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In neurodevelopmental research, within-diagnosis heterogeneity and across-diagnosis overlap necessitate a shift from case-control
designs to data-driven clustering approaches. However, our understanding of the replicability of these clustering structures across
independent datasets remains limited. Our objective was to examine the replicability of clustering structure in measures of brain
morphology in neurodiverse children across two independent datasets, namely the Province of Ontario Neurodevelopmental
Disorder (POND) Network and the Healthy Brain Network (HBN). POND and HBN data were collected across various institutions in
Ontario, Canada, and New York, United States, respectively. Participants were 5-19 years old and had diagnoses of autism, attention
deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), or were neurotypical. We used measures of cortical
volume, surface area, cortical thickness, and subgroup volume from structural MRI data. Principal component analysis (PCA) and
clustering were used to examine the replicability of clustering structures across the datasets. Correlations among principle
components, measures of clusterability, and alignment between the four brain measures as well as male/female subsets were
examined. Brain-behaviour associations were examined using univariate and multivariate approaches. The POND dataset included
747 participants with (autism n =312, ADHD n =220, OCD n = 70, neurotypical n = 145). The HBN dataset included 582
participants (autism n =60, ADHD n =445, OCD n = 19, neurotypical n = 58). Our results showed significant between-dataset
correlations in 82.1% of the principal components derived from brain measures. A two-cluster structure was replicated across
datasets, brain measures, and the female/male subsets, however the participant composition of clusters were only aligned between
cortical volume and surface area, and cortical thickness and subcortical volume. Regional effect sizes for between-cluster
differences were highly correlated across datasets (beta = 0.92+/—0.01, p < 0.0001; adjusted R-squared=0.93). Data-driven clusters

did not align with diagnostic labels across datasets. Brain-behaviour associations were only replicated for male subsets and
subcortical volume using multivariate analysis. We found evidence of replicability of the clustering structure across two
independent datasets; however, caution must be exercised in integrating multiple measures in clustering and interpretation of

brain-behaviour associations.
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INTRODUCTION

Autism spectrum disorder (ASD; autism), attention-deficit/hyper-
activity disorder (ADHD), and obsessive-compulsive disorder
(OCD) are behaviourally-defined neurodevelopmental conditions
[1-3] with significant variability and overlap in their neurobiology
and phenotypic presentation [4, 5]. To characterize the variability
within and across these conditions, a growing body of research
has focused on data-driven approaches, including clustering [6-9],
to discover transdiagnostic groups of individuals who share similar
neurobiological [7, 9-11] or phenotypic features [12]. These
studies have consistently found a misalignment between data-

driven subgroups and existing diagnostic labels [6, 12]; however,
significant variability exists across these studies in the neurobio-
logical features and analytical approaches used in clustering. For
example, different measures of brain morphology [12, 13] and
function [10] have been used along with a range of clustering
approaches including hierarchical, spectral, multi-view, or regres-
sion clustering [12, 13].

In addition to differences in data modalities and analytical
approaches, significant variability is also found in data acquisition
methods (e.g., scanners, scanning parameters, motion), imaging
pipelines [14-16] (quality control method, denoising/correction
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algorithms), and sample characteristics [17], including diagnoses
and sociodemographic composition. Given this, it is not surprising
that there is also significant variability in study findings. This
includes differences in the suggested number of clusters (e.g., 2-8
cluster solutions [10, 12, 18]), neurobiological characteristics
defining the subgroups (e.g. differences in cortical volume or
subcortical [18], cortical thickness [12]), and the phenotypic
presentation of the clusters (for example, cluster differences in
social communication abilities [10, 18], language and attention
[18], cognitive ability and hyperactivity [9]). The heterogeneity of
findings in the existing literature has raised questions about the
replicability of clustering results. In this context, replicability is
defined as obtaining consistent findings across studies with the
same research question [19]. Among the existing literature, only
one study has investigated the replicability of data-driven
subgroups across two independent datasets including children
with diagnoses of neurodevelopmental conditions [9]. Using
resting-state functional connectivity datasets from the Province
of Ontario Neurodevelopmental Disorder (POND) Network and the
Healthy Brain Network (HBN), this study found two clusters that
differed in 1Q, hyperactivity, and impulsivity, as well as patterns of
segregation and integration within the brain’s networks. These
results provide encouraging preliminary evidence that the results
of clustering based on these measures of brain function may be
replicable in spite of differences in datasets. A critical gap still
remains, however, in understanding replicability in clustering
results based on measures of brain morphology. The present
study addresses the gap by examining the issue of replicability in
measures of brain morphology namely cortical thickness, surface
area, and cortical and subcortical volume. To this end, we will
examine 1) replicability of clustering across these measures, and 2)
replicability across two independent datasets. Given the known
sex-differences in neurodevelopmental conditions, our analysis
was disaggregated by sex, allowing us to also examine replicability
across the male and female subsets of each dataset.

METHODS

Participants

For this study, we used data from two independent datasets, namely,
POND (export date May 22, 2023), and HBN (Release 10). Data from
participants who were between 5-19 years of age, had a diagnosis of
autism, ADHD, OCD, or who were neurotypical, and whose neuroimaging
data passed quality control were selected for the current study. This
resulted in data from 747 participants from POND (autism: n=312,
female=22.4%, median age=12.4 (5.53); ADHD: n =220, 25.5% female,
median age=11.3 (4.08); OCD: n =70, 40.0% female, median age=11.8
(5.57); neurotypical: n = 145, 41.4% female, median age=11.9 (5.16)), and
582 participants from HBN (autism: n = 60, 8.33% female, age=12.31(5.86);
ADHD: n =445, 31.2% female, 10.02 (4.83); OCD: n=19, 52.6% female,
age=~8.76 (5.09); neurotypical: n =58, 41.4% female, age=10.1(5.24)). For
POND, clinical diagnoses were supported by gold-standard assessments:
the Autism Diagnostic Observation Schedule-2 (ADOS [20]) and the Autism
Diagnostic Interview-Revised (ADI-R [20]) for autism, the Parent Interview
for Children Symptoms for ADHD (PICS) for ADHD, and the Children’s Yale-
Brown Obsessive Compulsive Scale for OCD [21] (CY-BOCS). Children in the
neurotypical group did not have a history of neurodevelopmental,
psychiatric, or neurological diagnoses, were born after 35 weeks gestation,
and had no first-degree relative with a neurodevelopmental condition. For
HBN, a computerized web-based version of the Schedule for Affective
Disorders and Schizophrenia—Children’s version (KSADS [22]) was
administered, which was reviewed alongside all study material by a
clinical team to synthesize a consensus clinical diagnosis aligning with the
DSM-5 [23]. Individuals with no diagnosis given were considered as
neurotypical.

Both POND and HBN studies were approved by the respective
institutions’ research ethics board. Written informed consent and/or verbal
assent (if written is not available) were obtained from the primary caregiver
and/or participants as appropriate. The present study on secondary
analysis of POND and HBN data was approved by the Holland Bloorview
Research Ethics Board.

SPRINGER NATURE

Behavioural measures

Phenotypic measures available for both datasets included the Social
Communication Questionnaire (SCQ) to quantify autism-like features [24],
the Strength and Weakness for ADHD symptoms and Normal Behaviour
Rating Scale (SWAN [25]) to measure inattention and hyperactivity
symptoms,Toronto Obsessive Compulsive Scale (TOCS) to measure
obsessive-compulsive traits, and full-scale intelligence quotient (FSIQ)
measured by an age-appropriate IQ scale [26, 27]. The internalizing and
externalizing measures of Child Behaviour Checklist (CBCL [28, 29]) were
used to quantify internalizing and externalizing symptoms.

Sociodemographics measures

In addition to age and sex, racial and ethnic identifications in both datasets
were collected through self-reported or parent-reported questionnaires.
For POND, racial categories were aligned with the standards set by the
Canadian Institute for Health Information. These categories encompassed
Black, East Asian, Indigenous, Latino, Middle Eastern, South Asian,
Southeast Asian, White, and other. Participants with mixed racial
backgrounds were coded in multiple categories. For HBN, racial categories
followed the US Census guidelines, including American Indian or Alaskan
Native, Asian, Black, Hispanic, Native Hawaiian or other Pacific Islander,
White, 2 or more races, and other. Given the sample size, we consolidated
race into two categories of minoritized and white for both datasets. For
both datasets, household income was categorized as low (<$74,999 CAD),
medium ($75,000 CAD to $199,999 CAD), and high (=$200,000 CAD).
Education was defined based on the highest educational attainment of the
primary caregiver, categorized as: Level 1 (non-completion of high school
or high school diploma), Level 2 (associate degree or undergraduate
degree), and Level 3 (graduate or professional degree).

Imaging data

For both datasets, measures of cortical surface area, cortical thickness,
cortical volume and subcortical volume were obtained from structural MRI
(sMRI). For POND, the sMRI images were collected on Siemens MAGNETOM
3T Trio and Prisma MRI scanners across three sites, namely, the Hospital for
Sick Children (Toronto, Ontario; Trio: n = 233; Prisma: n = 348), Queen’s
University (Kingston, Ontario; Trio: n = 100; Prisma: n =43), and Holland
Bloorview Kids Rehabilitation Hospital (Toronto, Ontario; Prisma: n = 23).
For HBN, the data were collected using Siemens 3T Trio and Prisma
scanners from three institutions in the New York City area, namely the
CitiGroup Cornell Brain Imaging Center (Prisma: n=345), Rutgers
University (Trio: n=202), the City University of New York Advanced
Science Research Center (Prisma: n = 28), and a mobile site in Staten Island
with a 1.5 Tesla Siemens Avanto (n = 7).

To extract surface area, cortical thickness, and cortical volume, the CIVET
pipeline (version 2.1.0) [30] was used. These measures were extracted for
76 regions based on the automated anatomical labeling atlas (AAL)
[17, 31]. Non-uniformity image correction and stereotaxic registration to
the Montreal Neurologic Institute (MNI ICBM) [32] template (non-linear 6th
generation target) was then used. Masking, extraction and classification
were used to separate and obtain gray matter, white matter, and
cerebrospinal fluid volume. A surface diffusion kernel was applied [33],
and regions were registered to the AAL atlas [34]. Cortical thickness was
calculated based on the distance between two smooth surfaces [14] and
gray matter and white matter surfaces was generated by tissue
classification, and then surfaces were registered to the automated
anatomical labelling (AAL) atlas [35]. Lastly, segmentation by use of
multiple automatically generated templates (MAGeT) [33] was used to
calculate volume of 95 subcortical structures from multiple starting atlases,
including 5-atlas subcortical, cerebellum, amygdala, hippocampus-sub-
fields, and striatum and thalamus subdivisions. The CIVET and MAGeT
quality control (QC) pipelines were used, and participants were only
included if they passed both QC pipelines. Details of the data filtering is
provided in the eTable 1 in Supplement 1. For each dataset, separately for
males and females, the brain measures were corrected for scanner effects
using ComBat Harmonization [14]. For age correction, the best model fit
among linear, quadratic, and cubic effects was used for each brain region
[9].

Analysis pipeline

Data and statistical analyses were performed using Python 3.8.0 and R
3.3.3. An overview of the analysis pipeline is depicted in eFigure 1 in
Supplement 1. Given the sex-differences in neurobiology of
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neurodevelopmental conditions [36-39], analyses were conducted inde-
pendently on male and female subsets of each dataset.

To examine between-dataset similarities in the structure of the data, we
used Principal Component Analysis (PCA) [40]. PCA is a multivariate
approach that transforms the set of measurement variables into a new set
of uncorrelated variables (principal components; PCs) that capture the
largest variation in the data. The coefficients of the original variables,
referred to as loadings, represent the strength of their contribution to the
PCs. For this study, PCA was applied independently on surface area, cortical
thickness, and cortical, and subcortical volume data. To examine
similarities in the principal components across POND and HBNs, Pearson’s
correlation between POND and HBN loadings was computed. This was
computed as the maximum correlation between a POND PC, and the
corresponding PC on HBN, allowing for a window of 2 in cases where PC
numbers were not aligned between the datasets.

To characterize the clustering structure of the datasets, we used the
PCA-transformed data to compute participant similarity networks. These
are matrices with entries corresponding to the similarity between pairs
of participants (i.e., entry i, j, corresponds to the similarity between
participants /i and j). Pairwise similarities were computed using the
Gaussian transform of the cosine distance between vectors encoding
brain measure values across all regions of the atlas. The cosine distance
was selected as it provides a robust method for capturing structural
associations in high-dimensional datasets [41]. With this pipeline, we
generated four distinct similarity networks (cortical area, cortical
thickness, cortical, and subcortical volume) separately for male and
females in each dataset. These matrices were then clustered using
spectral clustering [42].

Statistical analyses

To examine the existence of clusters within each network, we employed
three measures of clusterability: the gap statistic [43], silhouette coefficient
[33], and Calinski-Harabasz [44]. Statistical significance of clustering
patterns were determined using a permutation test comparing the three
measures of clusterability between the datasets and 200 random networks.
The random networks were generated using the same weight distribution
as the original networks [45], preserving the degree and strength of the
original networks [46]. Alignment among the constructed clusters and
diagnostic labels, as well as clusters obtained from different brain
measures was assessed using the adjusted rand score [47]. An adjusted
rand score of one indicates full alignment between two sets, whereas a
value of zero suggests no alignment.

Univariate and multivariate methods were employed to examine the
associations among clusters and behavioural and brain measures. For
univariate analysis, measures were compared among clusters using t-test
for normally-distributed, continuous data, Mann-Whitney tests for non-
normally-distributed, continuous data, and Chi-squared tests for catego-
rical data. Family-wise correction was used for multiple comparisons and
Cohen'’s effect size [42] was reported for statistically significant results. For
multivariate analysis, we predicted cluster labels from phenotypic
measures using a random forest classifier [48]. These phenotypic predictors
included scores on the SCQ, SWAN (inattention and hyperactivity), and
CBCL (internalizing and externalizing), as well as full-scale IQ, age, race/
ethnicity, and household education level.

RESULTS

Participants

A total of 121 participants in POND and 923 participants in HBN
failed either the CIVET and MAGet quality control (detailed in
Supplementary Table 1). As the result, 747 participants from POND
and 582 participants from HBN remained for the analyses. The
demographic characteristics for the POND and HBN participants
are shown in Table 1.

PCA decomposition

The number of principal components needed to account for 75%
of variance in the data across the measures and dataset ranged
between 14 and 24 (eTable 2 in Supplement 1). The correlations
between the loadings on the principal components of two
datasets are shown in the eFigure 2 in Supplement 1. The loadings
were significantly correlated between 82.1% of PCs. Of the
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statistically significant correlations, 40.9% exceeded a correlation
coefficient of 0.3. HBN females had the lowest percentage of
significant correlations (eTable 3 in Supplement 1).

Clustering composition of the data

Participant similarity matrices are visualized as network graphs in
Fig. 1. As seen, two distinct groupings are evident across datasets,
brain measures, and male and female subsets. To determine if
clusters existed in the data, we used the gap statistic [43],
comparing the within cluster dispersion of the data to that
expected under the null distribution (no random permutation
networks). The gap statistic was significantly larger for our data
compared to the null distributions (random permutation net-
works) for surface area, cortical thickness, and cortical and
subcortical volume for both males and females (p < 0.01, eTable
4 in Supplement 1). Silhouette and Calinksi-Harabsz scores
(eFigure 3 in Supplement 1) suggest that the optimal number of
clusters is two for all measures and datasets.

Clustering results

Across brain measures and datasets, there was very low alignment
between diagnostic labels and data-driven groupings (adjusted
rand scores <0.02; eTable 5 in Supplemental 1). Alignment among
clusters constructed using different brain measures is shown in
the eFigure 4 in Supplement 1. Across all datasets, clustering
solutions were highly aligned for cortical volume and surface area
(adjusted rand score 0.63-0.81), and moderately aligned for
cortical thickness and subcortical volume (adjusted rand score
0.22-0.44). This finding was replicated across datasets and female/
male subsets.

Cluster differences in brain measures. For both datasets, we
computed the effect size for the differences in brain measures
across clusters using Cohen’s d (eFigure 5, eFigure 6 and eTable 6
in the Supplement 1). Figure 2 shows the association among these
effect sizes between POND and HBN, as well as male and female
subsets. Linear regression analysis revealed a significant associa-
tion between cluster effect sizes for POND and HBN after
controlling for measure and sex (intercept=0.09+/—0.02,
p<0.0001; beta=0.92+/—0.01, p<0.0001; adjusted R-
squared=0.93). Similarity, a significant association was found for
cluster effect sizes between males and females (intercept=
—0.04+/—0.02, p = 0.04; beta=0.97+/—0.01, p < 0.0001; adjusted
R-squared=0.91). This suggests that brain signatures associated
with the clusters are highly consistent between datasets and
male/female subsets.

Cluster associations with phenotypic measures

Univariate testing did not reveal any significant between-cluster-
differences in age, race/ethnicity, family income and education,
ethnicity, FSIQ, SCQ, SWAN, or CBCL scores (detailed statistics in
the eTable 3 in Supplemental 1) across datasets or measures
(Fig. 3).

The accuracy for multivariable prediction of cluster labels is
presented in the eTable 7 in Supplemental 1. One-sample t-tests
revealed that cluster labels were predicted with greater than
chance accuracy for subcortical volume for males in both POND
(accuracy = 0.65+0.09; p=0.02) and HBN (accuracy =
0.61+£0.05; p=0.01). For those prediction tasks, feature
importance values (calculated based on mean decrease in
impurity [48]) are reported in supplemental eFigure 7. The
differentiating features were highly consistent between POND
and HBN and female and male subsets, with the highest
importance attributed to age and the phenotypic measures (IQ,
CBCL internalizing and external, SCQ, SWAN scores). The
contribution of sociodemographic factors to prediction was
significantly smaller.

SPRINGER NATURE
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Table 1. Demographic characteristics for the POND datasets.
Autism
n POND® 312
HBNP 60
Age® (years) PONDP 12.26 (3.60)
HBNP 10.02 (4.83)
Sex? No. (%) female PONDP 70 (22.4)
HBNP 5 (8.3)
scQ? POND® 20.00 (10.00)
HBNP 12.00 (7.50)
SWAN inattention POND® 4,00 (5.00)
HBNP 4,00 (6.00)
SWAN hyperactivity® PONDP 2.00 (4.00)
HBNP 1.00 (4.00)
TOCS PONDP —4.50 (34.00)
Full-scale 1Q PONDP 96.00 (29.50)
HBNP 98.00 (25.00)
CBCL Internalizing® POND® 65.00 (13.00)
HBNP 61.00 (12.50)
CBCL Externalizing POND® 58.00 (15.00)
HBNP 59.00 (14.50)
Income low:med:high PONDP 44:51:24
HBNP 16:17:10
Education (Levell:Level2:Level3)? POND® 6:100:30
HBNP 13:4:23
White No. (%) POND® 152 (34.6)
HBNP 23 (8.0)
Minoritized No. (%) POND® 33 (60.0)
HBNP 28 (12.8)

Values are reported as median (IQR) for continuous measures.

ADHD

220

445

11.63 (2.75)
12.31 (5.86)
56 (25.5)
139 (31.2)
5.00 (7.00)
6.00 (5.00)
6.00 (4.00)
3.00 (6.00)
4.00 (6.00)
1.00 (4.00)
—23.00 (45.00)
102.00 (18.50)
100.00 (24.0)
63.00 (16.00)
59.00 (17.00)
61.00 (15.50)
58.00 (16.00)
34:33:25
109:125:120
12:12:69
51:11:202

143 (32.6)

219 (76.6)

6 (10.9)

163 (74.4)

ocD

70

19

13.16 (2.66)
11.43 (5.28)
28 (40.0)
10 (52.6)
4.00 (6.00)
6.00 (9.00)
1.00 (3.25)
2.00 (3.50)
0.00 (2.00)
0.00 (2.00)
20.00 (24.00)
113.00 (23.50)
113.00 (14.00)
68.00 (12.25)
63.50 (13.75)
53.00 (15.00)
57.50 (18.75)
0:6:4

3:4:8

0:8:3

1:0:14

34 (7.7)

10 (3.5)
1(1.8)

8 (3.6)

NT

145

58

12.15 (3.76)
8.76 (5.09)

44 (43.1)

24 (42.8)

2.00 (2.00)
4.00 (4.00)
0.00 (0.00)
0.00 (0.25)
0.00 (0.00)
0.00 (0.00)
—42.50 (48.00)
111.50 (13.75)
107.50 (19.75)
48.00 (13.00)
49.00 (16.25)
43.50 (16.00)
49.00 (14.00)
16:28:26
10:14:24
6:65:28

6:2:36

110 (25.0)

34 (11.9)

15 (27.3)

20 (9.1)

All

747

582

12.14 (3.34)
10.12 (5.24)
214 (28.6)
178 (41.4)
9.00 (16.00)
7.00 (6.00)
3.00 (7.00)
3.00 (6.00)
1.00 (5.00)
1.00 (3.00)
—12.50 (47.25)
102.50 (23.0)
101.0 (25.0)
61.00 (17.00)
58.00 (16.00)
55.00 (18.00)
57.00 (17.00)
94:118:79
138:160:162
24:234:70
71:17:275
439

286

55

219

Reported values are median (interquartile range (IQR)). P values are for multiple comparisons (9 comparisons). P-values are results of t-test for normally

distributed and Kruskal-Wallis test (for continuous non-normally distributed data). For sex, Chi-squared test was used.

significant difference between datasets (p < 0.001).
bsignificant difference between diagnostic groups (p < 0.001).

DISCUSSION

Our study characterized the replicability of the participant
similarity networks constructed using surface area, cortical
thickness, and cortical and subcortical volume, across the POND
and HBN datasets, as well as male and female subsamples.

Replicability across datasets

Despite significant differences in the POND and HBN datasets in
demographic and phenotypic composition, our results revealed a
high degree of consistency between the data structures for the two
datasets. In particular, we found high between-datasets correlations
among the principal components obtained using POND and HBN
datasets, suggesting that data structures are similar in both datasets
across the brain measures examined. The clustering structure was
highly replicable across datasets, with our results revealing a
2-cluster composition across the four brain measures and the
female/male subsets. This is at the lower end of previous literature
findings where the number of reported clusters is highly variable,
ranging from 2-10 [6, 9-11, 18, 49]. Larger number of clusters are
likely to be found when multiple brain measures are combined,
especially if these measures quantify potentially different biological
mechanisms (for example, if two independent groups are found in
each measure A and B, the combination of measures will result in
four possible group combinations).

SPRINGER NATURE

The brain signatures of the clusters were highly consistent
across datasets with high correlations among regional effect sizes
for between-cluster differences. Another finding that was repli-
cated was that data-driven clusters were not aligned with
diagnostic labels as indicated by the low Adjusted Rand Index
scores (eTable 5 in Supplement), across datasets, brain measures,
and female/male datasets. This finding is consistent with previous
literature [6, 9, 10, 18, 49], further adding to the body of work
highlighting the need for enhanced biologically-relevant precision
in characterization of neurodevelopmental conditions, compared
to our broad diagnostic categories.

In this study, we did not find statistically significant phenotypic
differences between clusters through uni-variate analysis. However,
multivariate analysis showed that cluster labels derived based on
subcortical volume were predicted with greater than chance accuracy
based on a combination of differences in age, IQ, internalizing,
externalizing symptoms, autism features, and inattention and hyper-
activity/impulsivity, across both POND and HBN. This finding suggests
that neurobiological homogeneity may not align with single diagnostic
domains of neurodevelopmental conditions, but instead, reflects
differences in constellation of phenotypic features that are not specific
to a single diagnosis category. The null finding of univariate phenotypic
differences may also be due to statistical power as replicability in brain-
behaviour associations may require very large sample sizes [50].
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Fig. 1 Replicability of clustering structure. A participant similarity networks, (B) adjusted rand score.
Replicability across brain measures subcortical volume; However, the participant membership to the
In addition to between-dataset differences, we examined the clusters was only partially replicated between subcortical volume
replicability of clustering structures across different brain mea- and cortical thickness, and surface area and cortical volume, but

sures within a dataset. The two-cluster solution was replicated not at all among other pairs of measures. The misalignment
across cortical area, cortical thickness, cortical volume, and between cortical thickness and surface area is not surprising given
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A)

Effect Size (POND)

B)

Effect Size (Male)

that these features are suggested to be genetically distinct
determinants of cortical structure [51]. Further, the finding of
replicability between cortical volume and surface area is
consistent with the suggestion that interindividual variation in
gray matter volume is largely driven by differences in surface area
rather than the cortical thickness [52]. The dissociation between
cortical thickness and surface area is particularly important to
studies of subgroup structure in neurodevelopmental conditions
that integrate multiple measures of cortical morphology. Given
that these measures reflect different genetic mechanisms,
clustering based on each individual measure may be advanta-
geous to reveal subgroups that share differences in these
mechanisms.

Replicability and sex differences

Given the known sex-differences in the neurobiology and pheno-
typic expression of neurodevelopmental conditions [53], we
disaggregated our results by sex. There was high replicability
between male and female datasets in the principal component

SPRINGER NATURE
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Ettect Size (Female)

Fig. 2 Association among between-cluster effect sizes computed. A POND and HBN, (B) male and female subsets.
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decomposition of the brain measures, overall clustering structure,
lack of alignment with the diagnostic labels, and brain signatures of
clusters. In terms of brain-phenotype association, replicability was
found in HBN, but not POND. It is important to note that overall, we
observed higher variability in the female dataset. This may suggest
larger variability in neurobiological characteristics or may be the
result of our smaller sample size for the female subsets.

STRENGTHS AND LIMITATIONS

This study has several strengths, including our large sample sizes
across both datasets. At the same time, there was lower
representation of females, matching the expected prevalence in
autism and ADHD. This may have limited our ability to detect
female-specific patterns. Additionally, our phenotypic measures
were limited by what was available in both POND and HBN sets. It
may be possible that brain-behaviour associations can be found in
other measures of function or cognition (e.g., response inhibition,
memory, affect recognition).
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CONCLUSIONS

To our knowledge, this is the first study of clustering
replicability in structural brain measures across neurodevelop-
mental conditions. We found evidence of replicability of the
clustering structure across two independent datasets; however,
when examining replicability across brain measures, only
replicability across cortical thickness and subcortical volume,
and surface area and cortical volume were strongly supported
by our results.
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