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splicing quantitative expression with GWAS prioritizes novel
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Alternative splicing (AS) plays a vital role in the pathogenesis of schizophrenia (SCZ). Previous studies have linked the genetic
signals from genome-wide association studies (GWAS) with expression quantitative trait loci (€QTL), but the interplay with other
genetic regulatory mechanisms, particularly splicing QTL (sQTL), remains unclear. Here, we constructed a comprehensive disease-
specific sQTL map to provide genetic variants that could alter gene activity through RNA splicing in SCZ. We analyzed data from 539
SCZ patients, identifying a total of 24,810 significant sQTLs (FDR < 0.05) involving in AS events of 7083 unique genes. By combining
this with a large-scale SCZ GWAS, we employed Mendelian randomization (MR) and colocalization analyses to pinpoint

27 significant risk genes with genetic AS regulation that may play a causal role in SCZ. Additional differential splicing analysis of
these genes in 539 cases and 754 controls revealed 12 significant genes that may increase SCZ risk due to their AS dysregulation.
Notably, five genes (DPYD, LACC1, CCDC122, ANAPC7, and DGKZ) showed consistent splicing regulation effects in both MR analysis
and differential splicing analysis. Pathway enrichment analysis of differentially spliced genes revealed potential biologically
pathways relevant to SCZ, particularly in synaptic transmission and microtubule movement. Furthermore, single-cell RNA-seq
analysis revealed that several genes were preferentially expressed in specific brain cell types, including oligodendrocytes, microglia,
and excitatory neurons. Overall, our findings highlight several susceptibility genes that may contribute to SCZ risk by AS regulation.

Further characterization of these genes could advance mechanistic understanding and therapeutic discovery for SCZ.
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INTRODUCTION
Schizophrenia (SCZ) is a severe and complex psychiatric disorder
characterized by abnormalities in cognition and thought, with a
worldwide lifetime prevalence of around 1% [1-3]. Due to the
high morbidity and mortality, SCZ imposes enormous economic
and medical burdens on individuals, families and societies [4, 5].
However, the pathogenic mechanism of SCZ development is still
largely unclear, and existing therapeutic treatments have shown
limited benefits [6]. Therefore, there is an urgent need to identify
effective and specific biomarkers for the development of
therapeutic strategies for SCZ. The heritability of SCZ is estimated
as being at least 80%, indicating that genetic factors play a
dominant role in the pathogenesis of SCZ [7]. The emergence of
the genome-wide association study (GWAS) has created an
unprecedented opportunity to dissect the genetic etiology s of
SCZ. Over the past decade, GWAS has identified hundreds of risk
loci associated with SCZ [8-11]. However, interpretation of the
GWAS findings into biology insights and clinical applications
remains a great challenge.

Alternative splicing (AS) of pre-mRNA is an essential step in the
post-transcriptional gene regulation that removes intronic

sequences and links exons specifically [12-14]. Over 95% of
multi-exon genes in humans are subjected to AS, greatly
increasing transcriptome and protein diversity [12, 15]. Most
recent studies have shown that AS is widely present in the
nervous and immune systems, and aberrant AS is associated with
a variety of brain disorders, especially in SCZ [16-21]. Therefore,
unraveling the regulation mechanisms of AS is essential to better
understand the pathogenesis of SCZ. Existing evidence indicates
that AS regulation can be controlled by genetic variants, and
splicing quantitative trait loci (SQTL) has been widely used to
explore genetic variants of AS regulation underlying human
disease [22-26].

Our current understanding of genetic variants that affect AS
and their underlying pathogenic mechanisms in SCZ is still limited.
Therefore, integrative approaches that combine sQTL information
with GWAS findings have emerged and shown promise in
exploring the potential risk genes whose splicing expression
levels are affected by the identified risk variants. Mendelian
randomization (MR) is a representative integrative approach that
uses risk variants associated with splicing quantitative expression
as instrumental variables (IVs) to infer the causal influence of an
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exposure (i.e., risk gene affected by RNA splicing regulation) on an
outcome (i.e., disease) [27-29]. By integrating the GWAS genetic
findings and sQTL data, MR could infer risk genes that may have a
causal role in SCZ. Furthermore, given that RNA splicing is highly
heterogeneous in the brain [30], sQTL data based on non-target
disease samples may obscure the role of disease-specific AS
regulation, resulting in important biological insights that would be
missed. Therefore, MR integrative analysis using disease-specific
sQTL data will provide new insights into the disease-specific AS
regulation mechanism.

To the best of our knowledge, there have been no disease-
specific sSQTL resources for SCZ. In this study, we first collected
539 SCZ samples with both genotype and transcriptome from
two public consortiums and performed a genome-wide sQTL
analysis to identify genetic variants that affect AS. In total, we
identified 24,810 significant sQTL single-nucleotide polymorph-
isms (SNPs) using stringent filtering criteria. Furthermore, we
performed a comprehensive MR study by integrating the
identified SCZ-specific sQTL data with GWAS of SCZ, and
proposed 27 significant genes whose genetically AS regulation
may have a causal role in SCZ. By combining evidence of
colocalization and differential splicing analysis, we identified 12
promising risk genes for SCZ. In addition, the single-cell
transcriptomic analysis revealed that 13 genes are enriched in
brain cell types, including oligodendrocytes, inhibitory neurons,
excitatory neurons, astrocytes, and microglial cells. Collectively,
our study offers a comprehensive resource of SCZ-specific sQTL
map and provides a set of promising novel drug targets with
strong evidence for SCZ.

MATERIALS AND METHODS

SNP genotyping and RNA sequencing (RNA-seq) data of SCZ
participants

We used the SNP genotyping and RNA-seq data in brain tissue from two
cohorts, including the CommonMind Consortium (CMC [31]) and the
Lieber Institute for Brain Development (LIBD [32, 33]). Briefly, all quality-
controlled DNA genotyping and raw RNA-seq files for the dorsolateral
prefrontal cortex (DLPFC) region of the human brain were downloaded
from the LIBD database (http://eqtl.brainseg.org) and the CMC portal
(https://www.synapse.org/CMC). Eventually, a total of 539 SCZ cases from
the CMC (N = 328) and LIBD (N = 211) datasets were included in this study,
consisting mainly of European participants (Supplementary Table 1). For
genotyping data, the downloaded DNA genotyping files from each SCZ
individual was subsequently merged with PLINK v1.9 [34] and totaling
27,332,850 genotyped or imputed markers were used for the following
sQTL analysis. For RNA-seq data of LIBD, the downloaded RNA-seq FASTQ
data were cleaned using fastp v0.23.4 [35] and then aligned to the GRCh37
genome assembly by STAR v2.5.2a [36] (converted into BAM files).
Furthermore, the obtained BAM files of LIBD were merged with the CMC
downloaded BAM files, and the WASP [37] tool was then employed to
remove reads with potential mapping bias. More detailed information
about the sample collection, DNA and RNA extraction and sequencing,
quality control and statistical analyses have been described in previous
publications [31-33].

Splicing quantification

To determine splicing quantification on RNA-seq data from DLPFC brain
regions of 539 SCZ participants, we chose to quantify AS events using the
unannotated LeafCutter [38] algorithm. The intron usage rates (i.e.,
percentage spliced-in value (PSI) value) calculated by LeafCutter were
used as the splicing quantification indicator in this study. Specifically, we
converted the BAM files into an intron junction file by using the
bam2junc.sh script from LeafCutter. Using the leafcutter_cluster.py script,
intron clustering was then performed with the following parameters:
“-minclureads 50, -mincluratio 0.001, and -maxintronlen 500000”. We
mapped intron clusters to genes based on exon coordinates from
GENCODE v.19 annotation and the introns present in more than 40% of
all samples were selected for further analysis. The PSI values were
computed using the prepare_phenotype_table.py script from LeafCutter
for the qualifying introns.
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Identification of SCZ sQTLs

To identify sQTL SNPs in SCZ, we conducted a cis-sQTL analysis (within
1000 kb up/downstream of the intron clusters) of the obtained PSI matrix
and genotype data. With the linear regression models implemented in the
FastQTL [39] software package, the association between PSI values of AS
events and SNP genotypes (i.e, sQTLs) was examined. To control for
potential confounders (such as genetic, biological, and technical factors),
we performed covariance correction analysis to regress out relevant
covariates, including age, sex, RNA integrity number, population structure,
and sequencing library batch effects. More details on the sQTL analyses
were given in our previous work [17]. The intron level sQTL P-values were
obtained by applying the permutation procedure (adaptively permute
1000 times) from FastQTL, Finally, sQTLs with Benjamini-Hochberg
correction (FDR < 0.05) were considered statistically significant.

SCZ GWAS

To maximize statistical power, summary genetic association data from the
largest available GWAS of SCZ [40] were used as outcome data in further
MR analysis. Summary level data for 7,659,767 SNPs were obtained from
the Psychiatric Genomics Consortium (PGC) data portal. Briefly, Trubetskoy
et al. performed a large-scale trans-ancestry SCZ GWAS consisting of
74,776 SCZ cases and 101023 control individuals, which included
European, Asian, African American, and Latino ancestry populations.
Ultimately, they reported a total of 342 genome-wide independent
significant SNPs located in 287 distinct genomic regions. To avoid biases
due to variations in LD and allele frequencies, only GWAS from European
populations (53,386 cases and 77,258 controls) were considered in this
study. Detailed information on sample collection, genotyping, quality
control, and statistical analyses can be found in the original publication
[40] and the PGC website (https://www.med.unc.edu/pgc).

MR analysis

Genetic variation associated with RNA splicing was used as an IV to
assess the causal association between exposure (i.e.,, SCZ sQTL data) and
outcome (i.e, SCZ GWAS data). MR analysis was conducted using the
“TwoSampleMR” R package (version 0.5.6) [41]. Prior to the MR analysis,
we harmonized the exposure and outcome data to ensure the same
effect allele of the SNP was used in both the sQTL and GWAS datasets.
IVs were then performed linkage disequilibrium (LD) clumping using a
window of 5000 kb and a low LD (r? < 0.01) between IVs to ensure that
the IVs (i.e, SNPs) were independent. MR analyses employ the Wald ratio
method when only one cis IV is considered, and the inverse variance
weighted (IVW) method when two or more cis IV are considered.
Specifically, IV'W combines the Wald ratio estimates of each individual
SNP into one causal estimate for each risk factor. As our work included
only one IV, we did not undertake any sensitivity analyses [42, 43]. To
account for multiple testing, a Bonferroni correction was applied to
adjust for 5179 independent tests (0.01/5179, P=1.93x10"°, 5179 is
the number of effective splicing sites valid AS events used for MR
analyses). More details of the MR analysis can be found in the original
papers [44, 45].

For the MR analysis, the same IV (i.e, SNP) should influence both
exposure factor and outcome factor, rather than sharing IVs coinciden-
tally due to LD. To assess the probability of the same IV being
responsible between SCZ and sQTL, we further performed colocalization
analysis for SCZ risk using the Bayesian approach implemented in the R
package Coloc v.5.1.0 [46] (https://github.com/chriswallace/coloc).
Specifically, colocalization analysis was conducted to adjust such
spurious results and posterior probabilities for five hypotheses (HO, H1,
H2, H3, H4) were calculated. The correct hypothesis above is H4, and
PPH4 (posterior probability for hypothesis 4) specifically quantifies the
probability that both traits are driven by the same causal variant within a
splicing region. To ensure the reliability of the MR results, we set a strict
significant threshold for the posterior probability (two significant
associations sharing a common causal variant) at PPH4>0.90 in
colocalization analysis. Further details about the principle of the
colocalization analysis have been published previously [45].

Differential splicing analysis

To investigate the RNA splicing level of the MR significant results in SCZ
cases compared with controls, we obtained publicly available transcrip-
tome RNA-seq data of 539 SCZ cases and 754 controls from CMC and LIBD
datasets. The LeafCutter [38] was employed to generate PSI matrices with
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the same processing procedure as previously described [17]. Then,
differential splicing analyses was carried out using the Wilcoxon rank
sum test to compare PSI values (i.e., the RNA splicing level) between SCZ
cases and controls, and the P-value < 1 x 10~3 was considered significant.
More information on sample and RNA-seq handling protocols can be
found in the original publication [31-33].

Functional enrichment analysis

There was no significant correlation the MR-identified genes after applying
the Bonferroni correction, which is likely due to the assumption of
independent tests that this correction requires. Thus, the top 500 MR
results with the smallest P-value were selected for the functional
enrichment analysis, allowing for more genes to be included. We used
the clusterProfiler package in R language (version 4.10.0) for functional
enrichment analysis, including Gene Ontology (GO) and Wiki Pathways
(WP) gene sets pathway enrichment analysis. For the enrichment
calculation of Biological Processes, Human (org.Hs.eg.db) gene annotation
with Entrez Gene identifiers was used.

single-cell RNA-seq (scRNA-seq) analysis

To explore if MR-significant genes were specifically expressed in specific
brain cell populations, we performed a single-cell expression analysis.
First, we downloaded raw scRNA-seq data (i.e., FASTQ files) of 24
cognitively normal individuals in the PFC brain region from Mathys et al.
study [47] (https://www.synapse.org/#!Synapse:syn18485175). Further-
more, Seurat [48] (version 5.0.3) workflow was applied to scRNA-seq data
for data preprocessing and analysis, including gene and cell quality
control, normalization and transformation, and cluster annotation.
Specifically, genes expressed in fewer than 3 cells and cells expressing
less than 200 genes were excluded. To reduce noise and improve
interpretability, we performed principal component analysis (PCA) for all
highly variable genes. We employed the FindAllMarkers function in
Seurat to find marker genes for each cluster. Our study focused on 6
brain cell types provided by Mathys et al. [47], including oligoden-
drocytes, inhibitory neurons, excitatory neurons, astrocytes, microglial,
and oligodendrocyte progenitor cells. To determine if potential SCZ-
causal are highly expressed in one particular cell type, we explored the
cell-type specific expression of these genes using the Wilcoxon rank sum
test. To control the false discovery rate, FDR correction was applied to all
the genes analyzed, and genes with FDR<0.05 were considered
significant.

Translational Psychiatry (2025)15:379

MR analysis in non-SCZ study participants

We further examined whether our MR findings are informative for non-SCZ
study populations using sQTL data of non-SCZ populations from the
Genotype-Tissue Expression (GTEx) project. Briefly, the GTEx project
characterized and released sQTLs in 54 tissues of over 900 healthy
individuals. We have downloaded the latest sQTL data (Brain_Frontal_-
Cortex_BA9.v10) of PFC brain tissues (N =268) from GTEx v10 and
performed MR analysis using identical pipelines and parameters as in our
SCZ MR study. The threshold for significant associations with MR evidence
was set at P<2.66x107° (ie, Bonferroni corrected P-value cutoff of
0.01/3764 effective splicing sites).

RESULTS

Identification and characterization of SCZ-specific sQTLs

To investigate the disease-specific genetic control of RNA splicing
in SCZ, we performed a genome-wide cis-sQTL analysis using 539
SCZ samples with both PSI matrix of AS events and genotype from
CMC and BrainSeq datasets (Fig. 1A). We harvested a total of
282,570 AS events and 27,332,850 genotyped SNPs were retained
for further sQTL analysis after stringent quality control. Eventually,
we identified 24,810 significant sQTL SNPs (FDR < 0.05) involving
7083 unique sQTL-harboring genes (sGenes) in brain PFC regions
of SCZ samples (Fig. 1B and Supplementary Table 2). To
investigate the genomic distribution of sQTL SNPs, we examined
the distance between a sQTL SNP and the corresponding nearest
splicing junction. Consistent with previous findings [49-51], sQTL
SNPs were enriched around the splice junction (Fig. 1C). In
addition, we observed that roughly 38.2% of sQTL SNP were
located within the body of the gene where the corresponding AS
event occurred (Fig. 1D).

MR analysis using SCZ-specific sQTL data identified 27
candidate SCZ susceptibility genes

To identify susceptibility genes that causally contribute to SCZ risk by
affecting RNA splicing, we performed a SCZ-specific MR study through
integrating SCZ GWAS summary genetic data (53,386 cases and 77,258
controls) with SCZ-specific sQTL data (N = 539 SCZ samples). Notably,
Wald ratio estimates were exclusively applied in our final MR analysis
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because only one qualified SNP per splicing region survived rigorous IV
selection criteria (minor allele frequency >0.01, LD pruning r* <001,
and F-statistic > 10). This scenario inherently necessitates the Wald ratio
approach (the statistically optimal method when a single IV is
available), as it provides unbiased causal effect estimates without
requiring instrument homogeneity assumptions essential for VW
meta-analysis.  Therefore, the MR associations with P-
value <193x10°® were considered statistically significant after
Bonferroni correction for multiple tests. We found that all MR
significant results were robust to colocalization analyses (PPH4 > 0.90).
Consequently, we identified 27 genes within 31 intron usage regions
that demonstrated a significant association with SCZ risk, supported by
robust evidence (Fig. 2A and Supplementary Table 3). Among which,
one significant gene (DPYD) at chr1:98293752-98386440 intron usage
region showed the most significant association (P=1.06x 10 %),
Other significant potential susceptibility genes include DGKZ, ANAPC7,
FTSJ2, BCL2L12, IRF3, GPM6A, MPHOSPH9, LRRN3, and IMMP2L.
Interestingly, genetically raised splicing quantitative expression (i.e.
PSI values) of gene KANSLT was associated with reduced SCZ risk in
chr17:44230332-44248221 splicing site (OR=097; P=156x107)
and increased SCZ risk in chr17:44172067-44248221 splicing site
(OR=103; P=156x107) (Fig. 2B and Supplementary Table 3),
indicating that distinct intron usage regions of the same gene have
different biological functions in SCZ.

In addition, by comparing MR significant results with the largest
SCZ GWAS from PGC3, we found that 19/27 significant genes
identified by MR were located at known SCZ susceptibility loci,
including DPYD, DGKZ, BCL2L12, IRF3, MPHOSPH9, LRRN3, IMMP2L,
FXR1, SUGP1, KANSL1, ANKRD45, TBC1D5, NDUFAF7, PRKD3,
FAM114A2, LACC1, CCDC122, AKT3, and GPM6A. These overlapping
MR results affected by AS might help to pinpoint potential target
genes in each GWAS signal. More importantly, we found that 8/27
genes with AS events did not overlap with known association loci
of SCZ, including FTSJ2, CSPG4P12, CCDC92, ZNF664, CRELD2,
FAM49B, APOBEC3C, and APOBEC3D. These results indicated that
incorporating SCZ-specific sQTL data might facilitate the identi-
fication of novel target genes beyond GWAS findings.

Splicing dysregulation of 16 genes within 10 intron usage
regions identified by MR analysis in SCZ cases

Significant intron usage regions predicted in MR analyses whose
genetically AS regulation might have essential roles in SCZ. After
excluding, a total of 539 SCZ cases and 754 healthy controls from
CMC and BrainSeq datasets were included in the differential
splicing analysis for SCZ. Among the 31 significant intron usage
regions, we observed that 10/31 intron usage regions (corre-
sponding to 12 sGenes) were differentially splicing quantitative
expression (nominal P-value <1 x 1073) in SCZ cases compared
with controls (Supplementary Table 4), suggesting that these
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overlapping intron usage regions represent promising functional
genetic loci for SCZ. Notably, MR Analysis revealed that the
upregulation of splicing expression in one intron usage region is
associated with an increased risk of SCZ (OR>1.00) and the
upregulation of splicing expression in three intron usage regions is
associated with a decreased risk of SCZ (OR < 1.00). These regions
included chr1:98293752-98386440 (corresponding to sGene
DPYD), chr13:44449063-44453767 (corresponding to sGene LACCT
and CCDC122), chr12:110814021-110819557 (corresponding to
sGene ANAPC7) and chr11:46391100-46392863 (corresponding to
sGene DGKZ). Coherently with these predictions, differential
splicing analysis validated the changes in splicing expression for
the above four splicing regions in SCZ cases. Collectively, these
expression data provided consistent and convergent evidence in
favor of five genes affected by RNA splicing that may have a major
role in SCZ, including DPYD, LACCI1, CCDC122, ANAPC7 and DGKZ
(Fig. 3A-D). In addition, we found that the remaining seven genes
had different directions of effect between MR and differential
splicing analysis, possibly due to the biological heterogeneity of
different tissues used in sQTL and GWAS datasets.

Functional enrichment analysis of the identified MR genes
revealed related biological processes

To get insights into the biological processes regulated by the top
500 MR-derived genes (ranked according to P-value), we
conducted functional enrichment analysis using two different
programs: GO term and Wiki pathway enrichment analysis.
Specifically, GO enrichment analysis revealed a strong enrichment
of MR genes in biological processes like synapse organization,
microtubule—based movement, cognition, and transport along
microtubule (Fig. 4A). Among these, the most significantly
enriched pathways of the GO analysis were synaptic organization.
This finding aligns with previous reports of strong genetic
associations between synaptic function and the pathology of
SCZ [52-54], providing independent support for synaptic devel-
opment as a key process disrupted in SCZ risk. Wiki enrichment
analysis further revealed that the ADHD (attention deficit
hyperactivity disorder) and ASD (autism spectrum disorder)
pathways and synaptic signaling associated with ASD (Fig. 4B).
This result is not unexpected, given the increasing body of
evidence indicating a shared genetic risk among ADHD, ASD, and
SCZ [55-58].

Cell-type specific expression of the potential SCZ-
susceptibility genes

To investigate the expression of SCZ-susceptibility genes in
various brain-relevant cell types, we analyzed the activity of
these genes across different cell types using scRNA-seq data
from the PFC brain region of cognitively normal individuals.
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Fig. 4 GO and Wiki pathway enrichment analysis of MR-identified risk genes. A GO pathway enrichment analysis of MR-identified risk
genes. B Wiki pathway enrichment analysis of MR-identified risk genes.

Clustering analysis on scRNA-seq data was performed using the different brain cell types (Fig. 5B). Among 27 SCZ-susceptibility
Seurat pipeline to identify cell types or subpopulations. We genes identified in MR analysis, 13/27 (DPYD, CCDC122, TBC1D5,
selected 2000 hypervariable genes and the top ten genes were GPM6A, DGKZ, CCDC92, LRRN3, MPHOSPH9, FAM49B, IMMP2L,
flagged (Fig. 5A). Furthermore, we identified six clusters of AKT3, PRKD3 and KANSL1) were enriched in one or more cell
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types, including oligodendrocytes, inhibitory neuron, excitatory
neurons, astrocyte, and microglial (Fig. 5C). Of note, three genes
show evidence of enrichment in a particular cell type, including
DPYD, CCDC122, and KANSL1. For instance, the genes DPYD and
CCDC122 were highly expressed in oligodendrocytes, as shown
in Fig. 5C.

DISCUSSION

Hitherto, GWAS has identified more than 200 risk loci for SCZ, but
it is unclear how they confer SCZ risk. More importantly, RNA
splicing has been reported to play a key role in the development
of SCZ. Considering that sQTL has not been well characterized in
SCZ cases, we systematically undertook a genome-wide sQTL

Translational Psychiatry (2025)15:379

analysis using genotype and RNA-seq data derived from 539
SCZ samples. To identify the potential risk genes at SCZ risk
loci, we further performed a MR integrative study using the
obtained SCZ-specific sQTL data with the latest SCZ GWAS
results. We identified 27 potential causal SCZ genes within 31
intron usage regions that act via AS regulation to contribute to
SCZ pathogenesis (Supplementary Table 5). Moreover, we
found that 12 genes have displayed aberrant splicing
expression in SCZ cases compared with controls. Of note, five
of these genes (DPYD, LACC1, CCDC122, ANAPC7, and DGKZ;
Supplementary Table 6) showed the same directions of effect
in both the MR and differential splicing analysis. This strongly
indicates that these genes could be potential new treatment
targets for SCZ.
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One interesting finding in this study was regarding gene DPYD
associated with the risk of SCZ. Among the 27 significant MR results,
DPYD (located in chr1:98293752-98386440 intron usage region)
showed a strong significant association (P-value =1.06 x 107 '5),
whose genetically AS regulation in PFC brain tissues may have a
causal role in SCZ. MR results have shown that genetically increased
gene DPYD splicing expression was associated with increased SCZ
risk in brain tissue (OR=1.26). By comparing with differential
splicing analysis findings, we found that the splicing expression
level of DPYD was most significantly upregulated in SCZ cases
versus normal controls (P-value =5.25x 107>). These consistent
results strongly suggested that DPYD represents a potential causal
gene for brain SCZ. Moreover, we found that DPYD was located
within a reported GWAS hit signal, indicating its implication in the
latest SCZ GWAS. Furthermore, our scRNA-seq analysis showed that
DPYD points to specific cell types that they likely act through to
oligodendrocytes to SCZ. These lines of evidence support that DPYD
may be a promising treatment target for SCZ.

It is well established that gene regulation is highly context-
dependent, often exhibiting cell-type and developmental stage
specificity. Consequently, certain genes may only contribute to
schizophrenia genetic risk within specific cellular contexts. For the
single-cell enrichment analysis, we found that 13 SCZ suscept-
ibility genes identified by MR analysis were enriched in one or
more cell types. For instance, genes DPYD and CCDC122 exhibit
specific high expression in oligodendrocytes, indicating that the
cell-type-specific expression patterns of these susceptibility genes
are closely related to the pathophysiology of SCZ. Increasing
evidence indicates abnormal expression of oligodendrocyte-
related genes, which may severely impair myelin formation or
maintenance [59, 60]. Myelin abnormalities can disrupt the
precision and synchrony of synaptic transmission, leading to
synaptic dysfunction. Furthermore, such impairment affects
normal neural circuit function, ultimately resulting in cognitive,
emotional, and behavioral symptoms in SCZ patients [61-63].

To evaluate the extent of sQTL sharing between SCZ and GTEx
DLPFC tissues, we first counted the number of sharing sGenes that
were significant in both SCZ and GTEx. We observed that 850
(approximately 12%) of the 7083 sGenes in SCZ overlapped those in
GTEx PFC brain tissues. In addition, the 6233 non-overlapping
sGenes represent potential SCZ-specific regulators (Supplementary
fig. 1). Crucially, it is possible that case-specific sQTLs are a result of
reverse causation. Considering that differences in LD patterns
between populations tend to affect the MR results, we then
performed MR analysis using sQTL data of GTEx and SCZ GWAS data
and full significant MR results are shown in Supplementary Table 7.
Using cis-sQTLs from the GTEx dataset as proposed instruments, we
identified 20 genes that reached MR significance. Furthermore, we
found that 10/27 replicated genes showed significance in both sQTL
datasets (Supplementary Table 7), while the remaining 17 potential
risk genes were uniquely significant in our SCZ-specific MR analysis.
In addition, 4 of the 10 replicated genes had different directions of
the MR effect between tissues. For example, genetically raised gene
DGKZ expression was associated with reduced SCZ risk in SCZ brain
tissues (OR=0.88; 95% Cl, 0.86-0.91; P-value = 1.55x 10~ "%) and
increased SCZ risk in GTEx healthy brain tissues (OR = 1.16; 95% Cl,
1.12-121; P-value=132x10""%). These results suggest that
integrating SCZ-specific sSQTL data may provide novel insights into
the mechanism of SCZ.

It is important to acknowledge the potential limitations of our
study. Firstly, the sQTL data and GWAS summary statistics were
mainly from individuals of European ancestry, limiting the general-
izability of our findings to other populations. Therefore, expanding
research studies to evaluate the association of susceptibility genes
with SCZ in other ethnic populations seems essential. Secondly, the
sQTL dataset used in our MR integration study was primarily from
brain tissue of the human brain. External single-cell sQTL datasets
should be utilized to investigate the causal genes associated with
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SCZ. Thirdly, we only included cis-sQTL SNPs as IVs in the MR study
to maintain the assumption that IVs must be strongly associated
with the exposure. However, this may ignore the complex role of
trans-sQTL in the genetic regulation mediated for SCZ. Lastly, the
identified SCZ risk genes require further experiment validation to
verify their biological function.

In summary, by integrating unique SCZ-specific sQTL data with
the latest SCZ GWAS data, we performed MR analysis and
identified 27 candidate susceptibility genes that contribute to SCZ
risk through AS regulation. Differential splicing analyses further
validated these findings, highlighting five potentially causal genes
with the same direction of effect that may pose a risk of
developing SCZ. We also identified key pathways and brain cell
type specificity important in the pathogenesis of the SCZ. Our
findings not only advanced our understanding of the pathological
mechanisms of SCZ but also provided valuable targets and
directions for developing effective treatments.

DATA AVAILABILITY
All data generated in this study will be available from the corresponding author on
reasonable request.
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