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Second-generation antipsychotics (SGAs) are widely used to treat schizophrenia (SCZ), but they often induce metabolic side effects like
dyslipidemia and obesity. We conducted genome-wide association studies (GWASs) to identify genetic variants associated with SGA-
induced lipid and BMI changes in Chinese SCZ patients. A longitudinal cohort of Chinese SCZ receiving SGAs was followed for up to
18.7 years (mean= 5.7 years, SD= 3.3 years). We analysed the patients’ genotypes (N= 669), lipid profiles, and BMI using 19 316
prescription records and 3 917 to 7 596 metabolic measurements per outcome. Linear mixed models were employed to evaluate seven
SGAs’ random effects on metabolic changes for each patient, followed by GWAS and gene set analyses with Bonferroni and FDR
correction. Five SNPs achieved p-value < 5 × 10−08 before multiple testing correction: rs6532055 (ABCG2) linked to olanzapine-induced
LDL changes, rs2644520 (near SORCS1) linked to aripiprazole-induced triglyceride changes, rs115843863 (near UPP2) linked to
clozapine-induced HDL changes, rs2514895 (near KIRREL3) linked to paliperidone-induced LDL changes, and rs188405603 (SLC2A9)
linked to quetiapine-induced triglyceride changes. These five SNPs passed FDR correction at 0.2 but not Bonferroni-corrected genome-
wide significance threshold (p-value < 3.125 × 10−10) for 160 GWAS analyses. Gene-based analysis revealed six genome-wide significant
genes after Bonferroni correction (p-value < 2.73 × 10−6): ABCG2, APOA5, ZPR1, GCNT4, MAST2, and CRTAC1. Four gene sets were
significantly associated with SGA-induced metabolic side effects. In summary, this pharmacogenetic GWAS identified several genetic
variants potentially associated with SGA-induced metabolic side effects, potentially informing personalized treatment strategies to
minimize metabolic risk in SCZ patients. Given our limited sample size, further replications are required to confirm the findings.
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INTRODUCTION
Schizophrenia (SCZ) is a severe, chronic mental illness with high
heritability and a lifetime prevalence of approximately 1%. The
global burden of SCZ has been increasing, with the incidence
increasing by 2% annually between 2000 and 2019 [1].
Cardiovascular disease (CVD) is the leading cause of mortality in
SCZ patients [2], and psychosis itself is also a recognized risk factor
for dyslipidemia and obesity [3]. Moreover, second-generation
antipsychotics (SGAs), the mainstream treatment for SCZ, can
adversely affect patients’ lipid profiles, other metabolic para-
meters, and body mass index (BMI) [4].
Interestingly, the propensity to develop these metabolic side

effects varies considerably among individuals. Twin and sibling

studies have demonstrated that such interindividual variability
may be largely attributable to genetic differences [5]. However,
the underlying genetic mechanisms remain poorly understood.
Pharmacogenetics (PGx) examines how genetic variations affect

drug metabolism and response, potentially enabling personalised
treatment plans. Over the past two decades, most PGx studies on
SGA-induced metabolic side effects have employed candidate
gene approaches, focusing primarily on dopamine and serotonin
receptor-related genes [6, 7]. Additionally, variants in cytochrome
P450 genes have been associated with antipsychotic serum
concentrations [8]. Genome-wide association studies (GWASs)
have largely overcome the limitations of candidate gene
approaches, uncovering more variants and genes associated with
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antipsychotic response [9–11]. However, the majority of previous
PGx studies have focused mainly on treatment response rather
than the metabolic side effects of SGAs.
To date, only seven PGx GWASs have investigated SGA-induced

metabolic side effects [12–18], with most focusing exclusively on
weight gain and short-term outcomes. The most comprehensive
study by Adkins et al. (2010) investigated various metabolic side
effects across multiple antipsychotics over 18 months [12].
Nevertheless, this study had several limitations, including prior
antipsychotic experience in most participants, concurrent use of
other medications, potential bias in DNA collection, and lack of
genotype imputation in GWAS analysis.
To address this knowledge gap, our PGx study investigated lipid

and BMI changes induced by seven SGAs: olanzapine (OZP),
clozapine (CZP), quetiapine (QUE), risperidone (RIS), aripiprazole
(ARI), amisulpride (AMI) and paliperidone (PAL). We focused on
BMI and four lipid measurements, including total cholesterol (TC),
high-density cholesterol (HDL), low-density cholesterol (LDL) and
triglycerides (TG), as outcomes. Our study utilized a longitudinal
cohort with a longer follow-up of up to 5.7 years (median) and a
greater mean number of metabolic measures per subject. The
proportion of SGA-naïve patients was markedly greater at ~63%.
Furthermore, the homogeneity of our Chinese cohort, recruited
from Hong Kong, China, combined with imputed genotypes based
on the ChinaMAP reference panel [19], enhanced the statistical
power of GWAS to detect true signals.
This sophisticated approach combined with a long follow-up

duration and comprehensive medication history and metabolic
measures. We aimed to identify novel genetic variants associated
with SGA-induced metabolic side effects. This approach may
provide insights into the biological mechanisms underlying SGA-
induced lipid and BMI changes, potentially contributing to more
personalized and effective treatments for SCZ patients.

MATERIALS AND METHODS
Study population and data collection
We recruited SCZ patients from an early psychosis intervention clinic at
Castle Peak Hospital Hong Kong between 2009 and 2021 [20]. The
inclusion criteria were as follows: (1) aged ≥18 years, (2) Chinese ethnicity,
(3) ICD-10 diagnosis of SCZ or schizoaffective disorder, (4) treatment with
SGAs, and (5) at least one post-SGA measurement of fasting lipids and/or
BMI. We excluded patients with preexisting metabolic disorders or those
lost to psychiatric follow-up as of March 2021.
From 767 eligible patients, we extracted complete medication records,

lipid profiles and BMI measurements from initial service contact to the

study endpoint. Following local guidelines for monitoring SGA side effects,
patients received baseline measures of fasting lipid profiles and BMI before
SGA initiation, with annual follow-up measurements while on SGAs.
Electronic health records documented the type and dosage of all
psychotropic and concomitant medications, including antidepressants
and lipid-lowering drugs.

Genotyping and imputation
Blood samples from patients were genotyped using the Illumina Asian
Screening Array-24 v1.0. Quality control was performed using PLINK 1.9p,
removing genotypes and subjects based on missing data (missing rate >
10%), Hardy‒Weinberg equilibrium (p < 10−6), and relatedness (IBS
distance > 0.25). No ethnic outliers were identified through multidimen-
sional scaling, as shown in Supplementary Fig. S2.
The genome coordinates were lifted from GRCh37 to GRCh38 using

CrossMap v0.6.4. Haplotype phasing and genotype imputation were
conducted using Eagle2 and Minimac4, respectively [21, 22], with the
ChinaMAP phase 1.v1 reference panel (59 010 860 sites from 10 155
Chinese individuals) [19]. This large, ancestrally matched reference panel
improved imputation accuracy. The imputed SNPs were removed based on
imputation quality (INFO score ≤ 0.3) and minor allele count (MAC ≤ 10).
The final dataset comprised 6 992 805 high-quality imputed SNPs.

Data preprocessing and variable selection
Full GWAS data were available for 669 SCZ patients with 19 316
prescription records within 3 months of metabolic measurement. We
analysed TC, HDL, LDL, and TG (all in mmol/L), and BMI (kg/m2) as separate
outcomes. To minimise bias in effect estimation, we excluded outliers that
exceed six standard deviations from the group mean, as these values
suggested potential measurement errors. We excluded 2 measurements
each for TC, HDL, and BMI, and 11 measures for TG. No outliers were
identified for LDL. The final analysis included 4 048 TC, 3 917 HDL, 4 035
LDL, 4 034 TG, and 7 596 BMI measurements. Prior to modelling, we
applied natural log transformation to all measurements to better satisfy
the normality assumptions of our linear mixed models (Supplementary
Fig. S1).
We selected seven SGAs that had been prescribed to at least 30 patients

in our sample, namely CZP, OZP, ARI, AMI, PAL, RIS, and QUE (Table 1). The
choices of these SGAs, which were taken by a substantial number of
subjects, allowed more robust models to be constructed. Long-acting
injectable and oral formulations were analysed equally, after dose
conversion using the standard method [23]. Given that some non-SGA
psychotropics and other drugs (e.g. statins, metformin) are commonly
prescribed (listed in Supplementary Table S1), and might influence
patients’ lipid profiles and BMI, we included these concomitant medica-
tions as (time-varying) covariates to account for their dynamic effects
throughout the study period, following established approaches in prior
studies [24, 25]. As such, we can control for possible confounding due to
these drugs. We also included daily drug dosage (mg) of the seven SGAs

Table 1. Descriptive statistics of the SGA prescription records in our cohort.

Second Generation
Antipsychotics
(SGAs)(1)

No. of subject with prescription Total no. of prescriptions Avg. no. of prescription per subject
(SD)

TC,LDL,HDL,TG
(N= 625)

BMI
(N= 646)

TC,LDL,HDL,TG
(N= 3 525)

BMI
(N= 6
640)

TC,LDL,HDL,TG
(N= 740)

BMI
(N= 759)

CLOZAPINE 119 125 551 1 045 4.6 (2.8) 8.4 (10.1)

OLANZAPINE 230 307 760 1 447 3.3 (2.6) 4.7 (4.5)

ARIPIPRAZOLE 238 275 728 1 228 3.1 (2.2) 4.5 (4.3)

RISPERIDONE 116 232 209 571 1.8 (1.7) 2.5 (2.5)

AMISULPRIDE 162 216 399 766 2.5 (2.0) 3.5 (3.2)

QUETIAPINE 93 105 173 313 1.9 (1.2) 3 (3.1)

PALIPERIDONE 43 65 95 178 2.2 (1.8) 2.7 (2.3)

Any SGA use 553 567 2 591 5 259 4.7 (2.9) 9.3 (8.8)

Average per SGA 215 688 1 351 N/A N/A

Remark:
(1) Only the SGA prescribed to more than 30 SCZ patients will be included in the GWAS study.
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and treatment duration (month) as random-effect covariates to account for
multiple SGA medications, while age, gender and years of education were
entered as fixed-effect covariates, similar to previous studies conducted by
Pardiñas, Nalmpanti [26] and Adkins, Åberg [12].

Random-effect estimation for SGA-induced lipid/BMI changes
We used linear mixed models (LMMs) to estimate the random effects
(random slope) of SGAs on lipid/BMI changes. The random effects
quantified how each patient’s lipid/BMI changes deviated from the
cohort’s mean, serving as a proxy outcome measure for the severity of
the metabolic side effects of each patient. A similar approach has been
employed in several PGx GWASs [12, 26, 27]. In addition, we employed an
advanced statistical approach to disentangle the within-subject estimates
from the between-subject estimates of SGA random effects [28–30]. By
focusing on the within-subject effects, we can more accurately estimate
the metabolic side effects of SGAs by accounting for unmeasured time-
invariant confounders [31].
For each of the seven SGAs, we constructed five random-effect LMMs

using lipid profiles (LDL, HDL, TC, TG) and BMI as outcomes. An additional
model analysing ‘any SGA use’ was included as a pooled analysis of all
seven SGAs, resulting in a total of (8 × 5) 40 models in our primary analyses.
Random effect coefficients were extracted from these models for patients
prescribed the corresponding SGAs, with detailed specifications provided
in Supplementary Text 1. Following an established methodology in
longitudinal pharmacogenetics studies [12, 26, 27], these random-effect
coefficients served as the primary outcome for subsequent GWAS and
MAGMA analyses, with sample sizes varying across models (Table 1). The
methodology for identifying optimal random-effect LMM models and
estimating within-subject SGA dosages is detailed in Supplementary Text 2
and Supplementary Text 3, respectively [4, 31].
We applied rank-based inverse normal transformation (INT) to the

random-effect coefficients [32] to ensure a normal distribution of the
outcomes (and residuals) and reduce outlier effects (Supplementary
Fig. S3).

Genome-wide association study (GWAS) analysis
GWAS association tests between SNP dosages and SGA-induced lipid/BMI
changes were conducted using PLINK 2.00a [33], with gender and the top
ten genetic principal components as covariates. The imputed genotypes
were converted to PLINK 2 binary formats to retain dosage information,
which can improve the statistical power of the association tests. In our
primary analyses, we tested additive genetic models using allelic dosage as
the predictor. To capture variants with non-additive genetic effects as
advised by Guindo-Martínez, Amela [34], we also performed additional
analyses based on dominant, recessive and genotypic (2 degrees of
freedom) models, resulting in a total of 120 models for the additional
analyses.
For significance thresholds, we considered associations genome-wide

(GW) significance, when p-values were less than 5×10−8 after Bonferroni
correction [35]. Following the approach of Adkins et al. in their GWAS of
antipsychotics-induced metabolic side effects [12], we classified associa-
tions with false discovery rate (FDR) < 0.2 as “suggestive”. Details of
multiple testing correction are presented below.

MAGMA analyses
We performed gene and gene-set association tests between the imputed
genotypes and 40 sets of random-effect coefficients of SGA-induced lipid/
BMI changes using MAGMA v1.10 ref. 35. To optimize statistical power and
sensitivity across various genetic architectures, we built three predefined
MAGMA models: (1) principal component regression, (2) the SNP-wise
mean, and (3) the SNP-wise top 1. MAGMA then aggregated the resulting
gene p-values into a single p-value. Such MAGMA models have been
detailed in the MAGMA manual.

Post-GWAS annotation
LD-clumping was performed using PLINK to identify top SNPs within
linkage disequilibrium clusters (with clump-p1= 5 × 10−5, clump-
p2= 0.05, r2= 0.6 and window size= 250 kb). The top SNPs were
annotated using Ensembl Variant Effect Predictor (VEP) v111.0 with VEP
cache version 111_GRCh38 [36], including gene information, nearest gene,
location, and effect allele frequency in East Asian and European
populations. Previous studies reporting GW-significant SNPs within the
same genes were annotated based on the GWAS Catalog and Open Target

Platform [37, 38]. To uncover potential hidden associations between the
identified genes and annotated enriched terms across multiple datasets
and resources, integrative gene set enrichment analyses and visualization
were conducted using the Enrichr-KG platform [39], incorporating four
gene-set libraries: GWAS Catalog (2019) [38], GO biological Process (2021)
[40], DisGeNET [41], and Human Phenotype Ontology [42]. For each input
gene set, the top five enriched terms per library with an FDR < 0.05 were
considered significant. A subnetwork linking the input genes to these
enriched terms was visualized using the Enrichr-KG platform.

Fine-mapping with the SuSiE model
To identify potential causal SNPs, we used the SuSiE fine-mapping
approach [43], which reports minimal groups of SNPs (credible set) and
calculates posterior inclusion probabilities (PIPs) for causal assessment. We
performed fine-mapping ±1 000 kb around each suggestive SNP using an
LD reference panel from imputed genotypes. The SuSiE model used SNP p-
values, with L= 11 nonzero effects and default parameters. Casual SNPs of
the best credible sets were visualized in region plots.

Multiple testing correction
We employed both Bonferroni correction and FDR approaches for multiple
testing correction. We applied Bonferroni correction to account for all 160
GWAS analyses on the same dataset (4 genetic models x 8 SGA categories
[including ‘any SGA use’] × 5 metabolic outcomes). The Bonferroni-
corrected genome-wide significance threshold is hence p= 5 × 10−8/
160= 3.125 × 10−10. Bonferroni correction controls for the family-wise
error rate (probability of any false positives) and is ideal for clinical trials or
other studies where false positives must be avoided. However, this method
has low statistical power when a large number of hypotheses are tested,
for example in genomics studies. Therefore, following a previous PGx study
[12], we also implemented FDR correction, which is better suited for
exploratory research as it maintains higher statistical power while
controlling for false positives at an acceptable level [44].
We calculate FDR separately for each analysis to control the expected

proportion of false discoveries among the rejected null hypotheses [45].
Unlike Bonferroni correction, FDR is less sensitive to the number of tests
performed as it controls for the proportion rather than the absolute
number of false discoveries [46, 47]. At our suggestive threshold
(FDR < 0.2), on average 80% of significant findings would be expected to
be true discoveries. As demonstrated by Efron [47], when FDR is calculated
separately for each set of GWAS, the overall FDR remains generally
controlled, particularly with a large number of tests.

Power analysis
The power analysis was conducted by extracting effect size estimates from
a closely related GWAS by Adkins, Åberg [12]. Their top finding was a SNP
in the MEIS2 gene associated with the effects of risperidone on hip and
waist circumference (WC). We focused on the effect size for WC, as it is
more relevant to metabolic syndrome [48]. The top SNP, rs1568679,
explained 9.93% of the variance in WC, according to the conversion
formulae suggested by So, Xue [49].
Using the Genetic Power Calculator developed by Purcell, Cherny [50]

and assuming an additive model, we estimated that a sample size of 487 is
required to achieve 80% power at a Bonferroni-corrected GW-significance
p-value threshold of 3.125 × 10−10.
We also calculated power based on FDR, following the method by Liu

and Hwang [51]. Here, we assumed a more modest average effect size
estimate. Assuming a proportion of 0.90 null markers, and an average SNP
heritability of 0.015 among non-null variants, our current sample size of
669 achieves a power of 81.98% at our suggestive FDR threshold of 0.2.
Assuming an average SNP heritability of 0.02, the power would reach
92.86%. It is important to note that our longitudinal study design offers a
greater effective sample size compared to a cross-sectional approach,
which is assumed in the above power calculations.

Ethical standards and consent to participate
This study adhered to the ethical principles of the Helsinki Declaration and
relevant national and institutional guidelines for human research. Ethical
approval was obtained from the New Territories West Cluster Ethics
Committee (Approval Numbers: NTWC/CREC/823/10 and NTWC/CREC/
1293/14) and the Joint Chinese University of Hong Kong-New Territories
East Cluster Clinical Research Ethics Committee (Approval Number:
2016.559). All participants provided written informed consent.
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RESULTS
Sample characteristics
Our final dataset comprised 625 subjects with lipid profile data
and 646 subjects with BMI data after the seven SGAs prescribed to
at least 30 patients were selected. Supplementary Table S2
presents the gender ratio, mean age at the first clinical visit, and
mean years of follow-up. The longitudinal cohort had a maximum
follow-up period of 18.7 years, with a mean follow-up of 5.7 years
(SD= 3.3) for the lipid cohort and 5.5 years (SD= 3.2) for the BMI
cohort (Supplementary Fig. S4). Supplementary Table S3 sum-
marises the number of patients treated with single versus multiple
antipsychotics over 3 months within the first 3 years of follow-up.

GWAS results
Primary analyses: Additive genetic model. We conducted 40 sepa-
rate GWASs to examine the effects of SNPs on SGA-induced changes
in lipids (TC, HDL, LDL, TG) and BMI for seven specific SGAs, plus a
pooled analysis of any SGA use. Individual GWAS sample sizes ranged
from 43 to 567 patients (mean= 215), with mean prescriptions per
patient ranging from 1.8 (SD= 1.7) to 9.3 (SD= 8.8) (Table 1).
In our primary GWAS analyses using an additive genetic model,

two SNPs reached p< 5 × 10−8 but did not achieve GW significance

after Bonferroni correction for all 160 GWAS models tested (Table 2).
An additional eight SNPs met the suggestive threshold of FDR of
< 0.2 (Supplementary Table S4). The top SNP, rs6532055
(p= 3.13 × 10−09, FDR= 0.022), was associated with olanzapine-
induced LDL changes. This SNP is located within an intron of the
ABCG2 gene, which is part of the ATP-binding cassette (ABC) family.
The second SNP, rs2644520 (p= 3.06 × 10−08, FDR= 0.122), was
associated with aripiprazole-induced TG changes and located in an
intergenic region near SORCS1, a gene encoding a member of
vacuolar protein sorting 10 (VPS10) domain-containing receptor
proteins.
The quantile-quantile plots (QQ) plots for the GWASs with the two

top SNPs are shown at the bottom of Table 2, and QQ plots of the
GWASs with SNPs achieving an FDR < 0.2 are shown in Supplemen-
tary Table S5. The QQ plots demonstrate that p-value distributions
closely match the expected p-values under the null hypothesis, with
the genomic control inflation factor (λGC at the median) ranging from
0.94 to 1.01, indicating that genomic inflation is unlikely to be a
concern.

Additional analyses with non-additive models. Further analyses
using non-additive models (dominant, recessive and genotypic)

Table 2. Top five SNPs associated with SGA-induced changes in lipid levels and BMI.

Primary Analyses Additional analyses

SGA Olanzapine Aripiprazole Clozapine Paliperidone Quetiapine

Phenotype LDL TG HDL LDL TG

Test model(1) Additive Additive Genotypic Genotypic Dominant

SNP rs6532055 rs2644520 rs115843863 rs2514895 rs188405603

Gene ABCG2 - - - SLC2A9

Nearest - SORCS1 UPP2 KIRREL3 -

Location Intron Intergene Intergene Intergene Intron

CHR 4 10 2 11 4

POS (GRCh38) 88197235 105919960 157988744 127240288 9973710

Effect Allele C G T T C

N 230 238 119 43 93

Effect AF 0.70 0.44 0.19 0.21 0.07

1KG AF (EAS) 0.73 0.45 0.20 0.29 0.08

1KG AF (EUR) 0.39 0.45 0.03 0.17 0.00

Imp. Rsq 0.73 0.99 0.90 0.97 0.62

Beta −0.622 0.510 NA NA 1.641

SE 0.101 0.089 NA NA 0.269

P-value 3.13E-09 3.06E-08 2.05E-08 4.96E-09 3.54E-08

P-valueBonferroni
(2) 5.01E-07 4.90E-06 3.28E-06 7.94E-07 5.66E-06

FDR 0.022 0.122 0.029 0.004 0.065

λGC (50, 70, 90 percentiles) 1.00, 1.00, 1.00 1.01, 1.01, 1.01 1.00, 1.01, 1.01 0.97, 0.99, 1.03 1.01, 1.01, 1.01

QQ Plot

CHR chromosome, POS position, SGA second generation antipsychotics, SNP single nucleotide polymorphism, AF allele frequency, 1KG 1000 genomes project,
“Imp. Rsq” genotype imputation r-squared, λGC genomic control inflation factor.
Remarks:
(1) The test model indicates the genetic model employed when conducting GWAS using PLINK2.
(2) P-values are Bonferroni corrected for 4 genetic models across 40 random effects, resulting in a total of 160 GWASs (i.e., p-value x 160).
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revealed three additional SNPs with p < 5 × 10−8. However, none
achieved GW significance after Bonferroni correction (Table 2). An
additional 17 SNPs with FDRs < 0.2 were identified under non-
additive models (Supplementary Table S6). The top SNP in the
genotypic model, rs115843863 (p= 2.05 × 10−8, FDR= 0.0287),
was associated with clozapine-induced HDL changes. The SNP is
located in an intergenic region near UPP2, a gene involved in
dCMP and uridine catabolic processes. Another SNP in the
genotypic model, rs2514895 (p= 4.96 × 10−9, FDR= 0.004), was
associated with paliperidone-induced LDL changes and is located
near KIRREL3, a gene encoding a nephrin-like protein expressed in
the brain. The last SNP rs188405603 (p= 3.52 × 10−8, FDR= 0.065)
under the dominant model was associated with quetiapine-
induced TG changes and is located within an intron of SLC2A9, a
gene encoding a glucose transporter.

Suggestive associations with FDR < 0.2. Eight SNPs achieved an
FDR < 0.2 in the primary GWAS analyses under the additive model
(Supplementary Table S4). Notably, four SNPs, namely rs7412
(FDR= 0.182), rs2384157 (FDR= 0.195), rs74625905 (FDR= 0.195)
and rs56349742 (FDR= 0.195), were associated with olanzapine-
induced LDL changes. The well-known LDL-altering SNP rs7412 in
APOE is positively associated with olanzapine-induced LDL
changes. Four additional SNPs were associated with quetiapine-
induced HDL changes, namely rs2358259 (FDR= 0.123),
rs10174314 (FDR= 0.123), rs117416034 (FDR= 0.123), and
rs6424242 (FDR= 0.186). In particular, rs6424242 is located in an
upstream region of the SIPA1L2 gene, which has been previously
linked to obesity-related traits, response to alcohol consumption,
and neuroticism based on Open Targets and the GWAS Catalog
[52–54].
In the additional GWAS analyses under non-additive models, 17

SNPs with FDRs < 0.2 were identified. These SNPs were associated
with metabolic side effects of clozapine, olanzapine, risperidone,
and paliperidone (Supplementary Table S6). The associated genes
have known implications in psychiatric disorders, lipid or BMI
measurements, or drug responses, including BICD1 and CSMD1
(olanzapine-induced TC changes); GADL1 (risperidone-induced
BMI changes); SIPA1L2 (quetiapine-induced HDL changes); and
RAB38, CDH23, AMPH, FOXN3, APBB2, C1R and LRCOL1 (paliper-
idone-induced LDL changes). Table 3 provides a comprehensive
overview of all identified genes from different analyses.
As emphasised earlier, we caution that none of the findings

passed Bonferroni correction. The above results (with FDR < 0.2)
should be considered tentative and further replications are
required to confirm our findings.

Fine-mapping results. The fine-mapping results for the top five
SNPs are visualized in region plots (Supplementary Table S7). The
top SNPs associated with olanzapine-induced LDL changes and
aripiprazole-induced TG changes were proposed to be causal
(PIP= 1.0). However, the remaining three top SNPs were not
considered causal, as shown by their low PIP values. Another SNP,
rs73968514 (PIP= 1.0), was identified as potentially causal for
clozapine-induced HDL changes (PIP= 1.0), replacing the original
GWAS hit rs115843863. Both rs2441693 and another SNP
rs2441693, with the same p-value, were identified as potentially
causal for paliperidone-induced LDL effects (PIP= 0.5 each).
Finally, instead of the observed GWAS hit rs188405603, fine-
mapping evidence suggested that rs77140241 was the real
causal variant for quetiapine-induced TG changes (PIP= 1.0,
p= 9.5 × 10−8, FDR= 0.065).

MAGMA analysis results
Gene-level analysis. Six genes reached the GW-significance p-
value threshold of 2.73 × 10−6 after Bonferroni correction
(α= 0.05/18288 genes tested) in the gene-level analysis (Table 4),
with their corresponding QQ plots from the gene-level analysis

shown in Supplementary Table S8. All GW-significant genes also
had an FDR < 0.05. Diseases or traits associated with these genes
were annotated using the Open Target Platform [37], which we
also highlighted here. The top gene ABCG2 (p= 8.26 × 10−9,
FDR= 1.51 × 10−4) was associated with olanzapine-induced LDL
changes; this gene is related to gout, urate measurement, and BMI
based on information from the Open Target Platform. APOA5
(p= 3.45 × 10−8, FDR= 6.31 × 10−4) and ZPR1 (p= 1.80 × 10−6,
FDR= 0.016) were associated with SGA-induced TG changes;
these genes were related to TG, HDL, and LDL levels and
metabolic syndrome. GCNT4 (p= 3.17 × 10−7, FDR= 5.12 × 10−3)
and MAST2 (p= 4.79 × 10−7, FDR= 8.62 × 10−3) were associated
with quetiapine-induced TG and risperidone-induced LDL changes
respectively. CRTAC1 (p= 2.273 × 10−6, FDR= 0.042) was asso-
ciated with olanzapine-induced HDL changes. Based on the
evidence from the Open Target Platform [37], GCNT4 and MAST2
are related to neurodegenerative disease and measurements of
erythrocyte count, BMI, LDL and TC [55–59]; whereas CRTAC1 is
related to body fat percentage and measurements of HDL and TG
[59, 60].
Gene set enrichment analysis, incorporating these six significant

genes along with those associated with the top five SNPs
identified in the GWAS analyses, was performed using the
Enrichr-KG platform [39]. The subnetwork of gene and enriched
terms are illustrated in Fig. 1, with corresponding enrichment
p-values and FDRs listed in Supplementary Table S9.

Gene set analysis. Fourteen gene sets were nominally associated
with SGA-induced metabolic changes. After FDR correction
(FDR < 0.05), four gene sets remained significant (Supplementary
Table S10). The top gene set, skeletal muscle satellite cell
differentiation (pBonferroni= 1.29 × 10−5, FDR= 4.4 × 10−4), was
associated with SGA-induced TG changes [61]. The mRNA editing
(pBonferroni= 2.20 × 10−5, FDR= 4.4 × 10−4) gene set was asso-
ciated with clozapine-induced LDL changes. The gene sets ER
ubiquitin ligase complex (pBonferroni= 0.004, FDR= 0.04) and
Saccadic smooth pursuit (pBonferroni= 0.004, FDR= 0.04) were
associated with clozapine-induced BMI and amisulpride-induced
BMI changes respectively.

DISCUSSION
This study represents one of the largest longitudinal PGx GWAS
investigations, identifying genetic variants associated with lipid
and BMI changes induced by seven commonly used SGAs in a
Chinese SCZ cohort. Our investigation included 19 316 prescrip-
tion records and 3 917 to 7 596 metabolic measurements for each
outcome, with a median follow-up duration of 5.7 years (SD= 3.3,
max= 18.7), surpassing the duration of comparable GWASs
[12,14–16].
Our study design incorporates several key strengths. Notably,

our cohort recruited from an early psychosis intervention clinic
comprised a high proportion of antipsychotic-naïve patients
(approximately 63%) at baseline; as such, confounding by previous
medications was reduced and likely lower than many other
comparable studies, including Adkins et al. [12]. Our focus on a
homogeneous ethnic Chinese sample provides valuable insights
specific to this underrepresented population, particularly impor-
tant given the known differences in allele frequency and LD
patterns between East Asian and European populations [62–65], as
evidenced in Table 2.
We employed a sophisticated analytical approach using within-

subject random effects of SGA-induced lipid/BMI changes. This
method substantially reduces the risk of confounding by
indication/contraindication [66]. To further mitigate potential
confounding effects, we included lipid-lowering drugs as covari-
ates in the GWAS phenotype estimations. The mean age of our
cohort at the first clinical visit (28.3 years, SD= 9.8) was lower than
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that reported in a similar study [12], reducing the influence of age-
related metabolic changes on our findings.
The top SNP rs6532055 is located in ABCG2, which encodes a

translocation protein involved in the efflux of antipsychotics
across cellular membranes [67, 68]. Its association with olanzapine-
induced LDL changes suggests a potential role in antipsychotic
pharmacokinetics and lipid metabolism. Notably, ABCG2 has also
been associated with LDL reduction in response to rosuvastatin
[69, 70].
Another top gene identified was SORCS1 which was associated

with aripiprazole-induced triglyceride changes. SORCS1 encodes a
member of the VPS10 domain-containing receptor protein family
and is strongly expressed in the central nervous system [71]. It has
been implicated in insulin regulation and type 2 diabetes risk in
both animal and clinical studies [72–74]. Notably, several studies
have shown that increased TG levels are associated with increased
type 2 diabetes risk and impaired fasting glucose [75–77]. Its role
in energy balance further supports its potential involvement in
antipsychotic-induced metabolic alterations [78].

UPP2, linked to clozapine-induced HDL changes, encodes
uridine phosphorylase 2. Several studies have revealed an
association between uridine metabolism with lipid metabolism
and glucose homeostasis [79–81]. Increasing endogenous hepatic
uridine levels by inhibiting uridine phosphorylase 2 may reduce
drug-induced liver lipid accumulation [81, 82], although long-term
uridine consumption might promote liver lipid accumulation and
exacerbate glucose intolerance [81].
KIRREL3, linked with paliperidone-induced LDL changes,

encodes a synaptic cell adhesion molecule essential for the
formation of target-specific synapses and is expressed in fetal and
adult brain tissues. While its role in lipid metabolism remains to be
investigated, this finding suggests a potential novel link between
neuronal function and metabolic regulation.
SLC2A9, linked to TG changes in our sample, encodes glucose

transporter 9 (GLUT9), a protein involved in reabsorbing or
excreting urate and glucose in kidney proximal tubules. This gene
has been strongly associated with uric acid levels and gout in
numerous studies [83–86]. Studies have revealed a significant

Table 3. Genes associated with SGA-induced lipid/BMI changes across various analyses(1,2,3,4).

Remarks:
(1) Gene in red was identified by the primary analysis, gene in black was identified by the additional analysis, gene in blue was identified by the MAGMA
analysis.
(2) Bold text: SNP-associated gene (SNP’s p < 5 × 10−8 before Bonferroni correction)/Gene reaching GW significant threshold (p < 2.73 × 10−6), Normal text:
SNP-associated gene/Gene reaching the suggestive evidence threshold (FDR < 0.2).
(3) ~Gene: SNP does not fall within the gene, but it is located near the gene.
(4) Superscript [D] Dominant, [R] Recessive [G] genotypic: indicates the genetic model being used in the GWAS analysis.
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positive association between TG and urate levels [87–89], and a
recent GWAS from Qatar revealed the association of SLC2A9 with
LDL levels [90].
We caution that these top five SNPs did not achieve GW

significance after Bonferroni correction. However, these prelimin-
ary findings may indicate potential targets for future investigation
on the biological mechanisms of antipsychotic-induced metabolic
effects and may inform personalised prescription strategies.
Our primary analyses under an additive model identified eight

additional SNPs with suggestive evidence (FDR < 0.2), located in or
near APOE, MBL2, MZT1, LOC105373454, CDCA7, DDX1, CD34, and
SIPA1L2 (Supplementary Table S4). Many of these genes are
associated with lipid levels, diabetes, CVD, urate levels, or other
metabolic measurements based on data from the Open Target
Platform [37]. Similar evidence was found for 17 suggestive SNPs
(FDR < 0.2) identified in our additional analyses using non-additive
genetic models (Supplementary Table S6).
MAGMA gene-level analyses identified six GW-significant genes

associated with SGA-induced lipid/BMI changes (Table 4). Notably,
ABCG2 was identified via both GWAS and MAGMA analyses,
providing further support for its potential role in olanzapine-
induced LDL changes. In analyses of patients taking any of the
seven SGAs, we identified two genes, APOA5 and ZPR1, which are
significantly associated with SGA-induced TG changes. These
findings are consistent with previous research. APOA5 encodes
apolipoprotein A5 (apoA5), a protein that regulates plasma TG
levels through enhancing the catabolism of TG-rich lipoproteins
and inhibiting very-low-density lipoprotein (VLDL) production [91].
This gene has been strongly associated with TG, HDL, LDL and
metabolic syndrome [92–94]. ZPR1, located near the apolipopro-
tein gene cluster APOA1/C3/A4/A5, encodes a regulatory protein
that binds various transcription factors and interacts with APOA5
[95]. Similar to APOA5, ZPR1 regulates TC, HDL and TG levels and
has been associated with hypertriglyceridemia, metabolic syn-
drome and type 2 diabetes mellitus [91, 96–98]. APOA5 and ZPR1
may represent shared genetic mechanisms underlying metabolic
side effects across different SGAs.
Our study has several limitations. First, only seven SGAs were

included, although these are probably among the most commonly
prescribed. Future research should aim to expand the scope to
include a broader range of SGAs. Second, while our sample sizes
are relatively large compared to similar GWASs [13–16, 99] (and
among the largest for GWAS on SGA-induced metabolic side-
effects over a medium to long term), power analysis indicated that
our GWAS models may be underpowered to achieve the stringent
Bonferroni-corrected GW-significance p-value threshold of
3.125 × 10−10, particularly for analyses involving specific SGAs
with smaller sample sizes. Therefore, caution should be exercised
when extrapolating conclusions from these analyses. A larger
cohort in future studies would enhance the statistical power and
robustness of our findings. Third, potential residual confounding
may affect the estimation of the metabolic side effects of SGAs,
which may in turn affect the estimation of the genetic influence
on these side effects. Although we have applied sophisticated
methods and controlled for concomitant and multiple SGA
medications, there may be unmeasured confounders that could
impact our results. In addition, our methods cannot account for
historical treatment effects of SGAs which have been prescribed to
patients before recruitment. However, our longitudinal design,
which involves a relatively long follow-up period, may be less
affected by the effects of prior medications compared to short-
term studies. The effects of prior drugs are possibly ‘diluted’ over a
long follow-up. Finally, lifestyle factors such as diet, exercise,
alcohol consumption and tobacco smoking were not measured
and may be included in future studies.
Despite these limitations, our study provides valuable insights

into the pharmacogenetics of SGA-induced metabolic changes in
a Chinese SCZ cohort. The identified genetic markers not onlyTa
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enhance our understanding of the biological mechanisms under-
lying these metabolic changes but also hold promise for
developing more tailored and safer treatment strategies for
individuals with SCZ. However, further studies and replication are
needed before these genetic findings can be applied in clinical
practice.
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