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Research aimed at understanding how baseline clinical and demographic characteristics influence outcomes over time is critically
important to inform individualized therapeutic programs for children with neurodevelopmental differences. This study
characterizes adaptive behavior trajectories in children receiving medical and behavioral therapy within a network of care centers
with a shared data-gathering mechanism for intake and longitudinal assessments. We then take the further step of utilizing intake
data to develop machine-learning models which predict differences in those trajectories. Specifically, we evaluated data from 1225
autistic children, aged 20-90 months, using latent class growth mixture modeling (LCGMM) with scores on the Vineland Adaptive
Behavior Scales, 3rd Edition, as the primary outcome measure. The LCGMM analysis revealed two distinct clusters of adaptive
behavior trajectories. The “Less Impairment/Improving Trajectory” group (≥66% of the sample) exhibited greater developmental
change in adaptive behavior, while the “Higher Impairment/Stable Trajectory” group (≤33% of the sample) showed little change
over time relative to age-matched normative data. For a subset of 729 children, we used machine learning algorithms to forecast
adaptive behavior trajectories using clinical and sociodemographic data collected at the initial assessment, comparing elastic net
GLM, support vector machine, and random forest. The best-performing random forest model predicted adaptive behavior trajectory
with an accuracy rate of 77%. The strongest predictors in our model were socioeconomic status, history of developmental
regression, child temperament, paternal age at the time of the child’s birth, baseline autism symptom severity, parent concerns
about development, presence of ADHD symptoms, and parent concerns about mood. Notably, the inclusion of cumulative hours of
applied behavioral analysis and developmental therapies in the machine learning models did not yield significant changes in
performance metrics, indicating that increased therapy hours did not predict greater improvement. These findings extend our
understanding of adaptive behavior development in autistic children and underscore the value of gathering comprehensive patient
information at intake to tailor clinical care.
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BACKGROUND
The diagnostic category of Autism Spectrum Disorder (ASD)
encompasses a range of neurodevelopmental differences that
result in atypical trajectories in the development of adaptive
functions, particularly in the domains of socialization and
communication [1, 2]. In clinical practice, the assessment of
adaptive functioning skills, often referred to as “adaptive
behaviors,” is routinely used as a proxy for real-world ability and
disability in autistic individuals over the course of the lifespan
[3, 4].
Recently, researchers have made significant efforts to char-

acterize patterns of adaptive behavior outcomes in autism. These
efforts have revealed substantial variation, with some children
exhibiting more favorable developmental changes compared to
others. This information is highly relevant to clinicians who seek to
develop targeted therapeutic and medical approaches based on
an individual’s unique psychosocial profile and neurobehavioral
phenotype. Identifying how individuals may respond differently to
clinical care is fundamental both to personalizing programs of
intervention and to improving care delivery more broadly. Thus,

there is a pressing need to identify predictors of differential
trajectories of adaptive behavior change within the context of
clinical care from the point of intake.
The term “autism spectrum” itself underscores the inherent

heterogeneity within the diagnostic construct. Individuals with an
autism diagnosis differ in numerous aspects ranging from genetic
risk factors to early-life experiences and sociodemographic
variables, leading to diverse clinical and developmental outcomes
[5]. One statistical technique that has been used to characterize
the multifaceted nature of autism outcomes is latent class growth
mixture modeling (LCGMM), which can capture variability in
behavioral measures longitudinally from childhood to adulthood
[6–9]. LCGMM offer several advantages over multilevel linear
growth models, which are a traditional method for characterizing
change and are particularly useful for modeling continuous
change. In comparison, mixture models capture heterogeneity in
patterns of change, enabling the identification of distinct
trajectories that align more closely with real-world clinical
observations. Prior studies have primarily analyzed standardized
measures of adaptive behavior skills, such as the Vineland
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Adaptive Behavior Scales (VABS) [2], in children drawn from
community samples without regard to specific interventions or
treatments.
Collectively, these studies have revealed that a significant

proportion of autistic children follow trajectories characterized by
little to no growth in adaptive behavior [6–10]. In other words,
many children with a diagnosis of autism continue to lag
significantly behind their peers in the development of adaptive
behavior skills, despite presumably receiving some type of therapy
within the community. However, the contribution of standard
therapeutic interventions has not been comprehensively
accounted for, as relevant clinical data are lacking in most
research cohorts. It should also be noted that while research
samples tend to emphasize psychometric characteristics, such as
IQ, in predicting group membership, clinically relevant issues such
as comorbid conditions and parent-reported concerns may not be
routinely assessed.
On the other hand, research into the effectiveness of clinical

interventions for autism often does not sufficiently account for
heterogeneity in the population of individuals with that diagnostic
label. This has resulted in a “one-size-fits-all” approach to clinical
intervention, typically comprising numerous hours of intensive
behavioral interventions such as Applied Behavior Analysis (ABA)
therapy and ad hoc provision of other developmental therapies
including speech-language therapy, occupational therapy, and
physical therapy [11]. In theory, a more individually tailored
approach to therapy could offer improvements in both cost
efficiency and clinical efficacy, substantially reducing the lifelong
socioeconomic burdens associated with an autism diagnosis.
Psychosocial, demographic, and longitudinal outcome data

from various sources can be analyzed holistically using machine
learning (ML) approaches, which have gained significant traction
as a tool for predicting clinical outcomes in various mental health
conditions [12]. In the realm of autism research, ML prediction
models have been applied to identify subtypes of autism based on
clinical data [7, 13], to develop precise diagnostic models [14, 15],
and, more recently, to predict differential responses to medical
treatments [16]. However, there is a paucity of studies employing
ML to predict differential functional behavior outcomes among
individuals with autism, and fewer still that systematically account
for the impact of standard therapeutic interventions. From the
perspective of autism care, therefore, there is a pressing need for
studies that adopt a data-driven approach to explore predictors of
variation in response to treatment. Such efforts should enhance
the precision of intervention strategies and provide tailored
support to individuals with autism, ultimately maximizing these
individuals’ overall quality of life [17].

Current study
This study aimed to characterize the variability in adaptive
behavior outcomes among autistic children, and to identify key
clinical predictors of differential outcomes. The research described
here is unique in part because it utilizes data gathered within the
course of clinical care, rather than in the isolated context of a
research study. Thus, in addition to adaptive behavior outcomes
data from the Vineland Adaptive Behavior Scales, 3rd Edition
(VABS-3), we had access to in-depth clinical intake information,
including baseline socio-demographic data as well as standar-
dized parent ratings for a variety of neurodevelopmental concerns
and medical comorbidities. We were also able to gather
information about the type and duration of therapies children
received.
The study had two primary objectives. First, we employed latent

class growth mixture modeling (LCGMM) to uncover distinct
trajectories of adaptive behavior change in a cohort of children
(N= 1225) receiving clinical care within a network of centers with
a uniform approach to autism treatment. We evaluated the
Adaptive Behavior Composite (ABC) score and the standardized

score from each subdomain on the VABS-3 to facilitate
comparisons with previous latent class trajectory research
[6, 8, 9, 11].
Second, utilizing predictive ML algorithms, we investigated the

importance of socio-demographic variables and clinical pheno-
types in predicting membership in one of the observed
trajectories of adaptive behavior change identified through
LCGMM analysis. We also evaluated whether including informa-
tion about therapeutic intensity - operationalized as cumulative
hours of ABA and developmental therapies - would substantially
alter the prediction of outcomes of our models. What makes this
sample unique is that for each autistic child receiving care, the
parent or caregiver completed a detailed standardized intake form
prior to the initial visit, providing a rich source of demographic,
historical, and baseline clinical data. Caregivers also reported
adaptive behavior skills using the VABS-3 [18] every six months as
part of routine clinical care.

RESULTS
Dataset description
This study leveraged deidentified clinical data from a network of
13 clinical sites with a uniform operational and therapeutic
approach to autism care (Cortica Healthcare). The network
included 8 sites in California, 2 sites in Texas, 2 sites in Illinois,
and 1 site in New Jersey. The study was conducted according to
principles outlined in the Declaration of Helsinki, and was
approved by the WIRB-Copernicus Group, Institutional review
board (protocol # 20224562). We received a waiver of informed
consent from the institutional review board given that all aspects
of this study were based on deidentified retrospective
clinical data.
We queried Cortica’s clinical research database for children with

an autism diagnosis between the ages of 19 and 90 months who
had at least two assessments using the (VABS-3) from 2016
through 2023 (N= 1225). All participants met clinical criteria for
Autism Spectrum Disorder based on the Diagnostic and Statistical
Manual of Mental Disorders, 5th Edition, as assessed by physicians
and nurse practitioners with expertise in autism diagnosis. The
clinical assessment was supported by one or more of three
standardized diagnostic instruments: the Autism Diagnostic Inter-
view – Revised; the Autism Diagnostic Observation Schedule, 2nd

Edition; or the Childhood Autism Rating Scale, 2nd Edition.
The full sample of 1225 participants was included in the latent

class growth mixture modeling (LCGMM) analysis. For a subset of
these participants (N= 729), we had access to comprehensive
socio-demographic, historical, and clinical intake information
provided prior to their initial visit (See Table 1 for full variable
list). We used this subset of patients for the ML analysis. Full
sample demographics are presented in Supplemental Information
Table 1.

Clusters of adaptive behavior growth trajectories
We used conditional LCGMM to identify distinct growth profiles of
adaptive behavior change using repeated measures VABS-3
assessments in the Adaptive Behavior Composite, Socialization,
Communication, and Daily Living Score (DLS) domains. We
included initial VABS-3 symptom severity [19] as a covariate, as
past literature has demonstrated a significant influence of baseline
adaptive behavior levels on resultant outcomes [7]. For each
domain, the 2-profile model was selected as the best fitting
model, based on the highest entropy value, a low BIC, a significant
LMR test, and each profile representing at least 5% of the entire
sample (see Supplemental Information Table 2 for LCGMM
iterative results). See Table 2 for details on the best fitting model
for each VABS-3 outcome. The ABC, Socialization and Commu-
nication domains all showed a similar pattern of class distribution.
Within these domains, class labels were determined based on the
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directionality of the estimated slope and starting intercept (Less
Impairment/Improving Trajectory; Higher Impairment/Stable Tra-
jectory). The groups with negative slope coefficients were
described as “stable” because the slope was not significantly
different than zero, and scores on the VABS-3 reflect an
individual’s behavior relative to an age-matched normative
sample (See Fig. 1). Thus, a negative slope reflects a deviation
from typical change trajectories but does not imply regression of
skills.
Within the DLS subdomain, entropy was high, but class

distribution was highly unequal. While the high entropy value
suggests clear separation, the second class comprised less than
1% of individuals, indicating that most individuals clustered within
a single, stable class, while the second class likely represented
outliers rather than a meaningful latent subgroup. This pattern
suggests that variability in daily living scores over time is best
captured within a single trajectory rather than distinct latent
classes. For this reason, DLS scores were excluded from
subsequent predictive learning group classification.

Definition of outcome groups
To improve balance between classification groups, we created a
dummy variable that corresponded to a 1 (Stable/Limited Gains) if
children fell into the stable LCGMM class for any of the VABS-3
outcomes (Adaptive Behavior Composite, Socialization, or Commu-
nication) and a 0 (Multi-Domain Improvement) if they fell into the
improved LCGMM cluster for all the VABS-3 outcomes (see Fig. 2).
Using this definition, in the full sample, 339 children (39%) were

classified as having Stable/Limited Gains, while 879 children (61%)
demonstrated Multi-Domain Improvement. In the subset of children
included in the predictive modeling analysis, 188 (35%) were
classified as having Stable/Limited Gains, while 541 (65%) demon-
strated Consistent Multi-Domain Improvement. For descriptive
statistics of all predictor variables with the ML subgroup stratified
by defined outcome group, see Supplemental Information Table 3.

Prediction models to differentiate stable and improved
adaptive behavior trajectories
The goal of the machine learning analysis was to develop and
evaluate prediction models capable of differentiating between Stable
and Improved adaptive behavior trajectories with adequate accuracy.
After data pre-processing and feature selection (see Methods), we
tested the performance of six machine learning algorithms using 13
clinical intake variables with nested cross-validation (See Fig. 3). The
three models employed and compared elastic net logistic regression,
support vector machine, and random forest to predict group
membership with the following sets of features: socio-demographic
(age at first assessment, gender, socioeconomic status), historical
(maternal age at birth, paternal age at birth, pre/perinatal mental
health, infant temperament, history of developmental regression), and
clinical phenotype (autism symptoms, sleep problems, attention
deficit hyperactivity disorder (ADHD) symptoms, sensory processing
disorder (SPD) symptoms, mood concerns, motor development
concerns, communication/language concerns, seizures, tics or tre-
mors, headaches, general developmental concerns, feeding problems,
impulsivity, repetitive behaviors).

Table 1. All variables included in machine learning analysis.

Time of Data Collection Domain Variable

Intake Prior to Patient Initial Visit Sociodemographic Gender

Age at first Assessment

Family Socioeconomic Status (SES)

Historical Prenatal Stress

Prenatal/ Post-Partum Depression

Pregnancy Problems

Premature Labor

Baby Temperament

Maternal Age at Birth

Paternal Age at Birth

Developmental Regression

Clinical Phenotyping Sleep Problems

Attention Deficit Hyperactivity (ADHD) Symptoms

Autism Symptoms

Sensory Processing Disorder Symptoms

General Development Concerns

Motor Development Concerns

Sensory Over-Reactivity Concerns

Communication-Language Concerns

Impulsivity Concerns

Attention Concerns

Repetitive Behavior Concerns

Mood Concerns

Feeding Concerns

Over the Course of Care Therapeutic Dosage Cumulative Applied Behavioral Analysis (ABA) Hours

Cumulative Developmental Therapy (DT) Hours

Variables listed were included as candidate predictors in the machine learning analyses. The table categorizes each variable by the time of data collection
(either at intake or over the course of care), domain, and specific variable name.
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Model validation and tuning
The first set of machine learning models evaluated the predictive
value of socio-demographic, historical, and phenotypic intake
variables for discriminating between individuals who fell into the
Limited Functional Gains behavior group versus the Multi-Domain
Improvement behavior group. Table 3 presents the accuracy and
AUC-ROC for each algorithm during the 10-fold cross validation.
The random forest model out preformed the others with a
validation AUC-ROC of 0.73. The elastic net logistic regression and
support vector machine reached a validation AUC-ROC of 0.72 and
0.71, respectively. The secondary metric used to evaluate ML
model selection during development was accuracy. All algorithms
achieved a 74% accuracy rate. See Supplementary Table 4a–c for
ML model results on individual VABS-3 subdomain outcome.

Adding behavioral and developmental therapy hours as
predictors
We conducted secondary machine learning analyses to evaluate
whether differences in Applied Behavior Analysis (ABA) or
developmental therapy (DT) dosage would predict Limited
Functional Gains versus Multi-Domain Improvement group
membership. Specifically, we included total hours of ABA therapy
(direct services, i.e., including one-on-one therapy with the child
and excluding hours of supervision among ABA providers) and
developmental therapy. The model’s performance metrics showed
little to no change, resulting in a random forest ROC-AUC of 0.75
and an accuracy rate of 75%. Full details on the model’s
performance can be found in the Supplementary Information (SI
Table 5). To mitigate model complexity and prevent overfitting,
we evaluated our final validation model excluding hours of ABA or
DT therapy in the final random forest model.

Final model external validation performance
Using the random forest algorithm, our final model demon-
strated similar performance on the holdout validation set,
yielding a ROC-AUC of 0.77 and an accuracy rate of 77.5%.
Moreover, it exhibited a precision rate of 78.2%, a recall rate of

96.3%, and an F1 score of 0.863. Confusion matrices and
predicted probability plots are depicted in Fig. 4a, b.

Predictive performance of variables
Next, we investigated the contributions of individual predictor
variables to our model’s accuracy to gain a better understanding
of which factors most strongly influence adaptive behavior
trajectories. Variable importance was identified using Shapley
values, which reflect the additive importance of a particular
variable in a model-agnostic fashion (see Fig. 5a). We considered
variables with Shapley values above the grand average (0.016) to
be the most significant predictors.
In the socio-demographic domain, we found that lower

socioeconomic status (SES) was the most important predictor of
group membership in the Stable/Limited Gains cohort. In the
domain of prenatal and early-life experiences, a history of
developmental regression, parent report of infant temperament,
and father’s age at birth were most predictive of group member-
ship. Finally, among variables related to phenotype, severity of
autism symptoms and ADHD symptoms, as well as parent-
reported concerns about general development, motor develop-
ment, communication/language, and mood were most predictive
of adaptive function trajectory group membership (see Fig. 5b).
Directionally, children in the Stable/Limited Gains group had

younger fathers, were more likely to have had a difficult
temperament in infancy, and were more likely to have demon-
strated a loss in previously acquired developmental skills. Children
in the Stable/Limited Gains group also had more severe symptoms
of autism and ADHD at the time of intake, with parents more
commonly indicating concern for general development, motor
development, communication/language, and mood.

DISCUSSION
In this study, we characterized trajectories of adaptive behavior
change in a clinical cohort. Latent class models identified two
distinct clusters of adaptive behavior change: a Less Impairment/

Table 2. Data-Driven clusters of adaptive behavior trajectories.

ABC

Entropy Value 0.83

Intercept (se) Slope (se) N

Group 1: Improved Behavior 72.3 (0.20)** 0.82 (0.21)** 1113 (91.3)

Group 2: Higher Impairment/Stable Trajectory 44.7 (1.90)** −1.81 (0.55)* 106 (8.7%)

Socialization

Entropy Value 0.74

Intercept Slope N

Group 1: Less Impairment/Improving Trajectory 73.5 (0.60)** 0.84 (0.34)** 1008 (82.7)

Group 2: Higher Impairment/Stable Trajectory 44.4 (1.50)** −0.04 (0.68)ns 211 (17.3%)

Communication

Entropy Value 0.83

Intercept Slope N

Group 1: Less Impairment/Improving Trajectory 77.2 (0.52)** 1.87 (0.30)** 918 (75.3%)

Group 2: Higher Impairment/Stable Trajectory 40.9 (0.94)** −1.21 (0.73)ns 301 (24.7%)

Daily Living Score

Entropy Value 0.97

Intercept Slope N

Group 1: Less Impairment/Stable Trajectory 71.7 (0.25)** 0.25 (0.22)ns 1213 (99.5%)

Group 2: Outlier Group 102.4 (5.0)** −22.4 (0.5)** 6 (0.05%)

Latent class growth mixture modeling (LCGMM) results for each Vineland-3 subdomain. Higher entropy values reflect greater class separation.
p < 0.01 =**, p < 0.05= *, p < 0.10= ^, p > 0.10=ns.
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Improving Trajectory group, with adaptive behavior scores that
approximated age-matched norms over time, and a Higher
Impairment/Stable Trajectory group, with slower change in
adaptive skills as compared to peers. We then developed a
machine learning model based on clinical intake information and
data regarding interventions to predict which children might
show more or less growth in adaptive skills over time. Using a
wide range of socio-demographic, historical, and clinical pheno-
typing predictor variables, random forest machine learning
models were able to predict course trajectory during care with
an AUC-ROC of 0.77 and an accuracy of 77.5% in the external
validation set. This study was motivated by a pressing need to
characterize trajectories of adaptive behavior among autistic
children in a clinically relevant context.
Past literature using latent class growth mixture model

(LCGMM) approaches to identify clusters of adaptive behavior
change over time has relied on research cohorts of autistic
children recruited from the community, with little information
about the nature of the interventions and therapies those children
were receiving [6, 8, 9, 11]. Interestingly, while these study
populations did encompass children of diverse ages and varying

levels of autism severity, a consistent finding has been that most
children (70–100%) exhibit stable or regressing trajectories.
Our study fills an important gap in the literature by examining

outcomes in a large cohort receiving care delivered according to
relatively standardized clinical criteria. In this cohort, approxi-
mately 75–91% of individuals show an improving growth
trajectory across different VABS-3 domain scores.
One possible explanation for this disparity is the nature of care

received by our cohort. Unlike many prior studies, which assessed
either naturalistic trajectories in the absence of detailed informa-
tion about therapeutic interventions or specific standardized
intervention programs, our study examined outcomes in children
receiving care within a comprehensive clinical framework. All
children in our cohort had access to a care model that integrated
medical treatment alongside behavioral intervention and devel-
opmental therapies. In theory, such a comprehensive approach
may support broader adaptive improvements. On the other hand,
the model is inherently personalized, and therefore the hetero-
geneity of interventions received across children in the cohort
makes it difficult to determine how differences in the observed
growth trajectories might be related to treatment. Apart from any
treatment-related differences, differences in population character-
istics (including socioeconomic and demographic variables and
baseline levels of function) and methodological approaches may
have contributed to the finding of overall better outcomes in our
cohort [20–22]. It is also important to note that slope estimates for
our improving growth trajectory were relatively modest and may
not necessarily reflect clinically significant change. Nevertheless,
these findings highlight the potential impact of individualized,
multi-modal care models and underscore the need for future
research to clarify factors driving these discrepancies.
Moreover, we were able develop machine learning models to

predict which patients were more likely to show improvements in
adaptive behavior. Cross-fold validation for our final model had an
observed AUC-ROC of 0.73 and an accuracy of 74.0%, and
performance in the external validation set showed an AUC-ROC of
0.77 and an accuracy of 77.5%. Our models appear to improve on

Fig. 1 LCGMM classes and trajectories. Plot depicting the estimated average slope identified from the latent class growth mixture models for
each identified latent class trajectory cluster (Lower Impairment/Improving Trajectory and Higher Impairment/Stable Trajectory). Individual
raw data points are overlayed.

Fig. 2 Definition of outcome groups for machine learning.
Stacked bar chart representing the adaptive behavior outcome
group defined from the latent class growth mixture model.
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the accuracy of previous machine learning models designed to
predict autism developmental courses. For example, Préfontaine
et al. [23] used machine learning to predict adaptive behavior
change during behavioral intervention based on demographic
information, IQ, and baseline autism severity features. Their best
fitting model showed an accuracy of 68% [23]. Thus, our study
extends the literature by applying a comprehensive workflow of
machine learning development to predict adaptive behavior
outcomes as defined from data-driven latent class approaches.
Although very few studies have employed machine learning,

other researchers have used inferential statistics to identify
predictors of adaptive behavior development. This more tradi-
tional statistical approach has demonstrated that cognitive and
language skills, presence of epilepsy, and severity of autism are
risk factors for low growth trajectories [24]. These results overlap
with our findings that autism symptom severity and parent
concerns about development are the most robust predictors of
outcome trajectory.
Interestingly, when therapy intensity - operationalized as cumu-

lative hours of ABA or DT - was added to our model, predictive
accuracy did not improve. This would seem to offer counter evidence
to research proposing a linear relation between duration and
intensity of therapy with behavioral improvement [25, 26]. On the
other hand, these findings add to growing literature suggesting the
high total treatment duration of ABA therapy does not lead to
improvement in treatment gains above average dosage levels [27]. It
may in fact be the case, as demonstrated here, that increasing
therapeutic hours is not necessarily effective or cost-efficient in
improving real-world outcomes for all children [28].
Our analysis of variable importance identified variables across

several domains contributing significantly to the model. Impor-
tantly, SES was one of the most important indicating variables in
our models. Individuals from lower SES backgrounds may lack
some of the key resources required to support their autistic child;
in many cases, accessing therapeutic services can be associated
with a severe economic burden [29–31]. There is a dearth of
research evaluating health disparities in autism diagnoses and

outcomes, warranting a need for more intensive research within
this domain.
In addition, our data suggest that older paternal age at the time

of the child’s birth predicted a more favorable adaptive behavior
outcome. While this may seem counterintuitive given the
literature suggesting that autism is more prevalent in children of
older parents, the explanation may relate to the findings about
SES that we have just discussed: it may be that older parents are
more likely to be financially secure and stable.
It is also notable that infant temperament was identified as a robust

predictive variable: infants with fussier temperaments were more
likely to fall into the Stable/Limited Gains adaptive behavior trajectory.
This finding is in line with a large body of developmental literature
describing infant temperament as an early marker for autism risk
[32, 33]. Another top predictor within the domain of early life
experiences was the presence of a history of developmental
regression. Again, a great deal of literature has demonstrated the
children with who have experienced a loss in previously attained
abilities show less favorable developmental outcomes, perhaps
attributable to underlying biological or developmental conditions
that lead to autistic regression. This highlights the importance of a
thorough etiologic evaluation not only to understand the contributors
to a child’s neurodevelopmental condition, but also to inform
prognosis and develop a plan of care [34, 35].
Within the domain of phenotypes, several variables predicted

adaptive behavior trajectory. These include two variables that are
directly involved with the core features of autism: namely, global
autism symptom severity (as measured by the Autism Quotient [36])
and parent communication and language concerns (identified using
the ESSENCE-Q-REV [34]). This finding is not surprising given historical
evidence showing that baseline autism symptoms are associated with
response to treatment and developmental outcomes [7, 37, 38]. The
item about general developmental concerns on the ESSENCE-Q-REV
captures a range of parental observations about child development;
the globally inclusive nature of this item is undoubtedly inherent to
its predictive power [39]. Interestingly, motor developmental
concerns were also identified as a top predictive variable. It is
increasingly recognized that heterogeneity in the acquisition of
motor skills is an important early predictor of neurodevelopmental
outcomes, and specifically that motor developmental delays are a risk
factor for later autism prognosis and severity.
Finally, ADHD symptom severity (identified from the SNAP-IV

[40]) and mood concerns (identified from the ESSENCE-Q-REV)
demonstrated significant predictive ability in the machine learning
model. It is likely that psychiatric comorbidities of autism –
including ADHD, anxiety, and depression—may influence a child’s
ability to show progress in adaptive behavior [41–43].

Limitations and future directions
While we believe this study offers a major contribution to the
literature on adaptive behavior outcomes in autism, several

Table 3. Machine learning models.

Elastic Net Logistic Regression Support Vector Machine Random Forest

Development Accuracy 0.74 0.74 0.75

AUC-ROC 0.72 0.71 0.76

Tuning Parameters (Best Model) Parameter 1 Penalty= 0.008 Cost= 0.003 Trees= 675

Parameter 2 Mixture= 0.430 Margin= 0.15 Mtry= 2

Parameter 3 – – Min_n= 8

Model performance results across 10-fold cross validation. Penalty=reflects the balance between feature selection and coefficient shrinkage offered from ridge
and lasso regression, Mixture=value that controls the strength of regularization. Cost=number reflecting the hardness of the margin, Margin=value reflecting
the size of the margin. Trees=number of decision tress in the random forest, mtry= the number of features to consider at each decision tree,
min_n=minimum number of data points in a node required for another split.
The Development summarizes the model’s average performance across a 10-fold cross-validation procedure applied to the training dataset.
The Tuning Parameters section displays the final hyperparameter values that yielded the best performance during cross-validation for each algorithm.

Fig. 3 Schematic of machine learning model development and
validation. Flowchart of machine learning models used for the
prediction of adaptive behavior outcomes.
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limitations require further discussion. Because the design of the
study was based on chart review within an opportunistic clinical
sample, there was no control group consisting of children not
receiving autism care, or children receiving different types or
models of therapy. In comparison to the general population of
autistic individuals, our population likely drew from families with
more resources (i.e., access to commercial medical insurance), or
who were more likely to seek out a specific type of clinical
environment. The geographical distribution of the sample was
also constrained by the location of centers in the Cortica
Healthcare network. Nonetheless, even given these constraints,
we were able to identify robust demographic predictors of
outcome, including socioeconomic status.
Our decision to use VABS-3 standard scores as dependent

variables within our LCGMM framework was driven primarily by
considerations of comparability with previous research in this
domain, which have also generally focused on standard scores
[6, 8, 9, 11]. However, standard scores have limitations in their
interpretation as indices of change. Further research should
capitalize on metrics that may be more favorable for analyzing
change, such as growth scale values or age-equivalent scores.

It is also important to note that our phenotypic data consisted
almost entirely of parent-reported questionnaires, as opposed to
psychometric assessments that are typically conducted by a
clinician. While these questionnaires (such as the Autism Quotient,
SNAP-IV, and ESSENCE-Q-REV) have been validated in a research
context, it is arguably the case that clinician-administered
assessments would provide more consistent and accurate
phenotypic data. On the other hand, such assessments are time-
and labor-intensive and are often not practical in clinical
environments, especially given the severity of current bottlenecks
in access to diagnosis and therapy for autism [44, 45]. The intake
measures used in this study are practical and easy to gather in the
context of routine clinical care.
Finally, we note that while we tested multiple machine

learning algorithms, the possibilities for tuning of all hyper-
parameters were not exhausted. It is possible that different
hyper-parameter tuning may have led to altered predictions.
Our analytic approach was selected to prioritize a straightfor-
ward model and reduce over-fitting and model complexity.
Future research validating our machine learning models in an
independent sample is warranted.

Fig. 4 Model predictions in the external holdout set. a Confusion matrix for the real vs. predicted binary classification of the adaptive
behavior trajectory group. Values correspond to proportions of predictions for each row, respectively. b Violin plot depicting the spread of the
predicted probabilities for the binary classification of growth trajectories. Lower values in the Multi-Domain Improvement category
correspond to better accuracy (closer to 0) and higher values in the Stable/Limited Gains category reflect better accuracy (closer to 1).

Fig. 5 Variable importance in predicting adaptive behavior outcomes. Variables included in the final random forest machine learning
model for prediction of adaptive behavior change. a A stacked bar plot of Shapley importance. Absolute average values of Shapley
importance scores “(mean|SHAP value|)”are indicated on the x-axis. b Violin plots of the distribution raw values for each feature variable
between outcome groups with boxplots representing the median and interquartile range of each variable.
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CONCLUSION
The current study showed that more than 60% of children
receiving care at a network of community neurodevelopment
centers with a comprehensive approach to autism care demon-
strated improvement across multiple domains of adaptive
behavior. We also described a set of clinical intake variables,
including information about patients’ socio-demographic back-
grounds and behavioral phenotypes, that can predict adaptive
behavior trajectories with moderate accuracy. Of note, cumulative
hours of behavioral and developmental therapy did not seem to
contribute to the prediction of outcome trajectories. Our results
add to a growing body of research that uses latent growth curve
modelling to characterize adaptive behavior change, and machine
learning models to predict treatment outcomes in neurodevelop-
mental populations.

METHODS
Outcome variables
Adaptive behavior outcomes. The primary outcome measure used was the
Vineland Adaptive Behavior Scales, Third Edition (VABS-3) Parent/Caregiver
Form [18]. The parent report VABS-3 evaluates adaptive behaviors in five
different domains: Social, Communication, Daily Living Skills, and Motor.
Based on the summarized scores in each domain, an Adaptive Behavior
Composite (ABC) is also calculated. Items are scored on a scale of 0 (never),
1 (sometimes), or 2 (usually) for the level at which the child can
independently perform a skill. Each domain reflects a standard score based
on a population mean of 100 and a standard deviation of 15. The ABC,
Social, and Communication domains were included in the current analysis.

Clinical intake predictor variables
Sociodemographic variables. Child gender and age at initial assessment
were gathered directly from Cortica’s medical record database. Income and
level of education for the primary caregiver(s) were together used as a
proxy for socioeconomic status (SES). Specifically, total years of education
and total income were scaled and averaged to create a composite SES
variable.

Historical variables. Caregivers were asked to report on whether they
experienced prenatal stress, prenatal depression, and/or post-partum
depression. Responses were summed into a pre/perinatal mental health
variable. We collected information about the age of each parent at the
time of the child’s birth. Parents rated their child’s temperament as a baby
on a three-point categorical scale (1 = “Easy baby/little crying”,
2 = “Average baby/average crying”, 3 = “Difficult baby/increased crying”).
Finally, parents reported whether their child had lost previously attained
developmental abilities (i.e., history of developmental regression).

Clinical phenotyping variables. At the time of patient intake, several
clinical phenotyping variables were gathered. To assess sleep problems,
the Bedtime Issues, Excessive Daytime Sleepiness, Night Awakenings,
Regularity and Duration of Sleep, Snoring (BEARS) questionnaire [46] was
administered. Attention deficit and hyperactivity disorder (ADHD) symp-
toms were evaluated using questions adapted from the Swanson, Nolan,
and Pelham (SNAP-IV) questionnaire [40]. To measure autism symptoms,
the Autism Quotient (AQ) [36] was administered. Sensory processing
disorder (SPD) symptoms were measured using questions adapted from
the Sensory Processing Scales (SPS) [47]. Finally, we administered the early
symptomatic syndromes eliciting neurodevelopmental clinical
examinations-questionnaire (ESSENCE-Q-REV) [48] which includes the
following subset of concerns: general development, motor development,
sensory reactivity, communication and language, impulsivity, attention,
repetitive behavior, mood, and feeding. Parents rate their concerns on a
scale of 1 (No Concern), 2 (Maybe/A Little Concern), 3 (Yes Concern).

Conditional latent growth curve analysis
All latent class growth mixture model (LCGMM) analyses were conducted
in Mplus Version 8.1 [49]. Full Information Maximum Likelihood (FIML)
estimator was used to account for missing data in all LCGMM analyses
yield unbiased estimates when data are missing at random (Muthen &
Muthen 2012). Each LCGMM was initialized 200 times with 50 integrations
for final stage of optimization. The best-fitting model was selected based

on Bayesian information criterion (BIC), statistically significant
Lo–Mendell–Rubin likelihood ratio test (LMR), and entropy values [50].
Lower BIC reflects better model fit while higher entropy values (closest to
1.0) indicate greater class separation and lower classification error [51].
Data were structured in a wide panel format, with each assessment
timepoint (scheduled in 6-month increments) represented as a separate
column. Time was parameterized in 1-year increments, with baseline set at
0 and subsequent assessments spaced at intervals of 0.5 (i.e., 6 months).
This means that the slope estimates reflect the rate of change in the
outcome variable per year rather than per assessment wave. Change was
modeled with respect to clinical time-to-follow-up rather than chronolo-
gical age, as the Vineland-3 standard scores are already age-normed. This
approach ensures that the identified trajectories reflect variations in
adaptive behavior over the course of clinical care rather than differences in
age at assessment.

Machine learning predictive analysis
We compared three machine learning algorithms to predict between the two
LCGA growth trajectory groups. All models were run using the tidymodels
package in R [52]. First we used penalized elastic-net logistic regression from
the R package glmnet [53], followed by support vector machine (SVM)
classifiers from the R package kernlab [52, 54], and lastly, random forest
classification from the R package ranger [55]. Elastic net logistic regression
supports sparse model development through feature selection. SVM employs
a technique where data is projected into a higher-dimensional space,
enabling the classes to be distinguished by a hyperplane. By moving the data
into this augmented space, the classifier effectively addresses issues of class
separation by selecting the class-separating hyperplane that maximizes
margins between features. Finally, random forest uses bootstrapped
aggregation (or “bagging”) to combine predictions from many tress where
each tree is fit with a bootstrapped dataset.

Feature engineering. Data was preprocessed to optimize model perfor-
mance. First, variables with missing data were imputed with k-nearest
neighbor (kNN). This process is applied using the training set to impute
missing data by considering the similarity from its k-nearest neighbor
which contained non-missing values. Gower’s distance function is used as
the primary metric for calculating distances between data points. Next, all
variables were normalized and variables with near-zero variance and
highly correlated variables were removed. Variables with a high degree of
correlation (>0.90) were removed to avoid redundant information. Finally,
we applied Synthetic Minority Over-sampling Technique (SMOTE) [56] from
the themis R package [57] using an over-ratio of 0.5 to mitigate the impact
of class imbalance. SMOTE counteracts bias stemming from under-
represented samples by generating synthetic instances of the
minority class.

Hyperparameter tuning. Using the transformed and quality-controlled
feature variables, we then preformed hyperparameter tuning on each
machine learning algorithm. Elastic net is tuned by optimizing the balance
between feature selection and coefficient shrinkage from ridge and lasso
regression and strength of regularization. SVN’s tuning parameters include
optimizing margin hardness and size. Random forest tuning parameters
include the number of features to consider at each split, the number of
decision tress included in the forest, and the minimum number of data
points in a node required for another split.
A 30% holdout test dataset was created using a random split stratified

by outcome group. Hyperparameters were optimized for each algorithm
via grid search within stratified 10-fold cross-validation repeated 10 times
[58]. The grid search was preformed iteratively using the stratified cross-
validation folds. For each repetition, the test dataset was randomly split
into 10 equally sized subsets, of which two were used as a training set to
create the model and the hold out set was sued as the test set. To evaluate
training performance of the model, area under the receiver operating
curve (AUROC) and accuracy were aggregated across the cross-validation
folds. The study selected the hyperparameter combination that yielded the
best model performance as the final model.

Model validation. We deployed the final model on the previously unseen
holdout test data for model validation. To evaluate classification
performance of the final model, ROCAUC, accuracy, precision, recall, and
F1 score metrics were calculated. A confusion matrix and prediction plot
were generated to compare the predicted values to true values of
trajectory group membership.
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Variable importance. To assess the significance of individual variables
within the final model, we employed Shapley values. Originating from
cooperative game theory, the Shapley method provides a model-agnostic
approach to quantifying variable importance, aiming to estimate the
contribution of each feature to the predictions generated by a machine
learning model [59]. Shapley values were calculated using the ‘fastshap’
package in R. We conducted 100 Monte Carlo simulations to obtain robust
estimates of the Shapley values. These values capture the weighted
differences in model outcomes as features are systematically included or
excluded for all possible permutations.

DATA AVAILABILITY
The datasets used in the current study are available from the corresponding author
on reasonable request.
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