systematically prioritize genetically supported target genes for
developing novel treatments for diseases that are polygenic and
symptomatically heterogeneous.

METHODS
Standardizing medication names and clinical concepts
The databases utilized for this study to link medications to clinical concepts
(i.e., side effects, indications; VigiBase, SIDER) and target genes (i.e.,
DrugBank, SeaChange) used a variety of lexicons to identify medications
and clinical concepts. To analyze the databases together, names used for
medications had to be mapped to a single lexicon and names used for
clinical concepts had to be mapped to a single lexicon. Detailed
descriptions of the procedures used to standardize medication and clinical
concept names are provided in the Supplementary Information and
described in brief here. Medication names were standardized to RxNorm
(version of September 4th, 2018) Concept Unique Identifiers (RXCUIs) with
a Source Abbreviation (SAB) value of “RXNORM” and a Term Type (TTY) of
“IN.” Clinical concept names were standardized to the Medical Dictionary
for Regulatory Activities (MedDRA; version 20.0) Preferred Terms (PT). For
analyses that required medications to be categorized into medication
classes, the primary database used to categorize medications was the
World Health Organization Anatomical Therapeutic Chemical Classification
(ATC) [40]. ATC organizes medications into a hierarchy of five levels, and
ATC Level 3 (e.g., “Antipsychotics”) was for this study used to categorize
medications into classes based on physiological mechanisms and
therapeutic properties. For analyses that required all medications targeting
the nervous system to be defined, the ATC Level 1 value “Nervous System”
was used.

Defining psychosis side effect terms
Multiple steps in the study (e.g., defining propsychotics) required the
broad clinical concept of psychotic illness to be defined in the MedDRA
lexicon terms. Since there is no single MedDRA PT that fully captures the
complexity of psychotic illness, a set of MedDRA PTs was manually defined
for the current study to define psychotic illness in MedDRA terms. A study
psychiatrist (AWC) manually reviewed each of the approximately 500 PTs
under the MedDRA System Organ Class “Psychiatric Disorder” and based
on clinical experience identified the subset of these PTs that described
either a psychotic symptom (e.g., “Hallucinations”) or a psychotic syndrome
(e.g., “psychotic disorder”). This manual procedure resulted in a set of 124
MedDRA PTs (“the MedDRA psychosis PTs”; listed in Supplementary Table
2) that were used in all analyses requiring psychotic illness to be defined in
MedDRA. While these terms may not exclusively represent psychotic
symptoms, they are commonly observed in patients with psychotic
disorders or because of medication side effects.

Defining antipsychotics
For most of the analyses of antipsychotics presented in this report that,
antipsychotics were defined as the 64 medications in the ATC Level 3 class
“Antipsychotics” (listed in Supplementary Table 1). For one analysis – the
analysis that defined propsychotics (see below) – a broader set of
antipsychotics was defined. The broader antipsychotic set was comprised

of (1) the 64 antipsychotics defined using ATC and (2) medications with an
indication in the Side Effect Resource (SIDER; version 4.1) – a database
which links medications to indications and side effects reported on Food
and Medication Administration (FDA) labels [29] – that mapped to any of
the 124 MedDRA psychosis PTs.

Defining propsychotics
Propsychotics (i.e., medications that induce psychotic symptoms as a side
effect) were defined using VigiBase – a medication side effect reporting
database with over 15 million reports maintained by the WHO – via the
following four-step procedure:

1. VigiBase reports that contained greater than one medication (i.e.,
reports of side effects that occurred in individuals taking greater
than one medication) were removed from the database.

2. Disproportionality analysis [41] was performed for every medication-
side effect link reported in VigiBase as follows. First, a two-by-two
table was constructed where rows indicated the number of reports
in VigiBase with the medication and columns indicated the number
of reports in VigiBase with the side effect. Second, from the values in
the two-by-two table, three disproportionality statistics were
calculated, each representing a different way of quantifying the
amount of evidence in VigiBase suggesting that the medication truly
causes the side effect: (a) the number of reports in VigiBase
reporting the medication-side effect link, (b) the proportional
reporting ratio (PRR), and (c) the Yates’ chi-square test statistic
[42, 43].

3. For each medication-side effect link observed in VigiBase, the link
was considered true if the following criteria established by other
studies [22, 23] were met: (a) at least 3 reports of the medication-
side effect link were in VigiBase, (b) the PRR value was greater than
or equal to 3, and (c) the Yates’ chi-square test statistic was greater
than or equal to 4.

4. Of the medication-side effect links considered true by the previous
step, medication-side effects links were filtered out if (a) the
medication in the link was in the broad antipsychotic set defined as
explained above or (b) the side effect in the link was not one of the
124 MedDRA psychosis PTs. Propsychotics were defined as the 276
medications (linked to 66 psychosis side effects) that remained after
applying these filters (Supplementary Tables 3–4).

For the analyses that used SIDER to validate the propsychotics identified
in VigiBase, propsychotics were defined in SIDER as any medication (after
excluding the ATC set of 64 antipsychotics defined above) linked by SIDER
to at least one of the 124 MedDRA psychosis PTs. A hypergeometric test
was run using R to assess whether the overlap between the two sets of
propsychotics was significantly greater than would be expected by chance.

Defining antipsychotic and propsychotic target genes
Data description. Two databases were used to link medications to target
genes: DrugBank (version 5.1.1) [25] and SeaChange (January 13th, 2014
version) [26]. Medication target gene identifiers used in DrugBank and
SeaChange were standardized to gene symbols using the UniProt web-
based mapping tool [44]. Upon combining DrugBank and SeaChange (i.e.,
prior to limiting only to medications in VigiBase), 47,985 medication-target
gene links were observed (including 2292 unique medications and 3417
unique target genes). DrugBank contributed to 10,504 of these
medication-target genes links (including 2156 unique medications and
2777 unique target genes) and SeaChange contributed to 38,761 of these
medication-target gene links (including 792 unique medications and 1662
unique target genes).

Propsychotics. For propsychotics, an empirical p-value was calculated to
assess if each prospective target gene (i.e., each target gene linked to >= 1
propsychotic) was linked to the propsychotics more than expected by
chance. The empirical null distribution used to calculate each of these
p-values was generated through 100,000 iterations of the following
procedure:

1. A set of medications to randomly sample from was defined (the
“background medication set”). The background medication set was
the set of medications that (1) were in VigiBase after removing
VigiBase reports that included greater than one medication, (2) were
not antipsychotics, and (3) could be linked to at least one
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target gene.
2. A set of 240 medications (i.e., the number of propsychotics linked

to >= 1 target gene) was randomly selected from the background
medication set.

3. The proportion of the randomly selected medications linked to the
target gene was recorded.

The empirical p-value was calculated as the fraction of the 100,000
values in the null distribution that were greater than the proportion of
propsychotics linked to the target gene. Any target gene with an empirical
p-value less than 0.05 was considered a propsychotic target gene.
This procedure for identifying significant propsychotic targets was

performed separately for three versions of the data: (1) the full set of 276
propsychotics, with targets from DrugBank and SeaChange; (2) the subset
of the 276 propsychotics that remained after removing medications
labeled as nervous system drugs by the ATC Level 1 term “Nervous
System,” with targets from DrugBank and SeaChange; (3) the full set of 276
propsychotics, with targets from DrugBank only.

Antipsychotics. For antipsychotics, an empirical p-value was calculated to
assess if each prospective target gene (i.e., each target gene linked to >= 1
antipsychotic) was linked to the antipsychotics more than expected by
chance. The empirical null distribution used to calculate each of these p-
values was generated through 100,000 iterations of the following
procedure:

1. A set of medications to randomly sample from was defined (the
“background medication set”). The background medication set was
the set of medications that (1) were in ATC Level 5, (2) were not
propsychotics, and (3) could be linked to at least one target gene.

2. A set of 46 medications (i.e., the number of antipsychotics linked
to >= 1 target gene) was randomly selected from the background
medication set.

3. The proportion of the randomly selected medications linked to the
target gene was recorded.

The empirical p-value was calculated as the fraction of the 100,000
values in the null distribution that were greater than the proportion of
antipsychotics linked to the target gene. Any target gene with an empirical
p-value less than 0.05 was considered an antipsychotic target gene.

Defining antipsychotic and propsychotic target gene
mechanisms of action
Data description. DrugBank was used to assign mechanism of action
labels to medication-target gene links. Action labels were available for
1026 propsychotic-target gene links and for 388 antipsychotic-target gene
links. Action labels were collapsed into two broad categories: activating
(agonist, activator, inducer, potentiator, positive allosteric modulator,
positive modulator, and stimulator) and inhibiting (inhibitor, antagonist,
blocker, negative modulator, inactivator, suppressor, weak inhibitor, and
inhibitory allosteric modulator). For each target gene, the proportion of
medications in the class (i.e., propsychotics and antipsychotics) activating
and inhibiting the target gene was calculated as the number of
medications in the class annotated to the action label divided by the
total number of medications in the class with any mechanism data in
DrugBank (Supplementary Table 8). The significance of these proportions
was assessed using the following permutation procedures.

Propsychotics. Two empirical values were calculated for each propsycho-
tic target gene with a mechanism of action label: one empirical p-value to
assess whether the target gene was assigned an activating mechanism of
action label more than expected by chance and one empirical p-value to
assess whether the target gene was assigned an inhibiting mechanism of
action label more than expected by chance. The empirical null
distributions used to calculate these p-values was generated through
100,000 iterations of the following procedure:

1. A set of medications to randomly sample from was defined (the
“background medication set”). The background medication set was
the set of medications that (1) were in VigiBase after removing
VigiBase reports that included greater than one medication, (2) were
not antipsychotics, and (3) could be linked to at least one target
gene with a mechanism of action label.

2. A set of 167 medications (i.e., the number of propsychotics linked

to >= 1 target gene with a mechanism of action label) was
randomly selected from the background medication set.

3. The proportion of the randomly selected medications linked to the
target gene with an activating mechanism of action label was
recorded.

4. The proportion of the randomly selected medications linked to the
target gene with an inhibiting mechanism of action label was
recorded.

The empirical p-value for the activating mechanism of action label was
calculated as the fraction of the 100,000 values in the corresponding null
distribution (i.e., the null distribution created from the values in the third
step of the permutation procedure) that were greater than the proportion
of propsychotics linked to the target gene with an activating mechanism of
action. Any target gene with an empirical p-value less than 0.05 was
considered a propsychotic target gene with an activating mechanism of
action.
The empirical p-value for the inhibiting mechanism of action label was

calculated as the fraction of the 100,000 values in the corresponding null
distribution (i.e., the null distribution created from the values in the fourth
step of the permutation procedure) that were greater than the proportion
of propsychotics linked to the target gene with an inhibiting mechanism of
action. Any target gene with an empirical p-value less than 0.05 was
considered a propsychotic target gene with an inhibiting mechanism of
action.

Antipsychotics. Two empirical values were calculated for each antipsy-
chotic target gene with a mechanism of action label: one empirical p-value
to assess whether the target gene was assigned an activating mechanism
of action label more than expected by chance and one empirical p-value to
assess whether the target gene was assigned an inhibiting mechanism of
action label more than expected by chance. The empirical null
distributions used to calculate these p-values was generated through
100,000 iterations of the following procedure:

1. A set of medications to randomly sample from was defined (the
“background medication set”). The background medication set was
the set of medications that (1) were in ATC Level 5, (2) were not
propsychotics, and (3) could be linked to at least one target gene
with a mechanism of action label.

2. A set of 44 medications (i.e., the number of antipsychotics linked
to >= 1 target gene with a mechanism of action label) was
randomly selected from the background medication set.

3. The proportion of the randomly selected medications linked to the
target gene with an activating mechanism of action label was
recorded.

4. The proportion of the randomly selected medications linked to the
target gene with an inhibiting mechanism of action label was
recorded.

The empirical p-value for the activating mechanism of action label was
calculated as the fraction of the 100,000 values in the corresponding null
distribution (i.e., the null distribution created from the values in the third
step of the permutation procedure) that were greater than the proportion
of antipsychotics linked to the target gene with an activating mechanism
of action. Any target gene with an empirical p-value less than 0.05 was
considered an antipsychotic target gene with an activating mechanism of
action.
The empirical p-value for the inhibiting mechanism of action label was

calculated as the fraction of the 100,000 values in the corresponding null
distribution (i.e., the null distribution created from the values in the fourth
step of the permutation procedure) that were greater than the proportion
of antipsychotics linked to the target gene with an inhibiting mechanism
of action. Any target gene with an empirical p-value less than 0.05 was
considered an antipsychotic target gene with an inhibiting mechanism of
action.

Enrichment of antipsychotic and propsychotic target genes
for psychosis risk genes
The strength of association between psychosis risk and a gene was defined
in two ways: (1) “rare LoF variant psychosis risk” and (2) “common SNP
psychosis risk.” To define rare LoF variant psychosis risk, a summary
statistics file from the SCHEMA study was downloaded (i.e., Supplementary
Table 5 from the SCHEMA study publication) [19]. This file was processed to
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(1) remove genes with no value in the “P meta” column, (2) remove genes
appearing in greater than one row of the file, and (3) retain genes that
were the target gene of at least one medication in DrugBank or
SeaChange. The remaining 2692 SCHEMA p-values defined rare LoF
variant psychosis risk. To define common SNP psychosis risk, summary
statistics from the PGC3SCZ GWAS were downloaded from the URL
provided in the PGC3SCZ GWAS publication (the version of the summary
statistics used was the file called “PGC3_SCZ_wave3.primary.autosome.-
public.v3.vcf.tsv.gz”) [17]. SNPs appearing in more than one row of the
summary statistics file were removed, and the resulting summary statistics
file was uploaded to the FUMA web server (https://fuma.ctglab.nl; accessed
April 4th, 2024) [45]. Using the SNP2GENE tool on the FUMA web server,
gene-level p-values were calculated from the SNP summary statistics. The
default SNP2GENE tool parameter settings were used with two exceptions:
(1) the “Perform MAGMA” option was selected under the “MAGMA
Analysis” section of the job submission form; (2) the “Perform eQTL
mapping” option was selected under the “Gene Mapping (eQTL mapping)”
section of the job submission form, and “GTEx v8 Brain (13)” was selected
as the “Tissue Type” value to be used in the eQTL mapping analysis.
Default SNP2GENE tool parameter settings included the reference panel
population set to “1000 G Phase3 EUR” and the exclusion of the major
histocompatibility region. The PGC3SCZ GWAS gene-level p-values used in
downstream analyses were contained in the “magma.genes.out” file in the
output of the job submission (column titled “P”). This file was processed to
(1) remove genes with more than one result and (2) retain genes that were
the target gene of at least one medication in DrugBank or SeaChange. The
remaining 2621 p-values defined common SNP psychosis risk. The two
types of psychosis genetic risk (i.e., rare LoF variant psychosis risk and
common SNP psychosis risk) were tested for enrichment in two target
gene sets (i.e., propsychotic target genes and antipsychotic target genes)
using the following procedure: (1) the negative log10 value was calculated
for each psychosis genetic risk p-value; (2) the distribution of the negative
log10 p-values of target genes was compared to the distribution of the
negative log10 p-values of all other genes using the wilcox.test() function of
the base stats R package, with the alternative hypothesis specifying the
expectation that target genes would have more significant p-values than
other genes. High-confidence psychosis risk genes were defined in
SCHEMA as the 10 genes with “P meta” values below the exome-wide
significance threshold defined by the SCHEMA authors (2.14 × 10−6). High-
confidence psychosis risk genes were defined in the PGC3SCZ GWAS as
genes with Bonferroni-adjusted MAGMA p-values below 0.05. Adjustment
of the MAGMA p-values was performed in R using the p.adjust() function of
the base stats R package.

GRIN2A case report
Genetic and clinical data from the Mount Sinai Million Health Discoveries
Program (MSM-HDP; formerly, the BioMe Biobank Program; N= 29,064)
were analyzed to identify carriers of rare LoF variants in GRIN2A with
psychotic illness. MSM-HDP study activities for the current report were
approved by the Icahn School of Medicine at Mount Sinai’s Institutional
Review Board (Institutional Review Board 07–0529) and all study
participants provided written informed consent. Data analyzed from
MSM-HDP participants has been previously described, including pipelines
for variant calling and quality control [46, 47]. The genetic data was
comprised of DNA sequence variants identified through whole-exome
sequencing. DNA sequence variants identified in MSM-HDP participants
were annotated using a workflow modeled after the workflow used in
SCHEMA [48]. Specifically, annotation by LOFTEE (as implemented in the
Variant Effect Predictor) [49] was applied to variants that passed quality
control filters. LoFs were defined as any variant annotated by the LOFTEE
plugin as “loss-of-function” with either “high confidence” or “low
confidence.” LoFs were defined as rare if the minor allele count in the
MSM-HDP cohort was less than or equal to five. The electronic medical
records of carriers in MSM-HDP of rare LoFs in GRIN2A defined in this
manner were reviewed by a study psychiatrist (AWC). The individual with
evidence of psychotic illness (i.e., the founder) was recalled by the study
team to obtain further details on the history of psychotic illness.

Standardizing clinical concept terminology in VigiBase
Overview. The reports in the version of the VigiBase database analyzed
for this study contained (1) a description of the side effect that arose in the
subject of the report as a result of a medication the subject was taking and
(2) descriptions of conditions for which the subject of the report was being
treated (i.e., indications) at the time of the side effect. The side effect

descriptions were provided already standardized to MedDRA codes, but
indication descriptions were not provided in a single standardized
terminology. For example, the indication schizophrenia had over 50
unique representations in the database (e.g., “Schizophrenia NOS”, “Other
schizophrenia”, “Schizophrenia, unspecified”, “Schizophrenia, undifferen-
tiated type”, “Unspecified schizophrenia, unspecified state”). To perform
analyses on VigiBase data that consider information about indications, it
was necessary to indication terms to MedDRA. This was accomplished
through a multistep procedure described in this section that incorporated
a variety of medical lexicon mapping databases through both exact and
partial string matching. To facilitate mapping across lexicons, strings were
pre-processed prior to mapping using the following four-step procedure:
(1) letters were made lowercase; (2) whitespaces and special characters
were converted into a period; (3) instances of 2 or more consecutive
periods were converted to a single period; (4) leading and trailing
whitespaces were removed.

Exact string matching. Exact string matching was used to map VigiBase
indications to MedDRA terms in the MedDRA source files (version 20.0).
Unmapped indications were then mapped using exact string matching to
the Unified Medical Language System (UMLS, version 2016AB). The UMLS
version used included MedDRA terms (version 19.0), and UMLS Concept
Unique Identifiers (CUI) map MedDRA terms to other lexicons. Remaining
unmapped VigiBase indications were then mapped using exact string
matching to the Observational Medical Outcomes Partnership (OMOP)
Common Data Model, which like the UMLS connects MedDRA terms to
terms in other medical lexicons.

Partial string matching. For all VigiBase indications that could not be
mapped to MedDRA using exact string matching, a partial string-matching
approach was utilized. Two partial string-matching tools were utilized in
this procedure: Usagi and Fuzzywuzzy. The Observational Health Data
Sciences and Informatics (OHDSI) Usagi software (v1.0.0x) [50] is a partial
string mapping tool for bioinformatics that has been used by other studies
to map medication names to RxNorm [51]. Usagi performs matching
utilizing the Apache Lucene library, which is a suite of tools commonly
used for computer programming tasks that require text searching. In the
case of Usagi, the texts that are searched are the suite of medical
terminology databases (e.g., RxNorm, MedDRA) that are contained in the
OHDSI data files, and the terms searched for are those input by the Usagi
user (e.g., VigiBase indications). The Usagi software pre-processes the user-
supplied terms with an implementation of the Porter stemmer algorithm
that reduces words to their stems (e.g., “adults” becomes “adult”). For the
current task, Usagi was run with MedDRA as the text to search and using as
input unmapped VigiBase indications. For each term, Usagi outputs the
single best match along with a matching confidence score.
In addition to Usagi, the python library fuzzywuzzy was used for partial

string mapping. Fuzzywuzzy contains a suite of algorithms for term
similarity matching that are all based on edit distance, which is the
minimum number of operations that are required to transform one string
into the other. Given two strings, i and j, fuzzywuzzy calculates the edit
distance as 2*(number of elements shared by i and j)/(number of elements
in i plus the number of elements in j). What differentiates the algorithms in
fuzzywuzzy from one another is how the two strings being compared are
processed prior to performing this calculation. For the current task, four of
the algorithms in the fuzzywuzzy package were utilized: WRatio, QRatio,
token_set_ratio, and token_sort_ratio. The QRatio algorithm calculates edit
distance on unprocessed strings. This approach fails when the two strings
compared consist of the same words in different orders, for instance when
comparing “hello world” to “world hello.” In the case of VigiBase
indications, this algorithm would not, for example, recognize these two
indications as the same concept: “Schizophrenia, undifferentiated” and
“Undifferentiated schizophrenia.” The token_sort_ratio algorithm performs
well with such instances, as it splits the strings into composite “tokens” (in
this case, words) and compares the two strings to one another after sorting
the tokens (e.g., alphabetically). The token_set_ratio algorithm builds upon
the token_sort_ratio algorithm by further considering differences between
the two strings being compared that might artificially make the two strings
appear different when in fact they contain the same information. For
example, consider these two potential strings that could appear in the
VigiBase indications: “the condition the patient suffered from was
schizophrenia” and “schizophrenia.” Using the token_sort_ratio algorithm,
the similarity score for these two terms would be low since many letters
would have to be added to “schizophrenia” to make it equal the first string.
The token_set_ratio algorithm calculates the edit distance between the
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tokens that overlap with one another in the strings (in this case,
“schizophrenia”), then generates three values by adding to this value the
number of characters in the remaining tokens of string 1, string 2, and the
combination of string 1 and string 2. It then outputs the highest of these
three values as the similarity score. Since in this example string 2 has no
additional characters, the maximum score would be based on the edit
distance between the “schizophrenia” and “schizophrenia” (which is 0), and
therefore a high score would result, which would be ideal since in fact
these two values are, for the purposes of this task, the same clinical
concept. The WRatio algorithm is not a unique algorithm in itself, but
rather is a process by which all of the fuzzywuzzy algorithms are run and
the outputs are weighted, and the highest weighted score returned. The
four fuzzywuzzy algorithms were run on all unmapped VigiBase
indications. In contrast to Usagi, the data files that fuzzywuzzy uses to
match terms against are supplied by the user. Therefore, for this mapping
procedure the input against which unmapped VigiBase indications were
matched was a list of MedDRA codes from the MedDRA source files.
Having run five different partial string-matching algorithms for each of

the VigiBase indications that could not be mapped using exact string
matching, it was then necessary to assess the performance of the
algorithms. For every string match identified by one of the algorithms, the
algorithm outputs a confidence score for the match. While these scores are
informative in many respects, the performance of these algorithms
depends on the nature of the input terms. Therefore, a manual inspection
procedure was carried out to establish confidence score cutoffs for each
algorithm below which string matches would be discarded. Matches were
randomly sampled in batches of 10 from each algorithm’s output at
confidence score windows of size 0.1 (starting at 0.5) and up to 50 terms
were evaluated per algorithm manually by a study physician (AWC) for
correctness. For all five partial string-matching algorithms used, the
performance of the algorithm in a given window was quantified as the
proportion of the matches in the window that were manually reviewed
that were scored by the reviewer as a true match. For each algorithm, a
threshold was selected that maximized the number of true matches
identified. In all, over 90% of the initial VigiBase indication terms were
mapped to a MedDRA code through the exact and partial string-matching
procedures.

Standardizing medication names in VigiBase
VigiBase medication identifiers were provided in terms defined in the WHO
Medication Dictionary (WDD; version of December 1st, 2016). In the WDD,
medicinal products are mapped to a “Substance ID” that represents the
substances in the product. Two WDD medicinal products with the same
active substance (e.g., two salt forms of the same medication) therefore
have different Substance IDs. For instance, the medication naproxen
appears in the WDD both as “naproxen” (WDD Substance ID 6340) and
“naproxen sodium” (WDD Substance ID 6653). Connecting these two
Substance IDs to one another is not possible using the WDD but is crucial
to link VigiBase medication names to medication names used in other
databases analyzed in this report and (2) calculate accurate disproportion-
ality analyses statistics for this report. When the analyses for this report
were performed, official maps between WDD and RxNorm codes had not
been created by either the WDD or RxNorm developers, so it was necessary
to create such a map for this report.
The mapping procedure began with two text identifiers for each

medication in VigiBase: the substance name (e.g., “naproxen”) and, for
single-ingredient medications, the product name (e.g., “naprometin”). To
facilitate mapping across lexicons, strings were pre-processed prior to
mapping using the following four-step procedure: (1) letters were made
lowercase; (2) whitespaces and special characters were converted into a
period; (3) instances of 2 or more consecutive periods were converted to a
single period; (4) leading and trailing whitespaces were removed. Both
exact and partial string-matching methods were then utilized to map WDD
to RxNorm. Exact string matching was performed first. A manually curated
list of words deemed uninformative for this study’s purposes (e.g., salts and
descriptors) were removed from WDD strings prior to exact string
matching. Next, a partial string-matching algorithm provided by RxNorm
developers as an API was used to map the remaining unmapped WDD
terms to RxNorm RXCUI [52]. Each match output by this algorithm is given
a confidence score from 1–100. Manual evaluation of these scores and the
quality of the matches found that scores above 50 returned correct
matches nearly 100% of the time, and all matches with a score above 50
were called true matches. For matches with scores less than 50, true
matches were called if the following criteria were met (these criteria were
determined by manual investigation): (1) the first word of the WDD and

RxNorm terms in the match were identical to one another; (2) the first
word of the WDD and RxNorm terms in the match were not salt names;
(3) > 50% of the words in the WDD term represented > 50% of the words in
the RxNorm term. After applying these exact and partial string-matching
procedures, approximately 80% of WDD names could be mapped to at
least one RxNorm RXCUI.

Standardizing medication names in SIDER
SIDER medications are provided in the form of STITCH codes [53]. When
the analyses for this report were performed, there was no official map
between STITCH codes and RxNorm codes provided by either the STITCH
source files or the RxNorm source files. Therefore, a map between these
lexicons had to be created for this report. Six mapping pathways were
devised, and each is detailed in this section. Altogether, employing these
six mapping pathways results in over 95% of the STITCH codes in SIDER
mapping to at least one RxNorm RXCUI.

STITCH to RxNorm mapping pathway 1. While the STITCH source files did
not contain mappings between STITCH codes and RxNorm codes, they did
contain mappings between STITCH codes and the medication codes used
by other lexicons. Some of these other lexicons were also in the RxNorm
source files (e.g., ATC, DrugBank). By utilizing the lexicons present in both
the STITCH source files and the RxNorm source files as intermediates, many
STITCH codes in SIDER could be mapped to RxNorm RXCUI.

STITCH to RxNorm mapping pathway 2. STITCH codes were mapped to
compound names in the STITCH source files. Compound names were
mapped to the string name in RxNorm source files using exact string
matching. RxNorm strings were mapped to RxNorm RXCUI using the
RxNorm source files.

STITCH to RxNorm mapping pathway 3. To map the remaining
unmapped STITCH codes to RxNorm RXCUIs required leveraging the
fact that some of the lexicons linked to STITCH codes in the STITCH
source files that were not present in the RxNorm source files could be
mapped to lexicons in RxNorm using a mapping procedure that
incorporated information from additional databases. Four such mapping
procedures were identified (i.e., STITCH to RxNorm Mapping Pathways
3–6), and the first of these four was as follows. STITCH codes were
mapped to PubChem compound identifiers (CIDs) in the STITCH source
files. PubChem CIDs were linked to Food and Medication Administration
(FDA) Unique Ingredient Identifier (UNII) codes UNII through (a) a linker
file provided by PubChem (Linker File 1; the URL used to download this
file is provided below) and (b) a linker file provided by UniChem (Linker
File 2; the URL used to download this file is provided below). UNII codes
could be linked to RxNorm RXCUI by a linker file provided by the FDA
Substance Registration System (SRS) (Linker File 3; the URL used to
download this file is provided below).

STITCH to RxNorm mapping pathway 4. STITCH codes were mapped to
PubChem CIDs in the STITCH source files. PubChem CIDs were mapped to
FDA Structured Product Labeling (SPL) codes using the PCIES website. SPL
codes were mapped to RxNorm RXCUI using the UMLS (version 2016AB).

STITCH to RxNorm mapping pathway 5. STITCH codes were mapped to
FDA National Drug File (NDF) codes using a PubChem source file (Linker
File 4). NDF codes were mapped to RxNorm RXCUIs using UMLS.

STITCH to RxNorm mapping pathway 6. STITCH codes were mapped to
PubChem CIDs in the STITCH source files. PubChem CIDs were mapped to
Simplified Molecular Input Line Entry System (SMILES) codes using the
PCIES website. SMILES were mapped to RxNorm RXCUIs using Linker File 3.
Linker File 1 URL:
https://pubchem.ncbi.nlm.nih.gov/source/2322#data=Annotations
Linker File 2 URL:
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSource
Mapping/src_id14/src14src22.txt.gz
Linker File 3 URL:
https://fdasis.nlm.nih.gov/srs/download/srs/UNII_Data.zip
Linker File 4 URL:
https://ftp.ncbi.nlm.nih.gov/pubchem/RDF/compound/general/pc_com
pound_type.ttl.gz
PCIES website:
https://pubchem.ncbi.nlm.nih.gov/docs/identifier-exchange-service
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Standardizing DrugBank medication names
The medication codes provided in DrugBank (version 5.1.1) are codes
created by the DrugBank developers specifically for DrugBank. Since
DrugBank is one of the lexicons in the RxNorm source files, DrugBank
codes could be mapped to RxNorm RXCUI through the RxNorm source
files. Of note, only approximately one third of the DrugBank codes mapped
to a RxNorm RXCUI with a SAB value of “RXNORM”. This is because many of
the medication compounds in DrugBank are not medications approved for
use in humans. Filtering DrugBank codes for those that are medications
approved for clinical use (based data provided in the DrugBank source
files), the RxNorm source files successfully mapped over 90% of DrugBank
medications approved for clinical use to an RXCUI with SAB value of
“RXNORM”.

Standardizing medication names in SeaChange
In the SeaChange source files provided to the research team by the
SeaChange developers, medications were identified as ChEMBL codes [54].
Since ChEMBL was not one of the lexicons in the RxNorm source files used
for this report, a map between ChEMBL codes and RxNorm RXCUIs was
created using the following procedure.

(1) Using ChEMBL source files (accessed via the URLs below), the
“preferred name” values for the ChEMBL codes in SeaChange were
identified, and exact string matching was used to map these
preferred names to medication names in RxNorm

(2) Using ChEMBL source files and UniChem source files (accessed via
the URLs below), ChEMBL codes in SeaChange were linked to codes
of other medication lexicons (e.g., UNII, PubChem) that could then
be linked to RxNorm RXCUIs using the RxNorm source files

(3) Using Linker File 3 (see above), ChEMBL codes in SeaChange were
mapped to RxNorm RXCUIs

Using these three strategies, approximately 75% of the ChEMBL codes in
SeaChange could be mapped to at least one RxNorm RXCUI. Manual
inspection of the unmappable codes revealed that most represented
compounds with no approved clinical indications in humans.
ChEMBL source files and UniChem source files:
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSource
Mapping/src_id1/src1src14.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSource
Mapping/src_id1/src1src7.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSource
Mapping/src_id1/src1src2.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSource
Mapping/src_id1/src1src22.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSource
Mapping/src_id1/src1src4.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSource
Mapping/src_id2/src2src22.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/chembl_22_
1_chemreps.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/chembl_
uniprot_mapping.txt

Standardizing medication names in ATC
Medications in the ATC source files were provided as ATC codes. Level 5
ATC codes in the ATC source files were mapped to RxNorm RXCUIs using
the RxNorm source files since ATC was one of the lexicons in the RxNorm
version used for this report.

Standardizing RxNorm RXCUIs
For the purposes of the current study, different RxNorm RXCUIs could
represent the same medication. Therefore, after procedures described
above for standardizing medication names to RxNorm were completed, it
then was necessary to relate RxNorm RXCUIs to one another by finding the
RxNorm RXCUI representative of active ingredients. The RxNorm API was
used to (1) map RxNorm RXCUIs to “IN” values and (2) obtain the “status” of
each RxNorm RXCUI in the RxNorm release active at the time the RxNorm
API was accessed. Possible status values for a RxNorm RXCUI in the RxNorm
API are “Active” (the concept is in the current RxNorm data set and has a
non-obsolete term from the RxNorm lexicon), “Alien” (the concept exists in
the current RxNorm data set, but contains only terms from lexicons other
than RxNorm), “Quantified” (the concept is inactive and has been

quantified to one or more concepts in the current RxNorm data set),
“Remapped” (the concept has been remapped to one or more concepts in
the current RxNorm data set), “Retired” (the concept no longer exists in the
current RxNorm data set, or contains only obsolete terms), or “Unknown”
(the concept identifier is invalid). Only RxNorm RXCUIs with Active status
were retained.

DATA AVAILABILITY
Publicly available data analyzed for this report was obtained through the following
URLs: VigiBase: https://who-umc.org/vigibase/. SIDER: http://sideeffects.embl.de/.
DrugBank: https://go.drugbank.com/. RxNorm: https://www.nlm.nih.gov/research/
umls/rxnorm/index.html. MedDRA: https://www.meddra.org/. SCHEMA: https://
schema.broadinstitute.org/. PGC3SCZ: https://pgc.unc.edu/for-researchers/
download-results/. All code used for this report will be made available upon
publication.
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