Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology

Abstract

Poria cocos and its surface layer of Poria cocos (Schw.) Wolf (Polyporaceae), are used in traditional Chinese medicine for its diuretic and renoprotective effects. Phytochemical studies have shown that lanostane and 3,4-seco-lanostane tetracyclic triterpenoids are the main components of P. cocos and its surface layer. Accumulating evidence shows that triterpenoid components in P. cocos and its surface layer contribute to their renoprotective effect. The surface layer of P. cocos showed a stronger diuretic effect than P. cocos. The ethanol extract of the surface layer and its components improved acute kidney injury, acute kidney injury-to-chronic kidney disease transition and chronic kidney disease such as diabetic kidney disease, nephrotic syndrome and tubulointerstitial nephropathy, and protected against renal fibrosis. It has been elucidated that P. cocos and its surface layer exert a diuretic effect and improve kidney diseases through a variety of molecular mechanisms such as aberrant pathways TGF-β1/Smad, Wnt/β-catenin, IκB/NF-κB and Keap1/Nrf2 signaling as well as the activation of renin-angiotensin system, matrix metalloproteinases, aryl hydrocarbon receptor and endogenous metabolites. These studies further confirm the renoprotective effect of P. cocos and its surface layer and provide a beneficial basis to its clinical use in traditional medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The chemical structures of lanosta-7,9(11)-diene tetracyclic triterpenoids and lanosta-8-ene tetracyclic triterpenoids.
Fig. 2: The chemical structures of 3,4-secolanosta-7,9(11)-diene tetracyclic triterpenoids, 3,4-secolanosta-8-ene tetracyclic triterpenoids and other triterpenoids.
Fig. 3: The process of renal fibrosis.
Fig. 4: Poricoic acids attenuated renal fibrosis by inhibiting RAS, TGF-β/Smad and Wnt/β-catenin signaling pathways.
Fig. 5: Poricoic acids inhibited AHR, IκB/NF-κB and enhanced Keap1/Nrf2 signaling pathways in renal fibrosis.

Similar content being viewed by others

References

  1. Rios JL. Chemical constituents and pharmacological properties of Poria cocos. Planta Med. 2011;77:681–91.

    Article  CAS  PubMed  Google Scholar 

  2. Wang YZ, Zhang J, Zhao YL, Li T, Shen T, Li JQ, et al. Mycology, cultivation, traditional uses, phytochemistry and pharmacology of Wolfiporia cocos (Schwein.) Ryvarden et Gilb.: a review. J Ethnopharmacol. 2013;147:265–76.

    Article  CAS  PubMed  Google Scholar 

  3. Chen L, Cao G, Wang M, Feng YL, Chen DQ, Vaziri ND, et al. The matrix metalloproteinase-13 inhibitor poricoic acid ZI ameliorates renal fibrosis by mitigating epithelial-mesenchymal transition. Mol Nutr Food Res. 2019;63:e1900132.

    Article  PubMed  Google Scholar 

  4. Zhao YY, Feng YL, Bai X, Tan XJ, Lin RC, Mei Q. Ultra performance liquid chromatography-based metabonomic study of therapeutic effect of the surface layer of Poria cocos on adenine-induced chronic kidney disease provides new insight into anti-fibrosis mechanism. PLoS One. 2013;8:e59617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kobira S, Atsumi T, Kakiuchi N, Mikage M. Difference in cultivation characteristics and genetic polymorphism between Chinese and Japanese strains of Wolfiporia cocos Ryvarden et Gilbertson (Poria cocos Wolf). J Nat Med. 2012;66:493–9.

    Article  CAS  PubMed  Google Scholar 

  6. Feng YL, Lei P, Tian T, Yin L, Chen DQ, Chen H, et al. Diuretic activity of some fractions of the epidermis of Poria cocos. J Ethnopharmacol. 2013;150:1114–8.

    Article  PubMed  Google Scholar 

  7. Zhao YY, Lei P, Chen DQ, Feng YL, Bai X. Renal metabolic profiling of early renal injury and renoprotective effects of Poria cocos epidermis using UPLC Q-TOF/HSMS/MSE. J Pharm Biomed Anal. 2013;81-82:202–9.

    Article  CAS  PubMed  Google Scholar 

  8. Wang M, Chen DQ, Chen L, Cao G, Zhao H, Liu D, et al. Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis. Br J Pharmacol. 2018;175:2689–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giner-Larza EM, Máñez S, Giner-Pons RM, Carmen Recio M, Ríos JL. On the anti-inflammatory and anti-phospholipase A2 activity of extracts from lanostane-rich species. J Ethnopharmacol. 2000;73:61–69.

    Article  CAS  PubMed  Google Scholar 

  10. Ahn YM, Cho KW, Kang DG, Lee HS. Oryeongsan (Wulingsan), a traditional Chinese herbal medicine, induces natriuresis and diuresis along with an inhibition of the renin-angiotensin-aldosterone system in rats. J Ethnopharmacol. 2012;141:780–5.

    Article  PubMed  Google Scholar 

  11. Li L, Zuo ZT, Wang YZ. The traditional usages, chemical components and pharmacological activities of Wolfiporia cocos: a review. Am J Chin Med. 2022;50:389–440.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao S, Li H, Jing X, Zhang X, Li R, Li Y, et al. Identifying subgroups of patients with type 2 diabetes based on real-world traditional Chinese medicine electronic medical records. Front Pharmacol. 2023;14:1210667.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhao J, Li Y, Xin L, Sun M, Yu C, Shi G, et al. Clinical features and rules of chinese herbal medicine in diabetic peripheral neuropathy patients. Evid Based Complement Altern Med. 2020;2020:5795264.

    Article  Google Scholar 

  14. Kanematsu A, Natori S. Triterpenoids of Hoelen (fuling), sclerotia of Poria cocos (Schw.) Wolf. I. Yakugaku Zasshi. 1970;90:475–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kikuchi T, Uchiyama E, Ukiya M, Tabata K, Kimura Y, Suzuki T, et al. Cytotoxic and apoptosis-inducing activities of triterpene acids from Poria cocos. J Nat Prod. 2011;74:137–44.

    Article  CAS  PubMed  Google Scholar 

  16. Tai T, Shingu T, Kikuchi T, Tezuka Y, Akahori A. Triterpenes from the surface layer of Poria cocos. Phytochemistry. 1995;39:1165–9.

    Article  CAS  Google Scholar 

  17. Tai T, Shingu T, Kikuchi T, Tezuka Y, Akahori A. Isolation of lanostane-type triterpene acids having an acetoxyl group from sclerotia of Poria cocos. Phytochemistry. 1995;40:225–31.

    Article  CAS  Google Scholar 

  18. Nukaya H, Yamashiro H, Fukazawa H, Ishida H, Tsuji K. Isolation of inhibitors of TPA-induced mouse ear edema from Hoelen, Poria cocos. Chem Pharm Bull. 1996;44:847–9.

    Article  CAS  Google Scholar 

  19. Ukiya M, Akihisa T, Tokuda H, Hirano M, Oshikubo M, Nobukuni Y, et al. Inhibition of tumor-promoting effects by poricoic acids G and H and other lanostane-type triterpenes and cytotoxic activity of poricoic acids A and G from Poria cocos. J Nat Prod. 2002;65:462–5.

    Article  CAS  PubMed  Google Scholar 

  20. Yasukawa K, Kaminaga T, Kitanaka S, Tai T, Nunoura Y, Natori S, et al. 3β-p-hydroxybenzoyldehydrotumulosic acid from Poria cocos, and its anti-inflammatory effect. Phytochemistry. 1998;48:1357–60.

    Article  CAS  PubMed  Google Scholar 

  21. Akihisa T, Nakamura Y, Tokuda H, Uchiyama E, Suzuki T, Kimura Y, et al. Triterpene acids from Poria cocos and their anti-tumor-promoting effects. J Nat Prod. 2007;70:948–53.

    Article  CAS  PubMed  Google Scholar 

  22. Akihisa T, Uchiyama E, Kikuchi T, Tokuda H, Suzuki T, Kimura Y. Anti-tumor-promoting effects of 25-methoxyporicoic acid A and other triterpene acids from Poria cocos. J Nat Prod. 2009;72:1786–92.

    Article  CAS  PubMed  Google Scholar 

  23. Lai KH, Lu MC, Du YC, El-Shazly M, Wu TY, Hsu YM, et al. Cytotoxic lanostanoids from Poria cocos. J Nat Prod. 2016;79:2805–13.

    Article  CAS  PubMed  Google Scholar 

  24. Cai TG, Cai Y. Triterpenes from the fungus Poria cocos and their inhibitory activity on nitric oxide production in mouse macrophages via blockade of activating protein-1 pathway. Chem Biodivers. 2011;8:2135–43.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng Y, Yang XW. Poriacosones A and B: two new lanostane triterpenoids from Poria cocos. J Asian Nat Prod Res. 2008;10:645–51.

    PubMed  Google Scholar 

  26. Dong H, Wu P, Yan R, Xu Q, Li H, Zhang F, et al. Enrichment and separation of antitumor triterpene acids from the epidermis of Poria cocos by pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography. J Sep Sci. 2015;38:1977–82.

    Article  CAS  PubMed  Google Scholar 

  27. Lee D, Lee S, Shim SH, Lee HJ, Choi Y, Jang TS, et al. Protective effect of lanostane triterpenoids from the sclerotia of Poria cocos Wolf against cisplatin-induced apoptosis in LLC-PK1 cells. Bioorg Med Chem Lett. 2017;27:2881–5.

    Article  CAS  PubMed  Google Scholar 

  28. Tai T, Akahori A, Shingu T. Triterpenes of Poria cocos. Phytochemistry. 1993;32:1239–44.

    Article  CAS  Google Scholar 

  29. Zhou L, Zhang Y, Gapter LA, Ling H, Agarwal R, Ng KY. Cytotoxic and anti-oxidant activities of lanostane-type triterpenes isolated from Poria cocos. Chem Pharm Bull. 2008;56:1459–62.

    Article  CAS  Google Scholar 

  30. Akihisa T, Mizushina Y, Ukiya M, Oshikubo M, Kondo S, Kimura Y, et al. Dehydrotrametenonic acid and dehydroeburiconic acid from Poria cocos and their inhibitory effects on eukaryotic DNA polymerase α and β. Biosci Biotechnol Biochem. 2004;68:448–50.

    Article  CAS  PubMed  Google Scholar 

  31. Bao TR, Long GQ, Wang Y, Wang Q, Liu XL, Hu GS, et al. Newl anostane-type triterpenes with anti-inflammatory activity from the epidermis of Wolfiporia cocos. J Agric Food Chem. 2022;70:4418–33.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang TT, Ding LF, Nie W, Wang LY, Lei T, Wu XD, et al. Tetranorlanostane and lanostane triterpenoids with cytotoxic activity from the epidermis of Poria cocos. Chem Biodivers. 2021;18:e2100196.

    Article  CAS  PubMed  Google Scholar 

  33. Wang LY, Wan HJ. Studies on the chemical constituents of Fuling (Poria cocos). Chin Tradit Herb Drugs. 1998;29:145–8.

    Google Scholar 

  34. Wang S, Jiang Y, Zhu N, Liu Y, Shi R, Yang X, et al. Determination and isolation of the chemical constituents of Poria cocos. J Beijing Univ Tradit Chin Med. 2010;33:841–4.

    CAS  Google Scholar 

  35. Zheng Y, Yang XW. Two new lanostane triterpenoids from Poria cocos. J Asian Nat Prod Res. 2008;10:323–8.

    PubMed  Google Scholar 

  36. Wang M, Chen DQ, Chen L, Liu D, Zhao H, Zhang ZH, et al. Novel RAS inhibitors poricoic acid ZG and poricoic acid ZH attenuate renal fibrosis via a Wnt/β-Catenin pathway and targeted phosphorylation of smad3 signaling. J Agric Food Chem. 2018;66:1828–42.

    Article  CAS  PubMed  Google Scholar 

  37. Chen B, Zhang J, Han J, Zhao R, Bao L, Huang Y, et al. Lanostane triterpenoids with glucose-uptake-stimulatory activity from peels of the cultivated edible mushroom Wolfiporia cocos. J Agric Food Chem. 2019;67:7348–64.

    Article  CAS  PubMed  Google Scholar 

  38. Yang CH, Zhang SF, Liu WY, Zhang ZJ, Liu JH. Two new triterpenes from the surface layer of Poria cocos. Helv Chim Acta. 2009;92:660–7.

    Article  CAS  Google Scholar 

  39. Yang LB, Qin B, Feng SM, Liu SJ, Song XM. A new triterpenoid from traditional Chinese medicine Poria cocos. J Chem Res. 2010;34:553–4.

  40. Dong HJ, Xue ZZ, Geng YL, Wang X. Lanostane triterpenes isolated from epidermis of Poria cocos. Phytochem Lett. 2017;22:102–6.

    Article  CAS  Google Scholar 

  41. Wang M, Hu HH, Chen YY, Chen L, Wu XQ, Zhao YY. Novel poricoic acids attenuate renal fibrosis through regulating redox signalling and aryl hydrocarbon receptor activation. Phytomedicine. 2020;79:153323.

    Article  CAS  PubMed  Google Scholar 

  42. Li S, Wang Z, Gu R, Zhao Y, Huang W, Wang Z, et al. A new epidioxy-tetracyclic triterpenoid from Poria cocos Wolf. Nat Prod Res. 2016;30:1712–7.

    Article  CAS  PubMed  Google Scholar 

  43. Yang PF, Hua T, Wang D, Zhao ZW, Xi GL, Chen ZF. Phytochemical and chemotaxonomic study of Poria cocos (Schw.) Wolf. Biochem Syst Ecol. 2019;83:54–6.

    Article  CAS  Google Scholar 

  44. Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther. 2023;8:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li L, Xiang T, Guo J, Guo F, Wu Y, Feng H, et al. Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence. Nat Commun. 2024;15:3200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu J, Guo F, Chen X, Fu P, Ma L. Integrin αM promotes macrophage alternative M2 polarization in hyperuricemia-related chronic kidney disease. MedComm. 2024;5:e580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang L, Wang B, Guo F, Huang R, Liang Y, Li L, et al. FFAR4 improves the senescence of tubular epithelial cells by AMPK/Sirt3 signaling in acute kidney injury. Signal Transduct Target Ther. 2022;7:384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wen L, Ren Q, Guo F, Du X, Yang H, Fu P, et al. Tubular aryl hydratocarbon receptor upregulates EZH2 to promote cellular senescence in cisplatin-induced acute kidney injury. Cell Death Dis. 2023;14:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang MJ, Ji YW, Chen JW, Li D, Zhou T, Qi P, et al. Targeted VEGFA therapy in regulating early acute kidney injury and late fibrosis. Acta Pharmacol Sin. 2023;44:1815–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang YN, Zhang ZH, Liu HJ, Guo ZY, Zou L, Zhang YM, et al. Integrative phosphatidylcholine metabolism through phospholipase A2 in rats with chronic kidney disease. Acta Pharmacol Sin. 2023;44:393–405.

    Article  CAS  PubMed  Google Scholar 

  51. He XY, Wang F, Suo XG, Gu MZ, Wang JN, Xu CH, et al. Compound-42 alleviates acute kidney injury by targeting RIPK3-mediated necroptosis. Br J Pharmacol. 2023;180:2641–60.

    Article  CAS  PubMed  Google Scholar 

  52. Zarbock A, Forni LG, Ostermann M, Ronco C, Bagshaw SM, Mehta RL, et al. Designing acute kidney injury clinical trials. Nat Rev Nephrol. 2024;20:137–46.

    Article  PubMed  Google Scholar 

  53. Zhou Y, Wu Q, Wang X, Li W, Liu Q, Gao K. Insights into the functional mechanism of diabetic kidney disease treatment with sinensetin based on network pharmacology and molecular docking. Integr Med Nephrol Androl. 2023;10:e00033.

    Article  Google Scholar 

  54. Ren Q, Tao S, Guo F, Wang B, Yang L, Ma L, et al. Natural flavonol fisetin attenuated hyperuricemic nephropathy via inhibiting IL-6/JAK2/STAT3 and TGF-β/SMAD3 signaling. Phytomedicine. 2021;87:153552.

    Article  CAS  PubMed  Google Scholar 

  55. Kuang BC, Wang ZH, Hou SH, Zhang J, Wang MQ, Zhang JS, et al. Methyl eugenol protects the kidney from oxidative damage in mice by blocking the Nrf2 nuclear export signal through activation of the AMPK/GSK3β axis. Acta Pharmacol Sin. 2023;44:367–80.

    Article  CAS  PubMed  Google Scholar 

  56. Wu S, Yan M, Liu J, Li Y, Tian R, Li C, et al. Clerodendranthus spicatus inhibits epithelial-mesenchymal transition of renal tubular cells through the NF-κB/Snail signalling pathway in hyperuricaemia nephropathy. Pharmacol Biol. 2023;61:1274–85.

    Article  CAS  Google Scholar 

  57. Zou TF, Liu ZG, Cao PC, Zheng SH, Guo WT, Wang TX, et al. Fisetin treatment alleviates kidney injury in mice with diabetes-exacerbated atherosclerosis through inhibiting CD36/fibrosis pathway. Acta Pharmacol Sin. 2023;44:2065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. He Z, Zhang M, Xu H, Zhou W, Xu C, Wang Z, et al. Yiqi Huoxue Tongluo recipe regulates NR4A1 to improve renal mitochondrial function in unilateral ureteral obstruction (UUO) rats. Pharmacol Biol. 2022;60:2308–18.

    Article  CAS  Google Scholar 

  59. Wang F, Liu C, Ren L, Li Y, Yang H, Yu Y, et al. Sanziguben polysaccharides improve diabetic nephropathy in mice by regulating gut microbiota to inhibit the TLR4/NF-κB/NLRP3 signalling pathway. Pharmacol Biol. 2023;61:427–36.

    Article  CAS  Google Scholar 

  60. Qian C, Wang J, Lin W, Chen Y, Yang J, Liu M, et al. Tabersonine attenuates obesity-induced renal injury via inhibiting NF-κB-mediated inflammation. Phytother Res. 2023;37:2353–63.

    Article  CAS  PubMed  Google Scholar 

  61. Wu ZL, Ren H, Lai WY, Lin S, Jiang RY, Ye TC, et al. Sclederma of Poria cocos exerts its diuretic effect via suppression of renal aquaporin-2 expression in rats with chronic heart failure. J Ethnopharmacol. 2014;155:563–71.

    Article  PubMed  Google Scholar 

  62. Lainscak M, Pelliccia F, Rosano G, Vitale C, Schiariti M, Greco C, et al. Safety profile of mineralocorticoid receptor antagonists: spironolactone and eplerenone. Int J Cardiol. 2015;200:25–9.

    Article  PubMed  Google Scholar 

  63. Frankenstein L, Seide S, Täger T, Jensen K, Fröhlich H, Clark AL, et al. Relative efficacy of spironolactone, eplerenone, and cAnRenone in patients with chronic heart failure (RESEARCH): a systematic review and network meta-analysis of randomized controlled trials. Heart Fail Rev. 2020;25:161–71.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao YY. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries: a review. J Ethnopharmacol. 2013;149:35–48.

    Article  CAS  PubMed  Google Scholar 

  65. Tian T, Chen H, Zhao YY. Traditional uses, phytochemistry, pharmacology, toxicology and quality control of Alisma orientale (Sam.) Juzep: a review. J Ethnopharmacol. 2014;158:373–87.

    Article  CAS  PubMed  Google Scholar 

  66. Tian T, Chen H, Yin L, Chen DQ, Feng YL, Zhao YY. Diuretic activity of aqueous and ethanol extracts from Poria cocos and cortex poriae and active component identification. Chin J Pharmacol Toxicol. 2014;28:57–62.

    Google Scholar 

  67. Zhao YY, Feng YL, Du X, Xi ZH, Cheng XL, Wei F. Diuretic activity of the ethanol and aqueous extracts of the surface layer of Poria cocos in rat. J Ethnopharmacol. 2012;144:775–8.

    Article  PubMed  Google Scholar 

  68. Han S, Li S, Li J, He J, Wang QQ, Gao X, et al. Hederasaponin C inhibits LPS-induced acute kidney injury in mice by targeting TLR4 and regulating the PIP2/NF-κB/NLRP3 signaling pathway. Phytother Res. 2023;37:5974–90.

    Article  CAS  PubMed  Google Scholar 

  69. Cao S, Fu X, Yang S, Tang S. The anti-inflammatory activity of resveratrol in acute kidney injury: a systematic review and meta-analysis of animal studies. Pharmacol Biol. 2022;60:2088–97.

    Article  CAS  Google Scholar 

  70. Yuan Z, Yang X, Hu Z, Gao Y, Wang M, Xie L, et al. Fraxetin pretreatment alleviates cisplatin-induced kidney injury by antagonizing autophagy and apoptosis via mTORC1 activation. Phytother Res. 2024;38:2077–93.

    Article  CAS  PubMed  Google Scholar 

  71. Jiang GP, Liao YJ, Huang LL, Zeng XJ, Liao XH. Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury. Mol Med Rep. 2021;23:63.

    Article  CAS  PubMed  Google Scholar 

  72. Chen DQ, Cao G, Zhao H, Chen L, Yang T, Wang M, et al. Combined melatonin and poricoic acid A inhibits renal fibrosis through modulating the interaction of Smad3 and β-catenin pathway in AKI-to-CKD continuum. Ther Adv Chronic Dis. 2019;10:2040622319869116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zoccali C, Mark PB, Sarafidis P, Agarwal R, Adamczak M, Bueno de Oliveira R, et al. Diagnosis of cardiovascular disease in patients with chronic kidney disease. Nat Rev Nephrol. 2023;19:733–46.

    Article  PubMed  Google Scholar 

  74. Rashid I, Katravath P, Tiwari P, D’Cruz S, Jaswal S, Sahu G. Hyperuricemia—a serious complication among patients with chronic kidney disease: a systematic review and meta-analysis. Explor Med. 2022;3:249–59.

    Article  Google Scholar 

  75. Miao H, Liu F, Wang YN, Yu XY, Zhuang S, Guo Y, et al. Targeting Lactobacillus johnsonii to reverse chronic kidney disease. Signal Transduct Target Ther. 2024;9:195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang YN, Miao H, Hua MR, Yang JZ, Pei M, Yu HX, et al. Moshen granule ameliorates membranous nephropathy by blocking intrarenal renin-angiotensin system signalling via the Wnt1/β-catenin pathway. Phytomedicine. 2023;114:154763.

    Article  CAS  PubMed  Google Scholar 

  77. Yin J, Chen H, Zhu B. The safety and efficacy of using uremic clearance granules for treating stages 3 to 5 of chronic kidney disease: a meta-analysis. Integr Med Nephrol Androl. 2023;10:e00013.

    Article  Google Scholar 

  78. Yu B, Zhou M, Dong Z, Zheng H, Zhao Y, Zhou J, et al. Integrating network pharmacology and experimental validation to decipher the mechanism of the Chinese herbal prescription modified Shen-Yan-Fang-Shuai formula in treating diabetic nephropathy. Pharmacol Biol. 2023;61:1222–33.

    Article  CAS  Google Scholar 

  79. Shao YF, Tang BB, Ding YH, Fang CY, Hong L, Shao CX, et al. Kaempferide ameliorates cisplatin-induced nephrotoxicity via inhibiting oxidative stress and inducing autophagy. Acta Pharmacol Sin. 2023;44:1442–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun MY, Ye HJ, Zheng C, Jin ZJ, Yuan Y, Weng HB. Astragalin ameliorates renal injury in diabetic mice by modulating mitochondrial quality control via AMPK-dependent PGC1α pathway. Acta Pharmacol Sin. 2023;44:1676–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feng YL, Cao G, Chen DQ, Vaziri ND, Chen L, Zhang J, et al. Microbiome-metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease. Cell Mol Life Sci. 2019;76:4961–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vivarelli M, Gibson K, Sinha A, Boyer O. Childhood nephrotic syndrome. Lancet. 2023;402:809–24.

    Article  PubMed  Google Scholar 

  83. Lee SM, Lee YJ, Yoon JJ, Kang DG, Lee HS. Effect of Poria cocos on puromycin aminonucleoside-induced nephrotic syndrome in rats. Evid Based Complement Altern Med. 2014;2014:570420.

    Article  Google Scholar 

  84. Zan JF, Shen CJ, Zhang LP, Liu YW. Effect of Poria cocos hydroethanolic extract on treating adriamycin-induced rat model of nephrotic syndrome. Chin J Integr Med. 2017;23:916–22.

    Article  PubMed  Google Scholar 

  85. Zhao YY, Li HT, Feng YI, Bai X, Lin RC. Urinary metabonomic study of the surface layer of Poria cocos as an effective treatment for chronic renal injury in rats. J Ethnopharmacol. 2013;148:403–10.

    Article  CAS  PubMed  Google Scholar 

  86. Chen DQ, Wang YN, Vaziri ND, Chen L, Hu HH, Zhao YY. Poricoic acid A activates AMPK to attenuate fibroblast activation and abnormal extracellular matrix remodelling in renal fibrosis. Phytomedicine. 2020;72:153232.

    Article  CAS  PubMed  Google Scholar 

  87. Chen DQ, Wu XQ, Chen L, Hu HH, Wang YN, Zhao YY. Poricoic acid A as a modulator of TPH-1 expression inhibits renal fibrosis via modulating protein stability of β-catenin and β-catenin-mediated transcription. Ther Adv Chronic Dis. 2020;11:2040622320962648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li Q, Ming Y, Jia H, Wang G. Poricoic acid A suppresses TGF-β1-induced renal fibrosis and proliferation via the PDGF-C, Smad3 and MAPK pathways. Exp Ther Med. 2021;21:289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen DQ, Chen L, Guo Y, Wu XQ, Zhao TT, Zhao HL, et al. Poricoic acid A suppresses renal fibroblast activation and interstitial fibrosis in UUO rats via upregulating Sirt3 and promoting β-catenin K49 deacetylation. Acta Pharmacol Sin. 2022;44:1038–50.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wu Y, Deng H, Sun J, Tang J, Li X, Xu Y. Poricoic acid A induces mitophagy to ameliorate podocyte injury in diabetickidney disease via downregulating FUNDC1. J Biochem Mol Toxicol. 2023;37:e23503.

    Article  CAS  PubMed  Google Scholar 

  91. Chen L, Chen DQ, Wang M, Liu D, Chen H, Dou F, et al. Role of RAS/Wnt/β-catenin axis activation in the pathogenesis of podocyte injury and tubulo-interstitial nephropathy. Chem Biol Interact. 2017;273:56–72.

    Article  CAS  PubMed  Google Scholar 

  92. Wang M, Chen DQ, Wang MC, Chen H, Chen L, Liu D, et al. Poricoic acid ZA, a novel RAS inhibitor, attenuates tubulo-interstitial fibrosis and podocyte injury by inhibiting TGF-β/Smad signaling pathway. Phytomedicine. 2017;36:243–53.

    Article  CAS  PubMed  Google Scholar 

  93. Chen DQ, Feng YL, Chen L, Liu JR, Wang M, Vaziri ND, et al. Poricoic acid A enhances melatonin inhibition of AKI-to-CKD transition by regulating Gas6/Axl-NF-κB/Nrf2 axis. Free Radic Biol Med. 2019;134:484–97.

    Article  CAS  PubMed  Google Scholar 

  94. Miao H, Wu XQ, Wang YN, Chen DQ, Chen L, Vaziri ND, et al. 1-Hydroxypyrene mediates renal fibrosis through aryl hydrocarbon receptor signalling pathway. Br J Pharmacol. 2022;179:103–24.

    Article  CAS  PubMed  Google Scholar 

  95. Fu YP, Yu DL, Xie X, Huang Y, Li SH. Protective role of Poria cocos polysaccharide induced differentiation of bone marrow mesenchymal stem cells in chronic kidney disease. Curr Top Nutraceut Res. 2022;20:177–84.

    Google Scholar 

  96. Liang L, Wang W, Chen J, Wu W, Huang XR, Wei B, et al. SARS-CoV-2 N protein induces acute kidney injury in diabetic mice via the Smad3-Ripk3/MLKL necroptosis pathway. Signal Transduct Target Ther. 2023;8:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miao H, Wang YN, Su W, Zou L, Zhuang SG, Yu XY, et al. Sirtuin 6 protects against podocyte injury by blocking the renin-angiotensin system by inhibiting the Wnt1/β-catenin pathway. Acta Pharmacol Sin. 2023;45:137–49.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Alvarenga L, Cardozo L, Ribeiro-Alves M, Damasceno NRT, Berretta AA, Lima JA, et al. Effects of turmeric extract supplementation on the lipid and lipoprotein subfraction profile in hemodialysis patients: a randomised, double-blind, crossover and controlled trial. Phytother Res. 2023;37:3424–37.

    Article  CAS  PubMed  Google Scholar 

  99. Peng Y, Zeng Y, Zheng T, Xie X, Wu J, Fu L, et al. Effects of Tiaopi Xiezhuo decoction on constipation and gut dysbiosis in patients with peritoneal dialysis. Pharm Biol. 2023;61:531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qin X, Chen H, Zhu X, Xu X, Gao J. Identification of Rab7 as an autophagy marker: potential therapeutic approaches and the effect of Qi Teng Xiao Zhuo granule in chronic glomerulonephritis. Pharm Biol. 2023;61:1120–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang K, Li M, Yin K, Wang M, Dong Q, Miao Z, et al. Hyperoside mediates protection from diabetes kidney disease by regulating ROS-ERK signaling pathway and pyroptosis. Phytother Res. 2023;37:5871–82.

    Article  CAS  PubMed  Google Scholar 

  102. Li J, Huang X, He K, Wu S. The kidney antifibrotic effects of 5,7,3’,4’,5’-pentamethoxyflavone from Bauhinia championii in streptozotocin-induced diabetic rats: in vivo and in vitro experiments. Pharmacol Biol. 2023;61:938–48.

    Article  CAS  Google Scholar 

  103. Lin P, Qiu F, Wu M, Xu L, Huang D, Wang C, et al. Salvianolic acid B attenuates tubulointerstitial fibrosis by inhibiting EZH2 to regulate the PTEN/Akt pathway. Pharmacol Biol. 2023;61:23–9.

    Article  CAS  Google Scholar 

  104. Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, et al. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2024;9:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jiang L, Sun XY, Wang SQ, Liu YL, Lu LJ, Wu WH, et al. Indoxyl sulphate-TNFα axis mediates uremic encephalopathy in rodent acute kidney injury. Acta Pharmacol Sin. 2024;45:1406–24.

    Article  CAS  PubMed  Google Scholar 

  106. Hu J, Gu W, Ma N, Fan X, Ci X. Leonurine alleviates ferroptosis in cisplatin-induced acute kidney injury by activating the Nrf2 signalling pathway. Br J Pharmacol. 2022;179:3991–4009.

    Article  CAS  PubMed  Google Scholar 

  107. Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 2013;83:1029–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang B, Yang LN, Yang LT, Liang Y, Guo F, Fu P, et al. Fisetin ameliorates fibrotic kidney disease in mice via inhibiting ACSL4-mediated tubular ferroptosis. Acta Pharmacol Sin. 2024;45:150–65.

    Article  PubMed  Google Scholar 

  109. Chen Y, Wu MF, Xie MM, Lu Y, Li C, Xie SS, et al. Cpd-A1 alleviates acute kidney injury by inhibiting ferroptosis. Acta Pharmacol Sin. 2024;45:1673–85.

    Article  CAS  PubMed  Google Scholar 

  110. Qiao YY, Ji JL, Hou WL, Qu GT, Li SW, Li XY, et al. tRF3-IleAAT reduced extracellular matrix synthesis in diabetic kidney disease mice by targeting ZNF281 and inhibiting ferroptosis. Acta Pharmacol Sin. 2024;45:1032–43.

    Article  CAS  PubMed  Google Scholar 

  111. Miao H, Wang YN, Yu XY, Zou L, Guo Y, Su W, et al. Lactobacillus species ameliorate membranous nephropathy through inhibiting the aryl hydrocarbon receptor pathway via tryptophan-produced indole metabolites. Br J Pharmacol. 2024;181:162–79.

    Article  CAS  PubMed  Google Scholar 

  112. Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24:255–72.

    Article  CAS  PubMed  Google Scholar 

  113. Lee SM, Lee YJ, Yoon JJ, Kang DG, Lee HS. Effect of Poria cocos on hypertonic stress-induced water channel expression and apoptosis in renal collecting duct cells. J Ethnopharmacol. 2012;141:368–76.

    Article  PubMed  Google Scholar 

  114. Tao S, Li L, Li L, Liu Y, Ren Q, Shi M, et al. Understanding the gut-kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition. Acta Diabetol. 2019;56:581–92.

    Article  PubMed  Google Scholar 

  115. Li L, Zhao S, Xiang T, Feng H, Ma L, Fu P. Epigenetic connection between gut microbiota-derived short-chain fatty acids and chromatin histone modification in kidney diseases. Chin Med J. 2022;135:1692–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yang T, Xu C. Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol. 2017;28:1040–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pan W, Jie W, Huang H. Vascular calcification: molecular mechanisms and therapeutic interventions. MedComm. 2020;2023:e200.

    Google Scholar 

  118. Khaled A, Ahmed E, Mamdouh M, Saad H, Mohamed A, Sobhy M, et al. Natural angiotensin converting enzyme inhibitors: a safeguard against hypertension, respiratory distress syndrome, and chronic kidney diseases. Phytother Res. 2023;37:5464–72.

    Article  CAS  PubMed  Google Scholar 

  119. Ghaeini Hesarooeyeh Z, Basham A, Sheybani-Arani M, Abbaszadeh M, Salimi Asl A, Moghbeli M, et al. Effect of resveratrol and curcumin and the potential synergism on hypertension: a mini-review of human and animal model studies. Phytother Res. 2024;38:42–58.

    Article  CAS  PubMed  Google Scholar 

  120. Ren LL, Li XJ, Duan TT, Li ZH, Yang JZ, Zhang YM, et al. Transforming growth factor-β signaling: from tissue fibrosis to therapeutic opportunities. Chem Biol Interact. 2023;369:110289.

    Article  CAS  PubMed  Google Scholar 

  121. Yu XY, Sun Q, Zhang YM, Zou L, Zhao YY. TGF-β/Smad signaling pathway in tubulointerstitial fibrosis. Front Pharmacol. 2022;13:860588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu HY, Sun XJ, Xiu SY, Zhang XY, Wang ZQ, Gu YL, et al. Frizzled receptors (FZDs) in Wnt signaling: potential therapeutic targets for human cancers. Acta Pharmacol Sin. 2024;45:1556–70.

    Article  CAS  PubMed  Google Scholar 

  123. Fang Z, Han X, Chen Y, Tong X, Xue Y, Yao S, et al. Oxidative stress-triggered Wnt signaling perturbation characterizes the tipping point of lung adeno-to-squamous transdifferentiation. Signal Transduct Target Ther. 2023;8:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol. 2015;26:107–20.

    Article  CAS  PubMed  Google Scholar 

  125. Ming WH, Luan ZL, Yao Y, Liu HC, Hu SY, Du CX, et al. Pregnane X receptor activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/β-catenin signaling. Acta Pharmacol Sin. 2023;44:2075–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol. 2024;20:101–19.

    Article  PubMed  Google Scholar 

  127. Cheng C, Zhang J, Li X, Xue F, Cao L, Meng L, et al. NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis in ApoE knockout mice. Signal Transduct Target Ther. 2023;8:290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang JL, Hua SN, Bao HJ, Yuan J, Zhao Y, Chen S. Pyroptosis and inflammasomes in cancer and inflammation. MedComm. 2023;4:e374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther. 2023;8:239.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Shahcheraghi SH, Salemi F, Small S, Syed S, Salari F, Alam W, et al. Resveratrol regulates inflammation and improves oxidative stress via Nrf2 signaling pathway: therapeutic and biotechnological prospects. Phytother Res. 2023;37:1590–605.

    Article  CAS  PubMed  Google Scholar 

  131. Zhou Y, Qian C, Tang Y, Song M, Zhang T, Dong G, et al. Advance in the pharmacological effects of quercetin in modulating oxidative stress and inflammation related disorders. Phytother Res. 2023;37:4999–5016.

    Article  PubMed  Google Scholar 

  132. Hassanein EHM, Abd El-Maksoud MS, Ibrahim IM, Abd-Alhameed EK, Althagafy HS, Mohamed NM, et al. The molecular mechanisms underlying anti-inflammatory effects of galangin in different diseases. Phytother Res. 2023;37:3161–81.

    Article  CAS  PubMed  Google Scholar 

  133. Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, et al. Galangin: a food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res. 2023;37:5700–23.

    Article  CAS  PubMed  Google Scholar 

  134. Yang H, Zhao Y, Ren B, Wu Y, Qiu Z, Cheng Y, et al. Poria acid inhibit the growth and metastasis of renal cell carcinoma by inhibiting the PI3K/Akt/NF-κB signaling pathway. Heliyon. 2024;10:e31106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Grillet B, Pereira RVS, Van Damme J, Abu El-Asrar A, Proost P, Opdenakker G. Matrix metalloproteinases in arthritis: towards precision medicine. Nat Rev Rheumatol. 2023;19:363–77.

    Article  PubMed  Google Scholar 

  136. de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharm Rev. 2022;74:712–68.

    Article  PubMed  Google Scholar 

  137. Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Ren Physiol. 2012;302:F1351–61.

    Article  CAS  Google Scholar 

  138. Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy—challenges and opportunities. Trends Pharmacol Sci. 2018;39:307–25.

    Article  CAS  PubMed  Google Scholar 

  139. Dou L, Poitevin S, Sallee M, Addi T, Gondouin B, McKay N, et al. Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. Kidney Int. 2018;93:986–99.

    Article  CAS  PubMed  Google Scholar 

  140. Cao G, Miao H, Wang YN, Chen DQ, Wu XQ, Chen L, et al. Intrarenal 1-methoxypyrene, an aryl hydrocarbon receptor agonist, mediates progressive tubulointerstitial fibrosis in mice. Acta Pharmacol Sin. 2022;43:2929–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miao H, Cao G, Wu XQ, Chen YY, Chen DQ, Chen L, et al. Identification of endogenous 1-aminopyrene as a novel mediator of progressive chronic kidney disease via aryl hydrocarbon receptor activation. Br J Pharmacol. 2020;177:3415–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dong Y, Hu H, Zhang X, Zhang Y, Sun X, Wang H, et al. Phosphorylation of PHF2 by AMPK releases the repressive H3K9me2 and inhibits cancer metastasis. Signal Transduct Target Ther. 2023;8:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Huang H, Guo S, Chen YQ, Liu YX, Jin JY, Liang Y, et al. Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway. MedComm. 2023;4:e226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wu KK, Kuo CC, Yet SF, Lee CM, Liou JY. 5-methoxytryptophan: an arsenal against vascular injury and inflammation. J Biomed Sci. 2020;27:79.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chen DQ, Cao G, Chen H, Argyopoulos CP, Yu H, Su W, et al. Identification of serum metabolites associating with chronic kidney disease progression and anti-fibrotic effect of 5-methoxytryptophan. Nat Commun. 2019;10:1476.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, et al. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther. 2023;8:132.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wei Y, Zhang Z, Zhang Y, Li J, Ruan X, Wan Q, et al. Nontargeted metabolomics analysis of follicular fluid in patients with endometriosis provides a new direction for the study of oocyte quality. MedComm. 2023;4:e302.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Danzi F, Pacchiana R, Mafficini A, Scupoli MT, Scarpa A, Donadelli M, et al. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther. 2023;8:137.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ma XZ, Chen LL, Qu L, Li H, Wang J, Song N, et al. Gut microbiota-induced CXCL1 elevation triggers early neuroinflammation in the substantia nigra of Parkinsonian mice. Acta Pharmacol Sin. 2024;45:52–65.

    Article  PubMed  Google Scholar 

  150. Zhang XZ, Lei XX, Jiang YL, Zhao LM, Zou CY, Bai YJ, et al. Application of metabolomics in urolithiasis: the discovery and usage of succinate. Signal Transduct Target Ther. 2023;8:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, et al. Applications of multi-omics analysis in human diseases. MedComm. 2023;4:e315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cuellar MJ, Giner RM, Recio MC, Just MJ, Mañez S, Rios JL. Effect of the basidiomycete Poria cocos on experimental dermatitis and other inflammatory conditions. Chem Pharm Bull. 1997;45:492–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Shaanxi Key Science and Technology Plan Project (No. 2023-ZDLSF-26) and National Natural Science Foundation of China (Nos. 82274079, 82274192, 82074002 and 81872985).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-hua Yang, Hua Miao or Ying-yong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Zy., Wu, X., Zhang, Sj. et al. Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology. Acta Pharmacol Sin 46, 836–851 (2025). https://doi.org/10.1038/s41401-024-01404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01404-7

Keywords

This article is cited by

Search

Quick links