Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clozapine impaired glucose-stimulated insulin secretion partly by increasing plasma 5-HT levels due to the inhibition of OCT1-mediated hepatic 5-HT uptake in mice

Abstract

Patients taking atypical antipsychotics (AAPs), especially clozapine, are often associated with hyperglycaemia. Here, clozapine served as a representative agent for investigating how AAPs induce hyperglycaemia. In normal mice and mice fed a high fat diet (HFD), clozapine impaired glucose tolerance and glucose-stimulated insulin secretion (GSIS) following intraperitoneal glucose administration and increased plasma 5-HT levels. Intraperitoneal 5-HT administration also impaired glucose tolerance and GSIS in mice. In INS-1 cells, high 5-HT levels impaired GSIS, which was attenuated by the 5-HTR3 antagonist tropisetron or by silencing 5-HTR3a. The 5-HTR2a agonist TCB2 attenuated clozapine-induced GSIS impairment. Silencing 5-HTR2a or the 5-HTR2a antagonist ketanserin impaired GSIS. In mice, 5-HT administration impaired GSIS, which was attenuated by tropisetron but aggravated by clozapine. Clozapine increased plasma [2H]5-HT exposure following intravenous administration to mice. In HEK293-OCT1 cells, clozapine inhibited [2H]5-HT and MPP+ uptake. Clozapine or OCT1 silencing impaired 5-HT metabolism in mouse primary hepatocytes, demonstrating that clozapine increased plasma 5-HT levels via the inhibition of OCT1-mediated hepatic 5-HT uptake. Liver-specific silencing of OCT1 increased plasma [2H]5-HT exposure and 5-HT levels and impaired GSIS and glucose tolerance in mice. In conclusion, clozapine impaired GSIS and glucose tolerance by increasing plasma 5-HT levels via the inhibition of OCT1-mediated hepatic 5-HT uptake. Increased 5-HT impaired GSIS by activating islet 5-HTR3a. The antagonistic effect of clozapine on islet 5-HTR2a also contributed to GSIS impairment. The finding that clozapine-induced GSIS impairment was attributed to increased 5-HT levels via the inhibition of OCT1-mediated hepatic 5-HT uptake may partly explain hyperglycaemia caused by other AAPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of clozapine on glucose homeostasis and GSIS in C57BL/6 J mice.
Fig. 2: The association between increased plasma 5-HT levels and impairments of GSIS and glucose tolerance in C57BL/6 J mice.
Fig. 3: Effects of clozapine on glucose tolerance, GSIS, and plasma 5-HT levels in HFD-fed mice.
Fig. 4: Increased 5-HT levels inhibited GSIS partly by activating 5-HTR3a and clozapine aggravated 5-HT-induced GSIS impairment partly by blocking 5-HTR2a on pancreatic β-cells.
Fig. 5: Effects of clozapine on intestinal 5-HT synthesis and hepatic 5-HT elimination in C57BL/6 J mice.
Fig. 6: Clozapine inhibited hepatic 5-HT elimination by inhibiting 5-HT uptake.
Fig. 7: The contribution of OCT1 on hepatic 5-HT uptake and effects of clozapine on the function of OCT1.
Fig. 8: Effects of hepatic OCT1 knockdown on the disposition of 5-HT, glucose tolerance, and GSIS in C57BL/6 J mice.
Fig. 9: Olanzapine and quetiapine impaired GSIS and glucose tolerance partly by increasing 5-HT levels due to the inhibition of hepatic 5-HT uptake.

Similar content being viewed by others

References

  1. Henderson DC. Atypical antipsychotic-induced diabetes mellitus: how strong is the evidence? CNS Drugs. 2002;16:77–89.

    CAS  PubMed  Google Scholar 

  2. Scheen AJ, De Hert MA. Abnormal glucose metabolism in patients treated with antipsychotics. Diabetes Metab. 2007;33:169–75.

    CAS  PubMed  Google Scholar 

  3. Cernea S, Dima L, Correll CU, Manu P. Pharmacological management of glucose dysregulation in patients treated with second-generation antipsychotics. Drugs. 2020;80:1763–81.

    CAS  PubMed  Google Scholar 

  4. Grajales D, Ferreira V, Valverde ÁM. Second-generation antipsychotics and dysregulation of glucose metabolism: beyond weight gain. Cells. 2019;8:1336.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pillinger T, McCutcheon RA, Vano L, Mizuno Y, Arumuham A, Hindley G, et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. Lancet Psychiatry. 2020;7:64–77.

    PubMed  PubMed Central  Google Scholar 

  6. Khokhar JY, Henricks AM, Sullivan EDK, Green AI. Unique effects of clozapine: a pharmacological perspective. Adv Pharm. 2018;82:137–62.

    CAS  Google Scholar 

  7. Henderson DC, Nguyen DD, Copeland PM, Hayden DL, Borba CP, Louie PM, et al. Clozapine, diabetes mellitus, hyperlipidemia, and cardiovascular risks and mortality: results of a 10-year naturalistic study. J Clin Psychiatry. 2005;66:1116–21.

    CAS  PubMed  Google Scholar 

  8. Henderson DC, Cagliero E, Gray C, Nasrallah RA, Hayden DL, Schoenfeld DA, et al. Clozapine, diabetes mellitus, weight gain, and lipid abnormalities: a five-year naturalistic study. Am J Psychiatry. 2000;157:971–85.

    Google Scholar 

  9. Wang W, Bai MR, Jiang T, Li C, Li P, Zhou H, et al. Clozapine-induced reduction of l-carnitine reabsorption via inhibition/down-regulation of renal carnitine/organic cation transporter 2 contributes to liver lipid metabolic disorder in mice. Toxicol Appl Pharmacol. 2019;363:47–56.

    CAS  Google Scholar 

  10. Chang GR, Liu HY, Yang WC, Wang CM, Wu CF, Lin JW, et al. Clozapine worsens glucose intolerance, nonalcoholic fatty liver disease, kidney damage, and retinal injury and increases renal reactive oxygen species production and chromium loss in obese mice. Int J Mol Sci. 2021;22:6680.

  11. Melkersson K, Jansson E. Effects of the atypical antipsychotic clozapine on insulin release in vitro. Neuro Endocrinol Lett. 28;6:854–60.

  12. Liu XM, Wu ZX, Lian JM, Hu CH, Huang XF, Deng C. Time-dependent changes and potential mechanisms of glucose-lipid metabolic disorders associated with chronic clozapine or olanzapine treatment in rats. Sci Rep. 2017;7:2762.

    PubMed  PubMed Central  Google Scholar 

  13. BanKi CM. Alterations of cerebrospinal fluid 5-hydroxyindoleacetic acid, and total blood serotonin content during clozapine treatment. Psychopharmacology. 1978;56:195–8.

    CAS  PubMed  Google Scholar 

  14. Schulz E, Fleischhaker C, Clement HW, Remschmidt H. Blood biogenic amines during clozapine treatment of early-onset schizophrenia. J Neural Transm. 1997;104:1077–89.

    CAS  PubMed  Google Scholar 

  15. Ertugrul A, Ucar G, Basar K, Demir B, Yabanoglu S, Ulug B. Influence of clozapine on platelet serotonin, monoamine oxidase and plasma serotonin levels. Psychiatry Res. 2007;149:49–57.

    CAS  PubMed  Google Scholar 

  16. El-Merahbi R, Löffler M, Mayer A, Sumara G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 2015;589:1728–34.

    CAS  PubMed  Google Scholar 

  17. Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. 2010;16:804–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moon JH, Kim YG, Kim K, Osonoi S, Wang S, Saunders DC, et al. Serotonin regulates adult β-cell mass by stimulating perinatal β-cell proliferation. Diabetes. 2020;69:205–14.

    CAS  PubMed  Google Scholar 

  19. Bennet H, Balhuizen A, Medina A, Dekker Nitert M, Ottosson Laakso E, Essen S, et al. Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides. 2015;71:113–20.

    CAS  PubMed  Google Scholar 

  20. Lindström P, Sehlin J. Mechanisms underlying the effects of 5-hydroxytryptamine and 5-hydroxytryptophan in pancreatic islets. A proposed role for L-aromatic amino acid decarboxylase. Endocrinology. 1983;112:1524–9.

    PubMed  Google Scholar 

  21. Zawalich WS, Tesz GJ, Zawalich KC. Effects of prior 5-hydroxytryptamine exposure on rat islet insulin secretory and phospholipase C responses. Endocrine. 2004;23:11–6.

    CAS  PubMed  Google Scholar 

  22. Li F, Zhang M, Xu D, Liu C, Zhong ZY, Jia LL, et al. Co-administration of paroxetine and pravastatin causes deregulation of glucose homeostasis in diabetic rats via enhanced paroxetine exposure. Acta Pharmacol Sin. 2014;35:792–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bennet H, Mollet IG, Balhuizen A, Medina A, Nagorny C, Bagge A, et al. Serotonin (5-HT) receptor 2b activation augments glucose-stimulated insulin secretion in human and mouse islets of Langerhans. Diabetologia. 2016;59:744–54.

    CAS  PubMed  Google Scholar 

  24. Chen H, Hong F, Chen Y, Li J, Yao YS, Zhang Y, et al. Activation of islet 5-HT4 receptor regulates glycemic control through promoting insulin secretion. Eur J Pharmacol. 2016;789:354–61.

    CAS  Google Scholar 

  25. Kusumi I, Boku S, Takahashi Y. Psychopharmacology of atypical antipsychotic drugs: from the receptor binding profile to neuroprotection and neurogenesis. Psychiatry Clin Neurosci. 2015;69:243–58.

    CAS  PubMed  Google Scholar 

  26. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414.

    CAS  PubMed  Google Scholar 

  27. Tyce GM, Flock EV, Owen CA,Jr. Metabolism of serotonin by the isolated perfused rat liver–effect of glucuronyl transferase deficiency or monoamine oxidase inhibition. Biochem Pharm. 1968;17:1543–52.

    CAS  PubMed  Google Scholar 

  28. Choi W, Namkung J, Hwang I, Kim H, Lim A, Park HJ, et al. Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nat Commun. 2018;9:4824.

    PubMed  PubMed Central  Google Scholar 

  29. Koepsell H. Organic cation transporters in health and disease. Pharmacol Rev. 2020;72:253–319.

    CAS  PubMed  Google Scholar 

  30. Boxberger KH, Hagenbuch B, Lampe JN. Common drugs inhibit human organic cation transporter 1 (OCT1)-mediated neurotransmitter uptake. Drug Metab Dispos. 2014;42:990–5.

    PubMed  PubMed Central  Google Scholar 

  31. Liu XD. SLC family transporters. Adv Exp Med Biol. 2019;1141:101–202.

    CAS  PubMed  Google Scholar 

  32. Ciarimboli G. Regulation mechanisms of expression and function of organic cation transporter 1. Front Pharmacol. 2021;11:607613.

    PubMed  PubMed Central  Google Scholar 

  33. Kordjazy N, Haj-Mirzaian A, Amiri S, Ostadhadi S, Amini-khoei H, Dehpour AR. Involvement of N-methyl-D-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test. Pharmacol Biochem Behav. 2016;141:1–9.

    CAS  PubMed  Google Scholar 

  34. Williams AA, Ingram WM, Levine S, Resnik J, Kamel CM, Lish JR, et al. Reduced levels of serotonin 2A receptors underlie resistance of Egr3-deficient mice to locomotor suppression by clozapine. Neuropsychopharmacology. 2012;37:2285–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang HY, Su MX, Liu M, Sheng Y, Zhu L, Yang L, et al. Hepatic retinaldehyde deficiency is involved in diabetes deterioration by enhancing PCK1- and G6PC-mediated gluconeogenesis. Acta Pharm Sin B. 2023;13:3728–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu PH, Jiang L, Kong WM, Xie QS, Li P, Liu XN, et al. PXR activation impairs hepatic glucose metabolism partly via inhibiting the HNF4alpha-GLUT2 pathway. Acta Pharm Sin B. 2022;12:2391–405.

    CAS  PubMed  Google Scholar 

  37. Hohmeier HE, Newgard CB. Cell lines derived from pancreatic islets. Mol Cell Endocrinol. 2004;228:121–8.

    CAS  PubMed  Google Scholar 

  38. Heimes K, Feistel B, Verspohl EJ. Impact of the 5-HT3 receptor channel system for insulin secretion and interaction of ginger extracts. Eur J Pharmacol. 2009;624:58–65.

    CAS  PubMed  Google Scholar 

  39. Yang HY, Liu M, Sheng Y, Zhu L, Jin MM, Jiang TX, et al. All-trans retinoic acid impairs glucose-stimulated insulin secretion by activating the RXR/SREBP-1c/UCP2 pathway. Acta Pharmacol Sin. 2022;43:1441–52.

    CAS  PubMed  Google Scholar 

  40. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc. 2009;4:1582–90.

    CAS  PubMed  Google Scholar 

  41. Jorgensen S, Nielsen EO, Peters D, Dyhring T. Validation of a fluorescence-based high-throughput assay for the measurement of neurotransmitter transporter uptake activity. J Neurosci Methods. 2008;169:168–76.

    PubMed  Google Scholar 

  42. Kong WM, Sun XY, Yu SY, Liu PH, Zheng XK, Zhang JX, et al. Bile duct ligation increased dopamine levels in the cerebral cortex of rats partly due to induction of tyrosine hydroxylase. Br J Pharmacol. 2023;180:1690–709.

    CAS  PubMed  Google Scholar 

  43. Vaglini F, Fascetti F, Tedeschi D, Cavalletti M, Fornai F, Corsini G. Striatal MPP+ levels do not necessarily correlate with striatal dopamine levels after MPTP treatment in mice. Neurodegeneration. 1996;5:129–36.

    CAS  PubMed  Google Scholar 

  44. Akamine Y, Sugawara-Kikuchi Y, Uno T, Shimizu T, Miura M. Quantification of the steady-state plasma concentrations of clozapine and N-desmethylclozapine in Japanese patients with schizophrenia using a novel HPLC method and the effects of CYPs and ABC transporters polymorphisms. Ann Clin Biochem. 2017;54:677–85.

    CAS  PubMed  Google Scholar 

  45. Bruijn KMD. Tropisetron. Drugs. 1992;43:11–22.

    PubMed  Google Scholar 

  46. Brogden RN, Sorkin EM. Ketanserin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in hypertension and peripheral vascular disease. Drugs. 1990;40:903–49.

    CAS  PubMed  Google Scholar 

  47. Roberts C, Price GW, Jones BJ. The role of 5-HT(1B/1D) receptors in the modulation of 5-hydroxytryptamine levels in the frontal cortex of the conscious guinea pig. Eur J Pharmacol. 1997;326:23–30.

    CAS  PubMed  Google Scholar 

  48. Parker SG, Taylor EM, Hamburger SA, Vimal M, Kaumann AJ. Blockade of human and porcine myocardial 5-HT4 receptors by SB 203186. Naunyn Schmiedebergs Arch Pharmacol. 1995;353:28–35.

    CAS  PubMed  Google Scholar 

  49. Wong YC, Centanni M, de Lange ECM. Physiologically based modeling approach to predict dopamine D2 receptor occupancy of antipsychotics in brain: translation from rat to human. J Clin Pharmacol. 2019;59:731–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Villazon M, Enguix MJ, Tristan H, Honrubia MA, Brea J, Maayani S, et al. Different pharmacological properties of two equipotent antagonists (clozapine and rauwolscine) for 5-HT2B receptors in rat stomach fundus. Biochem Pharmacol. 2003;66:927–37.

    CAS  PubMed  Google Scholar 

  51. Fox MA, French HT, LaPorte JL, Blackler AR, Murphy DL. The serotonin 5-HT2A receptor agonist TCB-2: a behavioral and neurophysiological analysis. Psychopharmacology. 2009;212:13–23.

    PubMed  Google Scholar 

  52. Kwarts E, Kwarts J, Rutgers H. A simple paired-ion liquid chromatography assay for serotonin in cerebrospinal fluid, platelet-rich plasma, serum and urine. Ann Clin Biochem. 1984;21:425–9.

    CAS  PubMed  Google Scholar 

  53. Klavdianou K, Liossis S-N, Papachristou DJ, Theocharis G, Sirinian C, Kottorou A, et al. Decreased serotonin levels and serotonin-mediated osteoblastic inhibitory signaling in patients with ankylosing spondylitis. J Bone Min Res. 2016;31:630–9.

    CAS  Google Scholar 

  54. Chojnacki C, Walecka-Kapica E, Stepien A, Pawlowicz M, Wachowska-Kelly P, Chojnacki J. Serum and ascitic fluid serotonin levels and 5-hydroxyindoleacetic acid urine excretion in the liver of cirrhotic patients with encephalopathy. Adv Med Sci. 2013;58:251–6.

    CAS  PubMed  Google Scholar 

  55. Bengtsson F, Bugge M, Hall H, Nobin A. Brain 5-HT1 and 5-HT2 binding sites following portacaval shunt in the rat. Res Exp Med. 1989;189:249–56.

    CAS  Google Scholar 

  56. Yakel JL, Shao XM, Jackson MB. Activation and desensitization of the 5-HT3 receptor in a rat glioma x mouse neuroblastoma hybrid cell. J Physiol. 1991;436:293–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bockaert J, Claeysen S, Compan V, Dumuis A. 5-HT4 receptors. Curr Drug Targets CNS Neurol Disord. 2004;3:39–51.

    CAS  PubMed  Google Scholar 

  58. Bernardo M, Rico-Villademoros F, García-Rizo C, Rojo R, Gómez-Huelgas R. Real-world data on the adverse metabolic effects of second-generation antipsychotics and their potential determinants in adult patients: a systematic review of population-based studies. Adv Ther. 2021;38:2491–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jefferys D, Vale J. Effect of cimetidine on glucose handling. Lancet. 1978;1:383.

    CAS  PubMed  Google Scholar 

  60. Kline JA, Raymond RM, Schroeder JD, Watts JA. The diabetogenic effects of acute verapamil poisoning. Toxicol Appl Pharmacol. 1997;145:357–62.

    CAS  PubMed  Google Scholar 

  61. Enyeart J, Price W, Hoffman D. Profound hyperglycaemia and metabolic acidosis after verapamil overdose. J Am Coll Cardiol. 1983;2:1228–31.

    CAS  PubMed  Google Scholar 

  62. Ito Y, Miyamoto T, Chong Y, Maki T, Akashi K, Kamimura T. Nilotinib exacerbates diabetes mellitus by decreasing secretion of endogenous insulin. Int J Hematol. 2012;97:135–8.

    PubMed  Google Scholar 

  63. Jarvis B, Faulds D. Nelfinavir. A review of its therapeutic efficacy in HIV infection. Drugs. 1998;56:147–67.

    CAS  PubMed  Google Scholar 

  64. Liang X, Yee SW, Chien HC, Chen EC, Luo Q, Zou L, et al. Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content. PLoS Biol. 2018;16:e2002907.

    PubMed  PubMed Central  Google Scholar 

  65. Howes O, Bhatnagar A, Gaughran F, Amiel S, Murray R, Pilowsky L. A prospective study of impairment in glucose control caused by clozapine without changes in insulin resistance. Am J Psychiatry. 2004;161:361–3.

    PubMed  PubMed Central  Google Scholar 

  66. Wu RR, Zhao JP, Liu ZN, Zhai JG, Guo XF, Guo WB, et al. Effects of typical and atypical antipsychotics on glucose–insulin homeostasis and lipid metabolism in first-episode schizophrenia. Psychopharmacology. 2006;186:572–8.

    CAS  PubMed  Google Scholar 

  67. Yan HM, Li YZ, Li S, Zhou C, Wei SC, Li J, et al. Sex differences in the prevalence and clinical correlates of diabetes in Chinese patients with chronic schizophrenia. Heliyon. 2023;9:e14183.

  68. Burghardt K, Seyoum B, Mallisho A, Burghardt P, Kowluru R, Yi Z. Atypical antipsychotics, insulin resistance and weight; a meta-analysis of healthy volunteer studies. Prog Neuropsychopharmacol Biol Psychiatry. 2018;83:55–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gutiérrez-Cuevas J, Santos A, Armendariz-Borunda J. Pathophysiological molecular mechanisms of obesity: a link between MAFLD and NASH with cardiovascular diseases. Int J Mol Sci. 2021;22:11629.

  70. Larsen JR, Svensson CK, Vedtofte L, Jakobsen ML, Jespersen HS, Jakobsen MI, et al. High prevalence of prediabetes and metabolic abnormalities in overweight or obese schizophrenia patients treated with clozapine or olanzapine. CNS Spectr. 2018;24:441–52.

    PubMed  Google Scholar 

  71. Miyakoshi T, Ishikawa S, Okubo R, Hashimoto N, Sato N, Kusumi I, et al. Risk factors for abnormal glucose metabolism during antipsychotic treatment: a prospective cohort study. J Psychiatr Res. 2023;168:149–56.

    PubMed  Google Scholar 

  72. Tulipano G, Rizzetti C, Bianchi I, Fanzani A, Spano P, Cocchi D. Clozapine-induced alteration of glucose homeostasis in the rat: the contribution of hypothalamic-pituitary-adrenal axis activation. Neuroendocrinology. 2007;85:61–70.

    CAS  PubMed  Google Scholar 

  73. Smith GC, Chaussade C, Vickers M, Jensen J, Shepherd PR. Atypical antipsychotic drugs induce derangements in glucose homeostasis by acutely increasing glucagon secretion and hepatic glucose output in the rat. Diabetologia. 2008;51:2309–17.

    CAS  PubMed  Google Scholar 

  74. Smith GC, Vickers MH, Cognard E, Shepherd PR. Clozapine and quetiapine acutely reduce glucagon-like peptide-1 production and increase glucagon release in obese rats: Implications for glucose metabolism and food choice behaviour. Schizophr Res. 2009;115:30–40.

    PubMed  Google Scholar 

  75. Mayfield K, Siskind D, Winckel K, Russell AW, Kisely S, Smith G, et al. Glucagon-like peptide-1 agonists combating clozapine-associated obesity and diabetes. J Psychopharmacol. 2016;30:227–36.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82373943, 82173884, China), the “Double First-Class” university project (No. CPU2022QZ21, China).

Author information

Authors and Affiliations

Authors

Contributions

WHW: conceptualization, methodology, investigation, formal analysis, validation, and writing-original draft. LL, XDL: conceptualization, methodology, writing-reviewing, editing, supervision, and funding acquisition. HYY: methodology, writing-reviewing, and editing. HZ and WKF: investigation, validation, and data curation. LJ, LY, LQQ, RXZ, YMT: investigation.

Corresponding authors

Correspondence to Han-yu Yang, Xiao-dong Liu or Li Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Wh., Zhi, H., Feng, Wk. et al. Clozapine impaired glucose-stimulated insulin secretion partly by increasing plasma 5-HT levels due to the inhibition of OCT1-mediated hepatic 5-HT uptake in mice. Acta Pharmacol Sin 46, 687–701 (2025). https://doi.org/10.1038/s41401-024-01401-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01401-w

Keywords

This article is cited by

Search

Quick links