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All medications currently used to treat schizophrenia, which exert their therapeutic effects by inhibiting dopaminergic
neurotransmission, have their greatest efficacy against the positive symptoms of schizophrenia but have limited impact on
negative symptoms and cognitive deficits, core symptoms that robustly predict outcome. Recent research, which has implicated
glutamatergic neuronal dysfunction in a subgroup of subjects with schizophrenia, has given rise to the development of several
experimental glutamatergic medications. While Phase Il clinical trials have not shown significant group effectiveness of these
drugs, some subjects were reported to exhibit substantial reductions of symptoms. Identifying such a subgroup prior to drug
testing would permit more targeted design of Phase Il clinical trials and could lead to more personalized prescription of drugs to
treat schizophrenia, especially its core symptoms. Using data from two failed Phase Il clinical trials (N =163 and N = 235) of the
experimental glutamatergic drug pomaglumetad methionil (an mGIuR2/3 agonist) and applying a gradient-boosted machine
learning algorithm, we identified novel, pre-treatment EEG biomarkers that predicted responders with accuracy rates over ninety
percent. These constellations of EEG markers predicted pomaglumetad responders prior to treatment in comparison to standard-of-
care antipsychotic treatment, indicating that they are specific to pomaglumetad and do not represent a marker for response to
antipsychotic treatment generically. The effects were seen with positive and negative symptoms as well as cognitive deficits. The

method described could be applied to identify likely responders to other mechanistically novel psychotropic medications in

schizophrenia and other neuropsychiatric disorders.
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INTRODUCTION

Very few mechanistically novel psychiatric medications have been
approved over the last 50-plus years since the serendipitous
discovery of the antipsychotic drugs, biogenic amine potentiating
antidepressants, the mood stabilizer lithium and the GABAergic
anxiolytic drugs. The dearth of novel and more effective psychiatric
medications is remarkable given the tremendous advances in
neuroscience and human genetics that have occurred in the 21st
century. This research—including recent highly powered Genome
Wide Association Studies (GWAS) [1]—has shed light on underlying
pathophysiology and has demonstrated that several psychiatric
disorders are the product of complex genetics, indicating that
current psychiatric diagnoses encompass many etiologically distinct
conditions. We believe that this heterogeneity underlies the large
number of failures of recent clinical trials of neuropsychiatric drugs.
These Phase Il clinical trials included all patients with a given
Diagnostic and Statistical Manual of Mental Disorders (DSM-5)
diagnosis, rather than more neurobiologically homogenous sub-
groups who might preferentially respond to a particular agent. This
underlying heterogeneity results in non-responders and placebo
responders obscuring the drug’s efficacy in the sub-group of
potential true responders in these clinical trials.

It has been suggested that risk genes could define such
subgroups and thus might be better predictors of drug response.
In fact, polygenic risk scores, which aggregate risk genes to better
identify potentially responsive subjects, have a poor record of
identifying responders and predicting outcomes in neuropsychia-
tric illness [2]. A likely explanation is that it is not the risk genes
themselves but rather that final common pathways of dysfunction
that are responsible for symptoms of the illnesses.

One way to understand and quantify such common final
pathways is by analysis of brain electrical activity, as measured
by electroencephalography (EEG). We note that EEG abnormal-
ities have been reported in several psychiatric illnesses,
including autism spectrum disorder [3], Alzheimer’s Disease
[4, 5], bipolar disorder [6], and schizophrenia [7, 8]. While
psychiatric diagnoses are made based on clinical signs and
symptoms rather than EEG findings, historically many studies
have demonstrated a range of EEG abnormalities for a given
condition, possibly reflecting differing neurobiologically defined
subgroups [9]. EEG patterns could therefore be endophenotypic
measures, lying between genetic risk factors and clinically
observed behavior. Discerning complex EEG patterns associated
with such subgroups is not straightforward for conventional
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statistical methods but is one that is ideally suited for artificial
intelligence (Al) approaches [10].

Schizophrenia (SZ) is a case-in-point for the aforementioned
challenges. Clinically, a diagnosis of schizophrenia is based upon a
checklist of symptoms codified in the DSM-5 [11]. However,
considerable research supports the notion that SZ primarily affects
three somewhat independent domains: positive symptoms (e.g.,
delusions, hallucinations, disorganization of thinking and beha-
vior), negative symptoms (e.g., poverty of speech and thought,
constricted affect, lack of motivation, anhedonia), and a significant
decline in occupational or academic functioning (cognitive
symptoms). Deficits in cognition are a core feature of SZ, including
deficits in working memory, problem solving, and social cognition
[12]. Negative symptoms and cognitive deficits, which until
recently were not appreciated as an important feature of the
iliness, are the primary drivers of functional disability and poor life
outcomes in schizophrenia rather than the severity of positive
symptoms [13].

While more than a score of antipsychotic drugs have been
introduced since the discovery of chlorpromazine in the early
1950's, all—with the exception of the recently released Cobenfy
(xanomeline/trospium chloride)—exert their effect by acting on
the dopamine system, generally by inhibiting dopamine D2
receptors [14]. With the exception of clozapine [15, 16], currently
available dopamine-acting antipsychotic medications have great-
est efficacy against the positive symptoms of SZ and have
negligible efficacy against negative symptoms and cognitive
deficits [17]. Thus, most antipsychotic drug treated patients
remain severely disabled. Additionally, these traditional antipsy-
chotics have well-documented noxious side effects [18].

The development of medications for SZ with fundamentally
new (non-dopaminergic) mechanisms of action has been limited
by the fact that, until recently, researchers have not had a good
understanding of the underlying neurobiological causes of SZ.
This has changed in the past 15 years, with research on the
biological basis of SZ that has implicated the glutamate system
[19]. As an example of this research, recent GWAS have identified
~130 genes that confer risk for SZ [20]. About 25% of these risk
genes encode proteins that cluster around the pre- and post-
synaptic components of the glutamatergic synapse [19]. Gluta-
mate is the most prevalent neurotransmitter in the human brain,
especially in the cerebral cortex where it is utilized by
approximately eighty percent of synapses. Its effects are mediated
by two families of receptors: glutamate-gated excitatory cation
channels and glutamate activated G-protein coupled receptors
(GPCRs) designated metabotropic glutamate receptors (mGIuRs).
mGIluRs modulate glutamatergic neurotransmission with the
mGIuR2/3 receptor acting pre-synaptically to inhibit glutamate
release. Thus, disruptions in glutamatergic neurotransmission are
consistent with the cognitive and motivational deficits in SZ.
Dysfunction of cortico-hippocampal glutamatergic neurons may
account for subcortical dopaminergic disinhibition responsible for
positive symptoms of the illness [21-23].

Several experimental glutamatergic psychotropic drugs have
been developed [24]. These drugs act through a variety of direct
and indirect mechanisms, all having the ultimate effect of altering
signaling at the glutamatergic synapse. While multiple clinical
trials of these drugs have been conducted, none has yet gained
FDA approval because all failed Phase llI clinical trials. Notably, in
some instances, while there is not a uniform response, a subgroup
of patients appears to show a unique benefit to the tested
glutamatergic agent [25]. A pre-treatment method to identify
responders to these agents, likely corresponding to the subset of
patients with glutamatergic dysfunction, would be very useful in
designing successful Phase Il clinical trials as well identifying likely
responders in clinical practice.

We hypothesized that a combination of EEG biomarkers—that
is, patterns of electrical activity across the cortex—measured in
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the pre-treatment state could predict responders to glutamatergic
drugs. To examine this, we used data from two Phase IlI clinical
trials of the experimental drug pomaglumetad methionil (POMA),
an agonist at mGluR2/3 glutamate metabotropic receptors.
Applying a gradient-boosted machine learning (ML) algorithm to
a number of novel EEG biomarkers that we identified, we were
able to select patients with SZ who would respond to POMA with
accuracy rates over ninety percent. Proposed applications of this
method as well as potential usage for other neuropsychiatric
conditions affected by other neurotransmitter systems are
discussed.

METHODS

Data are from two Phase lll clinical trials of subjects with SZ treated with
pomaglumetad methionil (LY-2140023; POMA). In Trial 1, patients were
treated with POMA plus standard-of-care (SOC) antipsychotic drugs as
compared to standard-of-care antipsychotic drugs alone (N = 163). In Trial
2 [26], patients were treated with POMA alone as compared with SOC
(N =235). EEG recordings were taken pre-treatment using a standard
19-electrode montage (Fig. 1A) both in the resting state and when patients
were exposed to photic stimulation, which was operationalized via flashing
light at frequencies ranging from 1 to 30 Hz. Additional details can be
found in the Supplementary Methods. A preliminary version of this work
has been previously published [27].

Ethics approval and consent to participate

All subjects received a description of the study and provided written
informed consent. Both trials were conducted in accordance with
consensus ethics and principles as detailed in international guidelines
(e.g., the Declaration of Helsinki), the International Conference on
Harmonisation (ICH) of Good Clinical Practices (GCP) Guideline, and
appliable laws and regulations. Protocols for these multi-site trials were
approved by Ethics Review Boards under the supervision of the Eli Lilly
Bioethics Advisory Committee. Full details for both Trial 1 (Registration
Number NCT00845026) and Trial 2 (Registration Number NCT01052103)
can be found at ClinicalTrials.gov [28, 29].

Pre-treatment EEG biomarkers

Previous attempts to use EEG activity to diagnose SZ and other mental
ilinesses or to predict treatment response have often relied on examination
of a single frequency band at a particular electrode, frequently in the
resting state (i.e., when the patient is not engaged in a cognitive or sensory
task) [30]. More sophisticated measures of brain electrical activity are likely
necessary to tap into underlying cognitive functioning [31]. We employed
several EEG metrics designed to capture the cognitive complexity
embodied in EEG recordings. For example, while patients with SZ
consistently show an inability to attune to gamma (30 - 80 Hz) stimuli
compared to controls, research that we have conducted has shown that
some patients with SZ may show greater attunement to beta band
(approximately 20 Hz) stimuli compared with controls. We found that the
ratio of beta to gamma (B/y) oscillations may correlate with the degree of
SZ illness or serve as a marker for a particular subgroup of patients with SZ
[32]. Another example is fractal behavior in the EEG signals. The power
spectrum of resting EEG signals, when viewed on a log-log plot (that is,
with log of frequency of oscillations on the horizontal axis and log of
power on the vertical axis) forms roughly a straight line (Fig. 1B). This is
referred to as “scale invariant” or “fractal” behavior, as the slope of the
fitted line is a constant, over a broad range of frequencies. The slope of the
line is termed the fractal exponent or the power law exponent (PLE). While
the precise physical interpretation is still a matter of debate, the PLE may
carry functional significance—it is possible that higher values (that is,
steeper slopes) reveal a higher degree of “structure” or “memory” in
underlying brain interactions [33].

EEG acquisition and preprocessing

For the predictive measures for resting state EEG data, we calculated
power in the traditional frequency bands of delta, theta, alpha, beta, and
gamma, as well as PLE. For the photically stimulated state, we calculated
power at the driven frequency (10, 15, 20 and 30 Hz) as well as B/y. To
calculate power, we used both fast Fourier transform and wavelet analysis.
As there can be considerable redundancy in human electrode-level EEG
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data, we also performed independent component analyses (ICA), a process
that decomposes the recorded EEG data into functionally and spatially
separated signals. This produced a set of 6 “auxiliary electrodes”, each of
which consists of a trace that may more accurately represent an actual
brain source of electrical activity; these were labeled ic1 - ic6. All measures
were calculated at each EEG electrode, both original and ICA-derived.

Statistical analysis

Preliminary statistical analysis that used all outcome measures of the
original clinical trials (Positive and Negative Symptom Scale [PANSS] [34],
Clinical Global Impression Severity Scale [CGI-S], 16-ltem Negative
Symptoms Assessment [NSA-16] [35], and Personal and Social Performance
Scale [PSP], as well as cognitive measures) indicated that POMA had a
particularly marked effect on cognitive outcomes, which are unaffected by
traditional antipsychotic drugs. Therefore, for the initial analysis, we
focused on these measures. Specifically, outcome measures were taken as
percent change from baseline on an average of the MATRICS Consensus
Cognitive Battery (MCCB) [36, 37] subscales: working memory, verbal
learning, visual learning, reasoning-problem solving, attention-vigilance,
speed of processing, social cognition, and a composite cognitive measure.
Additionally, we looked at two other outcome measures: decrease in
negative symptoms, and decrease in positive symptoms. Our study was
performed as three separate statistical analyses, one for each definition of
treatment response.

Cognitive outcomes. The method for the cognitive outcomes case is
described in detail here, followed by the positive and negative symptoms
cases (which are methodologically analogous to the cognitive case). In the
initial step, we determined whether a correlation existed between any of
our calculated EEG metrics at the electrode or independent component
level in the pretreatment condition and treatment outcome measures, the
purpose of which was to arrive at a set of potential inputs, or features, for
the ML predictive model. Steps described below apply to both Trial 1 and
Trial 2, as these had identical predictor and outcome variables. All
statistical analyses and machine learning modeling were carried out in R,
version 4.0.4.

Given the large number of independent variables, and the fact that
these differed between experimental conditions, for each Trial, data for the
resting state condition and the photically stimulated condition were
analyzed separately. For the resting state, there were eight outcome
variables for cognitive symptoms, as described above. As predictors, there
were nine FFT-based and nine wavelet-based metrics (eight for oscillatory
bands and one for PLE); each was calculated for each EEG electrode and
independent component. Thus, there were (9+9) X (17+6)=414
potential pretreatment predictor variables and 414 x 8 =3,312 possible
correlations with outcome measures. To arrive at statistically meaningful
correlations, bearing in mind the possible confounds resulting from
multiple comparisons, we followed the four-step statistical algorithm
detailed in the Supplementary Methods. For photic stimulation data, we
also used this statistical protocol (though of course predictive measures
were different) and similarly arrived at a set of retained prediction
variables. These were pooled with those of the resting EEG case to serve as
potential features for the machine learning model.

The ML model was implemented using XGBoost [38], a gradient boosted
decision tree machine learning algorithm, run utilizing the R package
xgboost [39, 40] version 1.4.1.1, following the approach of Kuhn et al.
[41, 42]. Initial input features were EEG predictors, as identified above. As
an outcome measure, we averaged over all subscales of the MATRICS
Consensus Cognitive Battery. Those with improvement of 40% or greater
were considered responders. This defined a group of responders that was
12.3% of the study subjects for Trial 1 and defined a group of responders
that was 16% of the subjects for Trial 2.

Model tuning and feature pruning were carried out as follows. We
identified the best performing parameters using a 50,000-iteration random
search of the parameter space. For each iteration, we trained and tested
the model using 10-fold cross-validation, implemented with the function
xgb.cv of the xgboost package. Performance was evaluated using the
binary classification error rate (number of incorrect predictions/total
number of predictions). For the best performing iteration, the relative
contribution of each feature was evaluated using function xgb.plot.impor-
tance, and the feature set was adjusted accordingly. Parameter search was
again undertaken, and the above process was repeated until error rate no
longer showed improvement. The optimal case cross validation perfor-
mance was taken as a measure of model accuracy, in terms of binary
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Fig. 1 Electroencephalography. A EEG electrode locations. Electro-
encephalographic recording was carried out using a 19-electrode
montage, arranged according to the International 10-20 system
[72]. Front of head is upward in image. Fp, prefrontal; F, frontal; T,
temporal; P, parietal; O, occipital; C, Central. B Power law exponent
(PLE). Example of a power spectrum (in black) of a resting EEG signal,
displayed on a log-log plot. Slope of line (in red) fitted to curve is the
power law exponent. Inset shows close-up of quality of fit (at higher
frequency range). From Miller et al. [73].

classification rate; performance was also calculated using area under the
curve analysis (AUC-ROC). (Given the relatively small Ns of our clinical trials,
cross validation would produce a more accurate estimate of actual
predictive performance compared to the training set-validation set-
holdout (test) set that might be employed in more data-rich scenarios
[43]). The parameters of the optimal case were used to create the
predictive ML model. (Full details of model development process can be
found in the Supplementary Methods). Using this model, we classified
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Table 1.

Demographics of study subjects and response profiles of responder groups. (A) “Responder %" row shows the number of patients classified

as a responder for the given outcome measure, divided by total number of patients. (Subjects with missing values for a given measure were not
included in the denominator for that measure). Responder categories are not mutually exclusive. (B) Response profiles of cognitive, negative, and
positive symptom responders. Shown is percent change from baseline for patients across a number of symptomatic outcome measures. (For
cognitive measures, positive values indicate an increase in performance. For positive and negative symptoms, negative values indicate a decrease in
severity). Average values are shown, along with median values in brackets. In some cases, pre-treatment baseline functioning was quite low,
accounting for some of the large percentage increases in cognitive measures.

(A)
Responders (N=61)

Non-responders (N = 133)

Cognitive Negative Positive Cog + Neg Cog + Pos Cog + Neg + Pos
Responder % 14.1% 17.2% 15.1% 4.5% 5.1% 2.6% 0%
Age
Mean (SD) 40.2 (10.3) 41.0 (11.2) 424 (12.1) 36.2 (7.5) 37.3 (12.2) 34.3 (1.9) 40.5 (11.3)
Range 26.4-64.4 22.8-65.2 19.3-64.4 31.2-52.8 26.4-64.4 32.3-36.6 20.5-63.2
Gender
Female 11 (50%) 8 (24%) 9 (31%) 4 (57%) 4 (50%) 2 (50%) 41 (31%)
Male 11 (50%) 25 (76%) 20 (69%) 3 (43%) 4 (50%) 2 (50%) 92 (69%)
lliness duration
Mean (SD) 189 (11.0) 14.8 (10.8) 16.8 (12.3) 13.3 (6.0) 16.6 (13.5) 11.0 (6.4) 152 (11.2)
Range 3.0-46.4 1.3-41.2 2.7-46.4 3.0-21.8 3.0-46.4 3.0-18.2 0.7-51.5
(B)

Cognitive Sx Responders Negative Sx Responders Positive Sx Responders

Cognitive Outcome Measures
Social cognition 441 [-6.2] 124 [-1.4] 12.7 [-2.2]
Attention/vigilance 69.3 [32.0] 8 [8.8] 19.6 [6.8]
Reasoning and problem solving 20.5 [12.9] 15.0 [8.7] 15.2 [3.7]
Visual learning 52.7 [57.6] 32.5 [22.6] 20.0 [18.6]
Verbal learning 17.8 [16.0] 12.8 [5.0] 11.5 [10.0]
Working memory 439 [24.8] 11.1 [1.0] 6.0 [0]
Speed of processing 63.5 [40.0] 35.0 [20.3] 17.7 [20.0]
Negative sx outcome measures
NSA-16 —123 [-11.1] —26.0 [—24.6] —15.7 [—20.0]
PANSS negative subscale —21.0 [-23.1] —41.6 [—40.0] —28.0 [-21.9]
Positive sx outcome measures
PANSS positive subscale —13.6 [—9.6] 114 [-11.1] —43.8 [—43.8]

The Table includes pooled data for Trials 1 and 2. Sx symptoms, Cog cognitive symptoms, Neg negative symptoms, Pos positive symptoms, PANSS positive and

negative symptom scale, NSA-16 16-item negative symptom assessment scale.

POMA-treated patients as well as SOC-treated patients as responders vs.
non-responders, and computed sensitivity, specificity, and p values. P
values were calculated using a one-sided test to see if model accuracy was
greater than the no-information rate. We took the no-information rate to
be the percentage prevalence of the largest class in the training set [44].
Model statistical tests were conducted using the R package caret, version
6.0-94.

Positive and negative symptom outcomes. To identify responders based
on improvement in positive symptoms, the statistical steps and model
tuning process detailed above for cognitive symptoms were carried out,
with the following exceptions. We took as the outcome measure
percentage decrease in the PANSS Positive Symptom subscale. We used
a decrease in symptoms of 30% or more as the definition of treatment
response. We chose this cutoff as it is a commonly used threshold to define
response in antipsychotic drug trials e.g., [45]. We set a slightly higher
cutoff to define response in terms of improvement in cognitive symptoms
as we wished to use a threshold that identified a similar percentage of
patients in each instance. This is also consistent with the literature on
response to glutamatergic agents in schizophrenia. There have been a
range of findings [46] in these studies, but improvements in cognitive
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function of 40% or more have been seen in responders [47]. For negative
symptoms, we took as outcome measures (i) percentage decrease in the
NSA-16, and (ii) percentage decrease in the PANSS Negative Symptom
subscale. We took response to be an average of (i) and (ii) above, and again
defined responder as one who showed a 30% or greater decrease in
symptoms.

Using the above operationalization of treatment response, we saw that
there was a degree of overlap between responders in the three categories; this
is quantified in Table 1A. How symptomatic profiles differed among these
groups in terms of particular patterns of clinical response is shown in Table 1B.

RESULTS

Association between individual EEG biomarkers and
improvements in measures of cognitive performance
Statistical analysis to determine whether a correlation existed
between any of our calculated EEG metrics at any electrode in the
pre-treatment condition and clinical improvement on POMA in terms
of cognitive outcome measures produced a number of predictor-
outcome pairs with high statistical significance and medium to large

Translational Psychiatry (2025)15:390
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Table 2. Pre-treatment EEG metrics showing correlation with clinical outcomes, measured by improvements in cognitive performance scores, in Trial 1.
Lead Brain Location Eeg Measure Recording State Outcome Measure r P-Value
Fz central frontal Bly photically driven speed of processing 0.66 0.000025
02 right occipital beta resting attention-vigilance 0.49 0.00003
T5 left temporo-occipital alpha photically driven composite cognitive score 043 0.00041
Fp2 right prefrontal beta photically driven composite cognitive score 0.41 0.00063
F4 right frontal PLE resting working memory 0.41 0.00071
ic4 N/A beta5 resting social cognition 0.38 0.0018
Fz central frontal alpha photically driven reasoning-problem solving 037 0.0021
F3 left fronto-temporal PLE resting working memory 0.36 0.0034
ic4 N/A beta3 resting social cognition 0.34 0.0047
T6 right temporo-occipital beta photically driven reasoning-problem solving —0.33 0.0068
F8 right fronto-temporal gammal resting reasoning-problem solving —0.33 0.0057
c4 right central low beta photically driven social cognition 0.33 0.0067
T6 right temporo-occipital PLE resting working memory 0.32 0.0082
F7 left fronto-temporal low beta photically driven social cognition 0.32 0.0089

See Methods for details. Electrode abbreviations as in Fig. 1A. ic, independent component.

effect size, as measured by correlation coefficients (Pearson’s r)
(Table 2). As an example, Fig. 2A shows the correlation between PLE
and improvement in working memory performance among patients
who were treated with POMA. Patients with greater PLEs in frontal
lobes showed greater improvement in working memory tasks during
treatment, compared with those with lower PLEs. There was a
medium to large effect size, with a maximum r of 0.41 at right frontal
lead F4. Additional examples are shown in Fig. 2B, C. All-in-all for Trial
1, 14 effects were identified. These metrics embodied a range of EEG
predictors and were not restricted to one specific cortical area; taken
together, they form a complex “spectral fingerprint”, which can be
used to identify a patient subgroup that is uniquely responsive to
POMA in terms of improvements in cognitive functioning.

Machine learning algorithm predicts cognitive responders

to POMA

We employed a gradient boosted decision tree machine learning
algorithm to predict POMA responders as compared to non-
responders. For Trial 1, as features (i.e, inputs to ML algorithm) we
used the 14 EEG metrics shown in Table 2. EEG metrics predicted
responders to POMA with an accuracy of 92% (misidentification rate of
8%); AUC was 0.963. The predictive model had a sensitivity and
specificity of 0.769 and 0.929, respectively (P = 0.004). The comparator
group for this trial was treated with standard-of-care antipsychotics
since there was not a placebo group, per se. However, we wished to
understand whether the model selected those patients with a
preferential response to POMA or identified responders to antipsycho-
tics generically. We therefore applied the predictive model that we
generated to the SOC group. We found that it did not yield a significant
aggregate of “responders” (P=0.9996), indicating that the method
selects for POMA responders specifically.

The above methodology was also used to predict responders in
Trial 2. EEG metrics predicted responders to POMA with an accuracy
of 91% (misidentification rate of 0.09); AUC as 0.917. (The specific set
of predictors in this case was not identical to that of Trial 1; predictors
for Trial 2 are shown in Supplementary Table S1). Sensitivity and
specificity of the predictive model were 0.778 and 0.938, respectively
(P =0.041). For SOC patients in Trial 2, the method also did not yield a
significant aggregate of “responders” (P = 0.9998).

Predicting patient response to POMA as measured by positive
and negative symptoms

For positive symptom outcomes, we found that many of our EEG
markers positively correlated with treatment response, with robust
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statistical significance (Supplementary Table S2), although at
slightly lower effect sizes when compared with cognitive out-
comes. When used as features in ML model, these also had good
predictive ability. For Trial 1 it produced accuracy of 87.9%
(P=0.011) and an AUC of 0.986, and for Trial 2, it produced an
AUC of 0.963 and an accuracy of 88.2% (P = 0.004). Interestingly,
predictive patterns of EEG activity were different for positive
symptom outcomes in comparison with negative and cognitive
ones. For example, increased pre-treatment gamma band activity
in the fronto-temporal area in the photically driven condition
correlated with post-treatment reductions in positive symptoms in
POMA-treated patients, a pattern not seen in the other outcome
groups (Fig. 3A).

For negative symptoms, we also found that many of our EEG
markers showed a positive correlation with individual treatment
responses. While effect sizes of each individual marker, as
operationalized by Pearson’s r, again tended to be slightly smaller
than those associated with cognitive outcomes, several markers
were identified with high statistical significance (Supplementary
Table S3). When used as features in ML model, we found that the
model was able to identify responders with accuracy of 96.5%
(P=0.011) and an AUC of 0.998 for Trial 1 and 88.4% (P = 0.045)
for Trial 2, with an AUC of 0.981. For negative symptoms and
cognitive outcomes notable overlap existed between the EEG
predictive patterns. Examples are shown in Fig. 3B, C. Negative
symptom responders tended to show enhanced resting beta
activity in the posterior (e.g., occipital and temporo-occipital) leads
as shown in Fig. 3B. This is similar to that seen in cognitive
symptom responders, an example of which is shown in Fig. 3C for
comparison. Broadly, for the particular biomarkers for response in
terms of cognitive improvement, there was greater overlap with
negative symptom response biomarkers than with positive
symptoms response ones. This is depicted graphically in Fig. 4.

DISCUSSION

Schizophrenia is a devastating psychiatric disorder that affects one
percent of the population worldwide and is the seventh most
costly medical illness, with an estimated economic burden in the
US alone of 330 billion dollars per year [48]. The failure of currently
used antipsychotics as well as recent research that has implicated
the glutamate system in the illness has given rise to the
development of several experimental glutamatergic drugs to treat
SZ [24]. Using the results of two failed clinical trials with the

SPRINGER NATURE
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Fig. 2 Examples of correlations between pre-treatment EEG
metrics and post-treatment improvements in cognitive perfor-
mance among POMA-treated subjects in Trial 1. Here, correlation
coefficient is expressed as Pearsons'’ r; value of r is indicated on the
color bar in each panel. r = 1 represents perfect positive correlation,
r=—1 represents perfect negative correlation, r =0 represents no
correlation. If the r value did not reach statistical significance at a
particular electrode, it was treated as 0 for display purposes. MCCB,
MATRICS Consensus Cognitive Battery. A Correlation coefficient
between pre-treatment power law exponent in the resting state and
treatment response, where treatment response is measured as
percentage improvement in the working memory domain score of
the MCCB. B Correlation coefficient between pre-treatment resting
beta activity and treatment response, where treatment response is
measured as percentage improvement in the attention-vigilance
domain score of the MCCB. C Correlation coefficient between pre-
treatment f/y in the photically stimulated state and treatment
response, where treatment response is measured as percentage
improvement in the speed of processing domain score of the MCCB.

experimental mGIuR2/3 agonist POMA [26, 28, 29], we identified
pre-treatment EEG patterns that predicted responders to the drug
with high significance. These robust effects were observed with
cognitive deficits as well as positive and negative symptoms in
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patients diagnosed with SZ; these comprise the three major
symptomatic domains of the disorder. These markers identified
POMA responders prior to treatment and did so compared to SOC
treatment, indicating they are specific to POMA and do not
represent a marker for response to antipsychotic treatment
generically. The results have face validity as the predictive EEG
patterns for negative symptoms exhibit some overlap with those
for cognitive symptoms but not with positive symptoms [49],
whereas the predictive EEG patterns for positive symptoms exhibit
a unique prominence of gamma rhythms, consistent with the
research showing a correlation between positive symptoms of SZ
and aberrations in gamma synchrony [50]. Importantly, the
method revealed that POMA significantly reduced cognitive and
negative symptoms, domains unaffected by traditional antipsy-
chotic drugs, with the exception of clozapine [15, 16], while also
mitigating positive symptoms in the responsive subgroup. The
responsive subgroup represents approximately fifteen percent of
those satisfying the DSM-5 diagnostic criteria for SZ, which is
obscured by the eighty-five percent of non-responders in the
Phase Il clinical trials.

Past attempts to use EEG patterns to predict response to
traditional dopaminergic antipsychotic medications have not been
successful [30]. Researchers have not yet used EEG approaches to
predict patient response to the experimental glutamatergic
medications, a relatively new class of drugs. Glutamate is an
excitatory neurotransmitter that directly drives neuronal activity,
whereas the effects of the modulatory neurotransmitter dopamine
are more subtle and complex. Moreover, glutamate is the most
prevalent neurotransmitter in the human cortex, and dopamine
exerts its effects primarily in subcortical structures such as the
basal ganglia. Thus, the EEG, which preferentially measures cortical
electrical activity rather than that of deep structures, is an ideal
modality for the study of POMA. The GWAS results do not point to
a particular molecular mechanism of glutamatergic dysfunction in
SZ. Rather, they suggest disrupted glutamatergic signaling,
regardless of the molecular lesion, underlies the SZ phenotype
or a particular subtype [21, 51, 52]. Based on our research, we
speculate that any of these may lead to similar system level
behaviors, as measured by EEG activity. That is, these behaviors
may represent a final common pathway by which various
genetically encoded deficits are manifested and lead to psycho-
pathology—i.e., an endophenotype.

This hypothesis suggests that the method that we have
described is not limited to POMA but could be applied to identify
responders to other experimental glutamatergic agents. These
agents act through a variety of direct and indirect mechanisms but
all have the ultimate effect of altering signaling at the glutamatergic
synapse. In addition to the metabotropic glutamate receptor type
2/3 (mGIluR2/3) agonist, other examples include glycine modulatory
site (GMS) agonists, which act to enhance NMDA receptor
functioning, as glycine is a co-agonist of glutamate at the NMDA
receptor; glycine transporter type 1 (GlyT-1) inhibitors, which inhibit
glycine uptake (clearance), and thus increase the availability of
glycine; and D-amino-oxidase (DAAO) inhibitors, that are effective
because DAAO is the primary enzyme responsible for breaking
down D-serine, which is a glycine modulatory site agonist in the
forebrain [53].

While the focus of the current study was a glutamatergic agent
targeting SZ, our method can generalize to other neurotransmitter
systems and to other psychiatric disorders associated with
abnormal EEGs. A prime example is autism spectrum disorder
(ASD). ASD has an estimated prevalence of 2.5% of the US
population and no known cure. ASD has a clear genetic basis, with
an estimated heritability of 81% [54]. As GWAS on ASD increase in
size and statistical power, increasing numbers of risk genes for
ASD are being identified, supporting the etiologic heterogeneity
of the disorder. Not surprisingly, risk genes that affect brain
development—specifically neural connectivity—are thought to
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play an important role [55]. Consistent with this, EEG abnormal-
ities, though not proving to be diagnostic of the disorder,
frequently occur, with nearly 40% of patients with ASD having a
diagnosed seizure disorder [56]. A recent trial using the GABA-B
receptor agonist arbaclofen did not show an across-the-board
response as compared to placebo but did reveal a subgroup (13%
of subjects) with very robust improvement [57], reminiscent of our
findings with POMA. Given the considerable heterogeneity of ASD
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Fig. 3 Example of predictive EEG patterns for positive, negative,
and cognitive symptom responders. The correlation coefficient is
expressed as Pearson’s r; the value of r is indicated on the color bar
in each panel. If the r value did not reach statistical significance at a
particular electrode, it was treated as 0 for display purposes.
A Correlation coefficient, r, between pre-treatment photically driven
gamma activity and post-treatment improvement in positive
symptoms among POMA treated patients in Trial 1. Here, improve-
ment is measured as percentage decrease in the PANSS Positive
Subscale. B, C Example of similarity of predictive EEG patterns
between negative symptom responders and cognitive symptom
responders among POMA treated patients. Data are from Trial 2. In
(B), the correlation coefficient between pre-treatment resting beta
activity and post-treatment improvement in negative symptoms.
Here, improvement is measured as percentage decrease in the NSA-
16. In (C), the correlation coefficient between pre-treatment resting
beta activity and post-treatment improvement in cognitive func-
tioning is shown. Here, improvement is measured as percentage
increase in the MCCB social cognition domain score.

<
<

and its likely neuropathological basis, our method could be
utilized to identify such subgroups.

We found that PLE, calculated in the resting pre-treatment
condition, had a significant positive correlation with improvement
in treatment response on the Working Memory domain score of
the MCCB. Notably, this was seen in the frontal lobes, structures
critical to this type of memory [58]. For Trial 1, we found medium
to high effect size both at right frontal lead F4 (r=0.41) and left
frontal lead F3 (r = 0.36). A similar distribution was seen in Trial 2.
While the precise physical interpretation of the PLE is not clear, it
likely reflects some emergent property of complex systems [59].
Power law behavior has been seen at many spatial scales—in fMRI
signals [60], local field potentials, neuronal spike trains [61], and
the dynamics of neurotransmitter release [62]. Power law
exponents of fMRI signals have been shown to be affected by
task performance and mental state [63]. There is at least one study
that has looked at this metric in subjects with SZ [64], but none
that we are aware of has attempted to use this to predict
treatment response. Given its possible functional significance, and
both its relatively higher value over the electrodes of the frontal
lobe and its predictive power on the working memory outcome
measure, its potential as a biomarker has clear face validity.

In addition to cognitive outcomes, we also identified EEG
patterns that predicted improvement in positive and negative
symptoms. Of note, for negative symptom and cognitive symptom
outcomes, there was a good deal of overlap between the EEG
predictive patterns. This overlap is consistent with the clinical
findings, which indicate a significant correlation between negative
and cognitive symptoms in patients with SZ but not between
these and positive symptoms [49, 65, 66]. Interestingly, predictive
patterns of EEG activity were different for positive symptom
outcomes, in comparison with negative and cognitive ones. For
example, increased pre-treatment gamma band activity during
the photically driven condition correlated with post-treatment
improvements in positive symptoms, which was particularly
prominent in the fronto-temporal area (Fig. 3A). This pattern
was dissimilar from those occurring in patients exhibiting
cognitive and negative symptom improvement. This disconnect
is noteworthy given the substantial evidence of abnormalities in
gamma band response to sensory stimulation in patients with SZ
[50, 67, 68], as well as the substantial clinical literature showing a
lack of correlation between positive symptoms and negative
symptoms [69], or between positive symptoms and cognitive
symptoms in schizophrenia [70].

We believe that the practical implications of this research are
twofold. The EEG “spectral fingerprints” identified by the
method that we have described represent biomarkers that can
prospectively identify responders to glutamatergic, and
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Fig. 4 Extent of overlap between cognitive biomarkers and biomarkers predictive of response in terms of negative and positive
symptoms. A Information of Table 2 and Supplementary Table S1 (for Trials 1 and 2 respectively) are depicted in blue, with cortical location on
the X-axis and calculated EEG metric on the Y-axis. The predictive “strength” (that is, the quantitative correlation between the metric and
improvement in cognitive outcome) is indicated by the size of the circle, as shown in the legend. Similarly, biomarkers for response in terms of
negative symptom improvement (From Supplementary Table S3) are shown in red. Areas of overlap are shown in shades of purple.
B Response pattern for cognitive responders is again depicted in blue. Biomarkers for response in terms of positive symptoms (from
Supplementary Table S2) are shown in green. Note the lower degree of overlap, as compared with (A) above. X-axis abbreviations: Fp2, right
frontal pole; F8, right prefrontal; T4, right temporal; Or, right temporo-occipital (electrodes T6, P4, and 02); C, central (electrodes, C3, Cz, C4);
Ol, left temporo-occipital (electrodes T5, P3, and O1); T3, (left temporal); F7, left prefrontal, Fz, frontal (electrodes F3, Fz, F4). EEG metrics: ratio,
B/y; alpha, 5-14 Hz; lo beta, 14-24 Hz; hi beta, 24-30 Hz; lo gamma, 30-39 Hz; high gamma, 39-50 Hz, PLE, power law exponent.

potentially other agents. With a positive response rate of
15-20%, consistent with the genetic heterogeneity in SZ, the
EEG patterns associated with responders could achieve sig-
nificance with as few as one hundred subjects, thus allowing it
to be used in a typical Phase Il study. This would allow those
conducting Phase Il clinical trials on novel neuropsychiatric
drugs to stratify patients and thereby design trials for more
specific and biologically homogeneous patient populations. In
addition to facilitating FDA approval of novel psychotropic
drugs, the method could be used in a clinical care to select likely
responders to glutamatergic or other drugs. This would decrease
time and resources devoted to psychopharmacologic trial and
error and help to prevent the adverse events associated with
multiple medication trials.

There are some limitations to our study and areas in which
future research is indicated. To develop our predictive model, we
used machine learning with a standard cross-validation procedure,
in which the classifier was tested on cases that were not used in
the training set. We therefore believe that the method would have
good generalizability to new cases (e.g., in a future trial of POMA
on patients with SZ). It should be noted that recent research [71]
has indicated that well-validated Al models, when applied in new
clinical settings—even with similar patient populations and
outcome measures—may underperform [10]. Therefore, it would
be important to confirm the reliability of our method by using it to
predict responders in a clinical trial of POMA that was not part of
the current study.
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