Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A recombinant fragment antigen-binding (Fab) of trastuzumab displays low cytotoxic profile in adult human cardiomyocytes: first evidence and the key implication of FcγRIIA receptor

Abstract

Fragment crystallizable gamma receptors (FcγRs) mediate various cellular responses with significant cardiovascular implications. They contribute to the anticancer activity of trastuzumab (TRZ), a recombinant humanized monoclonal antibody that interferes with human epidermal growth factor receptor 2 (HER2), thereby blocking its physiological function in cardiac cells. This is responsible for cardiac complications that hamper TRZ clinical application. In this study we investigated the involvement of FcγRs in the TRZ cardiotoxicity. We used a recombinant antigen-binding fragment (Fab) of TRZ (rFab-HER2) to examine whether the absence of the Fc region resulted in fewer cardiomyocyte toxicity while preserving TRZ’s ability to inhibit HER2. When exposed to rFab-HER2, AC16 human adult ventricular cardiomyocytes were less vulnerable to damage and death, than to TRZ. Specifically, TRZ exhibited cytotoxicity at a lower concentration (150 µg/mL, corresponding to ~1 µM) compared to rFab-HER2 (250 µg/mL, corresponding to ~5 µM). Like TRZ, rFab-HER2 negatively modulated HER2 levels in cardiomyocyte (without inducing cytotoxic activity in BJ human fibroblast cells that either did not express or express very low levels of HER2) and inhibited the downstream ERK/AKT cascades. But rFab-HER2 did not alter cardiomyocyte mitochondrial dynamic balance, and affect apoptosis and inflammation, while it limited cytosolic and mitochondrial ROS indicators. On contrary, the Fc region (50−250 μg/mL) exerted direct cytotoxic action on cardiomyocytes (but not on human fibroblasts that lacked Fc receptors). TRZ (150 μg/mL) markedly upregulated the expression level of FcγRIIA (a FcγRs strongly involved in TRZ-induced antibody-dependent cellular toxicity) in cardiomyocytes, whereas the Fab fragment (150 μg/mL) had no effect. Our results demonstrate that Fc region plays an important pathogenic role in TRZ-induced cardiomyocyte toxicity. In addition, targeting FcγRIIA might contribute to the off-target effects of TRZ therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of TRZ or rFab-HER2 on cell viability and cytotoxicity in AC16 human cardiomyocytes.
Fig. 2: Effect of TRZ, rFab-HER2 or IgG on Human Epidermal Growth Factor Receptor 2 (HER2) expression in AC16 human cardiomyocytes.
Fig. 3: Effects of TRZ or rFab-HER2 on cell viability in BJ human fibroblast cells.
Fig. 4: Effects of TRZ or rFab-HER2 on cardiomyocyte signaling pathways related to cell survival, mitochondrial dynamics, and inflammation, in AC16 cells.
Fig. 5: Effects of TRZ or rFab-HER2 on cardiomyocyte apoptosis in AC16 cells.
Fig. 6: Effect of TRZ or rFab-HER2 on indicators of cellular and mitochondrial ROS in AC16 human cardiomyocytes.
Fig. 7: Effects of the Fc region on AC16 and BJ cells viability, and effect of TRZ or rFab-HER2 on FcγRIIA expression in AC16 human cardiomyocytes.
Fig. 8: Proposed schematic representation of TRZ effects (red arrows) versus rFab-HER2 effects (blue symbols) in adult human ventricular cardiomyocytes.

Similar content being viewed by others

References

  1. Sawyers C. Targeted cancer therapy. Nature. 2004;432:294–7.

    CAS  PubMed  Google Scholar 

  2. Hahn VS, Zhang KW, Sun L, Narayan V, Lenihan DJ, Ky B. Heart failure with targeted cancer therapies: mechanisms and cardioprotection. Circ Res. 2021;128:1576–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Touyz RM, Herrmann J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. Npj Precis Oncol. 2018;2:13.

    PubMed  PubMed Central  Google Scholar 

  4. Rocca C, De Francesco EM, Pasqua T, Granieri MC, De Bartolo A, Gallo Cantafio ME, et al. Mitochondrial determinants of anti-cancer drug-induced cardiotoxicity. Biomedicines. 2022;10:520.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, et al. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med. 2023;21:635.

    PubMed  PubMed Central  Google Scholar 

  6. Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther. 2019;4:34.

    PubMed  PubMed Central  Google Scholar 

  7. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26:6469–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Meric-Bernstam F, Johnson AM, Dumbrava EEI, Raghav K, Balaji K, Bhatt M, et al. Advances in HER2-targeted therapy: novel agents and opportunities beyond breast and gastric cancer. Clin Cancer Res. 2019;25:2033–41.

    CAS  PubMed  Google Scholar 

  9. Romond EH, Jeong J-H, Rastogi P, Swain SM, Geyer CE, Ewer MS, et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by Paclitaxel (ACP) With ACP Plus Trastuzumab as adjuvant therapy for patients with node-positive, human epidermal Gr. J Clin Oncol. 2012;30:3792–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of Chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    CAS  PubMed  Google Scholar 

  11. Hussain Y, Drill E, Dang CT, Liu JE, Steingart RM, Yu AF. Cardiac outcomes of trastuzumab therapy in patients with HER2-positive breast cancer and reduced left ventricular ejection fraction. Breast Cancer Res Treat. 2019;175:239–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Telli ML, Hunt SA, Carlson RW, Guardino AE. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J Clin Oncol. 2007;25:3525–33.

    CAS  PubMed  Google Scholar 

  13. Rocca C, Pasqua T, Cerra MC, Angelone T. Cardiac damage in anthracyclines therapy: focus on oxidative stress and inflammation. Antioxid Redox Signal. 2020;32:1081–97.

    CAS  PubMed  Google Scholar 

  14. Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med. 2002;8:459–65.

    CAS  PubMed  Google Scholar 

  15. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6:443–6.

    CAS  PubMed  Google Scholar 

  16. Méndez-Valdés G, Gómez-Hevia F, Bragato MC, Lillo-Moya J, Rojas-Solé C, Saso L, et al. Antioxidant protection against Trastuzumab cardiotoxicity in breast cancer therapy. Antioxidants. 2023;12:457.

    PubMed  PubMed Central  Google Scholar 

  17. Musolino A, Gradishar WJ, Rugo HS, Nordstrom JL, Rock EP, Arnaldez F, et al. Role of Fcγ receptors in HER2-targeted breast cancer therapy. J Immunother Cancer. 2022;10:e003171.

    PubMed  PubMed Central  Google Scholar 

  18. Wang D, Wei X, Wang Z, Lu Y, Shi S, Wang N, et al. FcγRIIA and IIIA polymorphisms predict clinical outcome of trastuzumab-treated metastatic gastric cancer. Onco Targets Ther. 2017;10:5065–76.

    PubMed  PubMed Central  Google Scholar 

  19. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, et al. Immunoglobulin G Fragment C receptor polymorphisms and clinical efficacy of Trastuzumab-based therapy in patients with HER-2/neu–positive metastatic breast cancer. J Clin Oncol. 2008;26:1789–96.

    CAS  PubMed  Google Scholar 

  20. Staudt A, Eichler P, Trimpert C, Felix SB, Greinacher A. FcγReceptors IIa on cardiomyocytes and their potential functional relevance in dilated cardiomyopathy. J Am Coll Cardiol. 2007;49:1684–92.

    CAS  PubMed  Google Scholar 

  21. Patel P, Michael JV, Naik UP, McKenzie SE. Platelet FcγRIIA in immunity and thrombosis: adaptive immunothrombosis. J Thromb Haemost. 2021;19:1149–60.

    PubMed  Google Scholar 

  22. Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem. 2019;26:396–426.

    CAS  PubMed  Google Scholar 

  23. Selis F, Sandomenico A, Cantile M, Sanna R, Calvanese L, Falcigno L, et al. Generation and testing of engineered multimeric Fabs of trastuzumab. Int J Biol Macromol. 2020;164:4516–31.

    CAS  PubMed  Google Scholar 

  24. Davidson M, Nesti C, Palenzuela L, Walker W, Hernandez E, Protas L, et al. Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol. 2005;39:133–47.

    CAS  PubMed  Google Scholar 

  25. Liang JL, Xiao DZ, Liu XY, Lin QX, Shan ZX, Zhu JN, et al. High glucose induces apoptosis in AC16 human cardiomyocytes via macrophage migration inhibitory factor and c-Jun N-terminal kinase. Clin Exp Pharmacol Physiol. 2010;37:969–73.

    CAS  PubMed  Google Scholar 

  26. De Bartolo A, Pasqua T, Romeo N, Rago V, Perrotta I, Giordano F, et al. The redox-active defensive Selenoprotein T as a novel stress sensor protein playing a key role in the pathophysiology of heart failure. J Transl Med. 2024;22:375.

    PubMed  PubMed Central  Google Scholar 

  27. Zheng Y, Lakshmanan S. Dose-dependent efficacy of umbelliferone and gelatin-coated ZnO/ZnS core-shell nanoparticles: a novel arthritis agent for severe knee arthritis. Oxid Med Cell Longev. 2022;2022:1–15.

    Google Scholar 

  28. Grande F, De Bartolo A, Occhiuzzi MA, Caruso A, Rocca C, Pasqua T, et al. Carbazole and simplified derivatives: novel tools toward β-adrenergic receptors targeting. Appl Sci. 2021;11:5486.

    CAS  Google Scholar 

  29. Rocca C, De Bartolo A, Grande F, Rizzuti B, Pasqua T, Giordano F, et al. Cateslytin abrogates lipopolysaccharide-induced cardiomyocyte injury by reducing inflammation and oxidative stress through toll like receptor 4 interaction. Int Immunopharmacol. 2021;94:107487.

    CAS  PubMed  Google Scholar 

  30. McQueen MJ. Optimal assay of LDH and α-HBD at 37 °C. Ann Clin Biochem Int J Lab Med. 1972;9:21–5.

    CAS  Google Scholar 

  31. Rocca C, De Bartolo A, Guzzi R, Crocco MC, Rago V, Romeo N, et al. Palmitate-induced cardiac lipotoxicity is relieved by the redox-active motif of SELENOT through improving mitochondrial function and regulating metabolic state. Cells. 2023;12:1042.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rocca C, Scavello F, Colombo B, Gasparri AM, Dallatomasina A, Granieri MC, et al. Physiological levels of chromogranin A prevent doxorubicin‐induced cardiotoxicity without impairing its anticancer activity. FASEB J. 2019;33:7734–47.

    CAS  PubMed  Google Scholar 

  33. Rocca C, De Bartolo A, Granieri MC, Rago V, Amelio D, Falbo F, et al. The antioxidant selenoprotein T Mimetic, PSELT, induces preconditioning-like myocardial protection by relieving endoplasmic-reticulum stress. Antioxidants. 2022;11:571.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gastaldi S, Rocca C, Gianquinto E, Granieri MC, Boscaro V, Blua F, et al. Discovery of a novel 1,3,4-oxadiazol-2-one-based NLRP3 inhibitor as a pharmacological agent to mitigate cardiac and metabolic complications in an experimental model of diet-induced metaflammation. Eur J Med Chem. 2023;257:115542.

    CAS  PubMed  Google Scholar 

  35. Rocca C, Boukhzar L, Granieri MC, Alsharif I, Mazza R, Lefranc B, et al. A selenoprotein T‐derived peptide protects the heart against ischaemia/reperfusion injury through inhibition of apoptosis and oxidative stress. Acta Physiol. 2018;223:e13067.

    CAS  Google Scholar 

  36. Giustarini D, Rossi R, Milzani A, Dalle‐Donne I. Nitrite and nitrate measurement by griess reagent in human plasma: evaluation of interferences and standardization. Methods Enzymol. 2008;440:361–80.

    CAS  PubMed  Google Scholar 

  37. Rocca C, Grande F, Granieri MC, Colombo B, De Bartolo A, Giordano F, et al. The chromogranin A 1‐373 fragment reveals how a single change in the protein sequence exerts strong cardioregulatory effects by engaging neuropilin‐1. Acta Physiol. 2021;231:e13570.

    CAS  Google Scholar 

  38. Kawakami T, Kawamura K, Fujimori K, Koike A, Amano F. Influence of the culture medium on the production of nitric oxide and expression of inducible nitric oxide synthase by activated macrophages in vitro. Biochem Biophys Rep. 2016;5:328–34.

    PubMed  PubMed Central  Google Scholar 

  39. Yan B, Sun Y, Wang J. Depletion of ubiA prenyltransferase domain containing 1 expression promotes angiotensin II-induced hypertrophic response in AC16 human myocardial cells via modulating the expression levels of coenzyme Q10 and endothelial nitric oxide synthase. Mol Med Rep. 2017;16:6910–5.

    CAS  PubMed  Google Scholar 

  40. Kitani T, Ong SG, Lam CK, Rhee JW, Zhang JZ, Oikonomopoulos A, et al. Human-induced pluripotent stem cell model of Trastuzumab-induced cardiac dysfunction in patients with breast cancer. Circulation. 2019;139:2451–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Su Z, Liu S, Zou Y, Shan L, Yu M, Xie S, et al. Trastuzumab-induced human cardiomyocyte damage through the Notch2/JAK2/STAT3 pathway. Clinics. 2023;78:100268.

    PubMed  PubMed Central  Google Scholar 

  42. Arlein WJ, Shearer JD, Caldwell MD. Continuity between wound macrophage and fibroblast phenotype: analysis of wound fibroblast phagocytosis. Am J Physiol Integr Comp Physiol. 1998;275:R1041–8.

    CAS  Google Scholar 

  43. Boonnak K, Slike BM, Donofrio GC, Marovich MA. Human FcγRII cytoplasmic domains differentially influence antibody-mediated dengue virus infection. J Immunol. 2013;190:5659–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bloom MW, Hamo CE, Cardinale D, Ky B, Nohria A, Baer L, et al. Cancer therapy–related cardiac dysfunction and heart failure. Circ Hear Fail. 2016;9:e002661.

    Google Scholar 

  45. Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the frontiers of guardian antioxidant selenoproteins in cardiovascular pathophysiology. Antioxid Redox Signal. 2024;40:369–432.

    CAS  PubMed  Google Scholar 

  46. Omland T, Heck SL, Gulati G. The role of cardioprotection in cancer therapy cardiotoxicity. JACC CardioOncol. 2022;4:19–37.

    PubMed  PubMed Central  Google Scholar 

  47. Leyland-Jones B, Arnold A, Gelmon K, Verma S, Ayoub JP, Seidman A, et al. Pharmacologic insights into the future of trastuzumab. Ann Oncol. 2001;12:S43–7.

    PubMed  Google Scholar 

  48. Quartino AL, Hillenbach C, Li J, Li H, Wada RD, Visich J, et al. Population pharmacokinetic and exposure–response analysis for trastuzumab administered using a subcutaneous “manual syringe” injection or intravenously in women with HER2-positive early breast cancer. Cancer Chemother Pharmacol. 2016;77:77–88.

    CAS  PubMed  Google Scholar 

  49. Quartino AL, Li H, Kirschbrown WP, Mangat R, Wada DR, Garg A, et al. Population pharmacokinetic and covariate analyses of intravenous trastuzumab (Herceptin®), a HER2-targeted monoclonal antibody, in patients with a variety of solid tumors. Cancer Chemother Pharmacol. 2019;83:329–40.

    CAS  PubMed  Google Scholar 

  50. Kirschbrown WP, Wang B, Nijem I, Ohtsu A, Hoff PM, Shah MA, et al. Pharmacokinetic and exposure–response analysis of pertuzumab in patients with HER2-positive metastatic gastric or gastroesophageal junction cancer. Cancer Chemother Pharmacol. 2019;84:539–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Treish I, Schwartz R, Lindley C. Pharmacology and therapeutic use of trastuzumab in breast cancer. Am J Health Syst Pharmacol. 2000;57:2063–76. 2077–9

    CAS  Google Scholar 

  52. Lin NU, Pegram M, Sahebjam S, Ibrahim N, Fung A, Cheng A, et al. Pertuzumab plus high-dose Trastuzumab in patients with progressive brain metastases and HER2-positive metastatic breast cancer: primary analysis of a phase II study. J Clin Oncol. 2021;39:2667–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. De Keulenaer GW, Doggen K, Lemmens K. The vulnerability of the heart as a pluricellular paracrine organ. Circ Res. 2010;106:35–46.

    PubMed  Google Scholar 

  54. Giri DK, Ali-Seyed M, Li L-Y, Lee D-F, Ling P, Bartholomeusz G, et al. Endosomal transport of ErbB-2: Mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol. 2005;25:11005–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li LY, Chen H, Hsieh YH, Wang YN, Chu HJ, Chen YH, et al. Nuclear ErbB2 enhances translation and cell growth by activating transcription of ribosomal RNA genes. Cancer Res. 2011;71:4269–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell. 2004;6:251–61.

    CAS  PubMed  Google Scholar 

  57. Mohan N, Shen Y, Endo Y, ElZarrad MK, Wu WJ. Trastuzumab, but not Pertuzumab, dysregulates HER2 signaling to mediate inhibition of autophagy and increase in reactive oxygen species production in human cardiomyocytes. Mol Cancer Ther. 2016;15:1321–31.

    CAS  PubMed  Google Scholar 

  58. Eaton H, Timm KN. Mechanisms of trastuzumab induced cardiotoxicity – is exercise a potential treatment? Cardiooncology. 2023;9:22.

    PubMed  PubMed Central  Google Scholar 

  59. Kabel AM, Elkhoely AA. Targeting proinflammatory cytokines, oxidative stress, TGF-β1 and STAT-3 by rosuvastatin and ubiquinone to ameliorate trastuzumab cardiotoxicity. Biomed Pharmacother. 2017;93:17–26.

    CAS  PubMed  Google Scholar 

  60. Cuomo A, Rodolico A, Galdieri A, Russo M, Campi G, Franco R, et al. Heart failure and cancer: mechanisms of old and new cardiotoxic drugs in cancer patients. Card Fail Rev. 2019;5:112–8.

    PubMed  PubMed Central  Google Scholar 

  61. Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22:101–26.

    CAS  PubMed  Google Scholar 

  62. Blaschke F, Bruemmer D, Yin F, Takata Y, Wang W, Fishbein MC, et al. C-Reactive protein induces apoptosis in human coronary vascular smooth muscle cells. Circulation. 2004;110:579–87.

    CAS  PubMed  Google Scholar 

  63. Tanigaki K, Sundgren N, Khera A, Vongpatanasin W, Mineo C, Shaul PW. Fcγ receptors and ligands and cardiovascular disease. Circ Res. 2015;116:368–84.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Francesca Giordano (Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy) for her technical support in the flow cytometry analysis. This research was supported by “SI.F.I.PA.CRO.DE. – Sviluppo e industrializzazione farmaci innovativi per terapia molecolare personalizzata PA.CRO.DE” (PON ARS01_00568).

Author information

Authors and Affiliations

Authors

Contributions

ADB, NR, AM, VR, MCG, MLV, AC, RR, MC, and RS performed the experiments, contributed to prepare, collect, and analyze the data; ADB and CR wrote the first draft of the manuscript; MCC and CI contributed to supervision of the experiments, review and edit the manuscript. CR and TA conceived the project, analyzed data, supervisioned and validated the experiments, reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Carmine Rocca or Tommaso Angelone.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bartolo, A., Romeo, N., Marrone, A. et al. A recombinant fragment antigen-binding (Fab) of trastuzumab displays low cytotoxic profile in adult human cardiomyocytes: first evidence and the key implication of FcγRIIA receptor. Acta Pharmacol Sin 46, 618–631 (2025). https://doi.org/10.1038/s41401-024-01397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01397-3

Keywords

Search

Quick links