Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IMPDH inhibitors upregulate PD-L1 in cancer cells without impairing immune checkpoint inhibitor efficacy

Abstract

Tumor cells are characterized by rapid proliferation. In order to provide purines for DNA and RNA synthesis, inosine 5’-monophosphate dehydrogenase (IMPDH), a key enzyme in the de novo guanosine biosynthesis, is highly expressed in tumor cells. In this study we investigated whether IMPDH was involved in cancer immunoregulation. We revealed that the IMPDH inhibitors AVN944, MPA or ribavirin concentration-dependently upregulated PD-L1 expression in non-small cell lung cancer cell line NCI-H292. This effect was reproduced in other non-small cell lung cancer cell lines H460, H1299 and HCC827, colon cancer cell lines HT29, RKO and HCT116, as well as kidney cancer cell line Huh7. In NCI-H292 cells, we clarified that IMPDH inhibitors increased CD274 mRNA levels by enhancing CD274 mRNA stability. IMPDH inhibitors improved the affinity of the ARE-binding protein HuR for CD274 mRNA, thereby stabilizing CD274 mRNA. Guanosine supplementation abolished the IMPDH inhibitor-induced increase in PD-L1 expression. In CT26 and EMT6 tumor models used for ICIs based studies, we showed that despite its immunosuppressive properties, the IMPDH inhibitor mycophenolate mofetil did not reduce the clinical response of checkpoint inhibitors, representing an important clinical observation given that this class of drugs is approved for use in multiple diseases. We conclude that PD-L1 induction contributes to the immunosuppressive effect of IMPDH inhibitors. Furthermore, the IMPDH inhibitor mycophenolate mofetil does not antagonize immune checkpoint blockade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IMPDH inhibitors upregulate PD-L1 expression on tumor cells.
Fig. 2: Guanosine supplementation abrogates the effect of IMPDH inhibitors on PD-L1 expression.
Fig. 3: IMPDH inhibitors improve CD274 mRNA stability.
Fig. 4: HuR is involved in IMPDH inhibitor-modulated CD274 mRNA stability.
Fig. 5: The antitumor effects of immune checkpoint blockade are not affected by the IMPDH inhibitor.
Fig. 6: Schematic of the effect of IMPDH inhibitors on stabilizing the CD274 mRNA.

Similar content being viewed by others

References

  1. Calise SJ, Abboud G, Kasahara H, Morel L, Chan EKL. Immune response-dependent assembly of IMP dehydrogenase filaments. Front Immunol. 2018;9:2789.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen J, Yang S, Li Y, Ziwen X, Zhang P, Song Q, et al. De novo nucleotide biosynthetic pathway and cancer. Genes Dis. 2023;10:2331–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Pascual J, Sha P, Garcia-Garcia E, Rajeshkumar NV, De Vicente E, Quijano Y, et al. A preclinical and clinical study of mycophenolate mofetil in pancreatic cancer. Invest N Drugs. 2013;31:14–9.

    Article  CAS  Google Scholar 

  4. He X, Cui J, Ma H, Abuduaini N, Huang Y, Tang L, et al. Berberrubine is a novel and selective IMPDH2 inhibitor that impairs the growth of colorectal cancer. Biochem Pharmacol. 2023;218:115868.

    Article  CAS  PubMed  Google Scholar 

  5. Floryk D, Thompson TC. Antiproliferative effects of AVN944, a novel inosine 5-monophosphate dehydrogenase inhibitor, in prostate cancer cells. Int J Cancer. 2008;123:2294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hood KA, Zarembski DG. Mycophenolate mofetil: a unique immunosuppressive agent. Am J Health Syst Pharmacol. 1997;54:285–94.

    Article  CAS  Google Scholar 

  7. Blaheta RA, Leckel K, Wittig B, Zenker D, Oppermann E, Harder S, et al. Inhibition of endothelial receptor expression and of T-cell ligand activity by mycophenolate mofetil. Transpl Immunol. 1998;6:251–9.

    Article  CAS  PubMed  Google Scholar 

  8. Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 2014;88:1351–89.

    Article  CAS  PubMed  Google Scholar 

  9. Beigel JH, Bao Y, Beeler J, Manosuthi W, Slandzicki A, Dar SM, et al. Oseltamivir, amantadine, and ribavirin combination antiviral therapy versus oseltamivir monotherapy for the treatment of influenza: a multicentre, double-blind, randomised phase 2 trial. Lancet Infect Dis. 2017;17:1255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prestipino A, Zeiser R. Clinical implications of tumor-intrinsic mechanisms regulating PD-L1. Sci Transl Med. 2019;11:eaav4810.

    Article  CAS  PubMed  Google Scholar 

  12. Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76:359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang F, Huffman KE, Wang Z, Wang X, Li K, Cai F, et al. Guanosine triphosphate links MYC-dependent metabolic and ribosome programs in small-cell lung cancer. J Clin Invest. 2021;131:e139929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen B, Hu J, Hu X, Chen H, Bao R, Zhou Y, et al. DENR controls JAK2 translation to induce PD-L1 expression for tumor immune evasion. Nat Commun. 2022;13:2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan Z, Wu C, Chen M, Jiang Y, Wu Y, Mao R, et al. The generation of PD-L1 and PD-L2 in cancer cells: from nuclear chromatin reorganization to extracellular presentation. Acta Pharm Sin B. 2022;12:1041–53.

    Article  CAS  PubMed  Google Scholar 

  16. Schoenberg DR, Maquat LE. Regulation of cytoplasmic mRNA decay. Nat Rev Genet. 2012;13:246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vlasova-St Louis I, Bohjanen PR. Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev. 2017;33:83–93.

    Article  CAS  PubMed  Google Scholar 

  18. Yang K, Zhou J, Chen Y, Chen Y, Chen L, Zhang P, et al. Angiotensin II contributes to intratumoral immunosuppressionvia induction of PD-L1 expression in non-small cell lung carcinoma. Int Immunopharmacol. 2020;84:106507.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang W, Pan X, Xu Y, Guo H, Zheng M, Chen X, et al. Mevalonate improves anti-PD-1/PD-L1 efficacy by stabilizing CD274 mRNA. Acta Pharm Sin B. 2023;13:2585–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coelho MA, de Carne Trecesson S, Rana S, Zecchin D, Moore C, Molina-Arcas M, et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity. 2017;47:1083–99. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91–5.

    Article  CAS  PubMed  Google Scholar 

  22. Armstrong VW, Tenderich G, Shipkova M, Parsa A, Koerfer R, Schroder H, et al. Pharmacokinetics and bioavailability of mycophenolic acid after intravenous administration and oral administration of mycophenolate mofetil to heart transplant recipients. Ther Drug Monit. 2005;27:315–21.

    Article  CAS  PubMed  Google Scholar 

  23. Xu H, Ma H, Zha L, Li Q, Yang G, Pan H, et al. IMPDH2 promotes cell proliferation and epithelial-mesenchymal transition of non-small cell lung cancer by activating the Wnt/beta-catenin signaling pathway. Oncol Lett. 2020;20:219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY, Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci USA. 2015;112:E966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Idos GE, Kwok J, Bonthala N, Kysh L, Gruber SB, Qu C. The prognostic implications of tumor infiltrating lymphocytes in colorectal cancer: a systematic review and meta-analysis. Sci Rep. 2020;10:3360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Youn JC, Stehlik J, Wilk AR, Cherikh W, Kim IC, Park GH, et al. Temporal trends of de novo malignancy development after heart transplantation. J Am Coll Cardiol. 2018;71:40–9.

    Article  PubMed  Google Scholar 

  27. Zeier M, Hartschuh W, Wiesel M, Lehnert T, Ritz E. Malignancy after renal transplantation. Am J Kidney Dis. 2002;39:E5.

    Article  PubMed  Google Scholar 

  28. Al-Adra D, Al-Qaoud T, Fowler K, Wong G. De novo malignancies after kidney transplantation. Clin J Am Soc Nephrol. 2022;17:434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marcen R. Immunosuppressive drugs in kidney transplantation: impact on patient survival, and incidence of cardiovascular disease, malignancy and infection. Drugs. 2009;69:2227–43.

    Article  CAS  PubMed  Google Scholar 

  30. Lin JY, Wang J, Mishra K, Osmani S, Rumsey K, Singh PP, et al. Non-melanoma skin cancer in solid organ transplant recipients with skin of color. J Am Acad Dermatol. 2024;90:159–60.

    Article  PubMed  Google Scholar 

  31. Buell JF, Gross TG, Woodle ES. Malignancy after transplantation. Transplantation. 2005;80:S254–64.

    Article  PubMed  Google Scholar 

  32. Dierickx D, Habermann TM. Post-transplantation lymphoproliferative disorders in adults. N Engl J Med. 2018;378:549–62.

    Article  CAS  PubMed  Google Scholar 

  33. Briggs JD. Causes of death after renal transplantation. Nephrol Dial Transpl. 2001;16:1545–9.

    Article  CAS  Google Scholar 

  34. Vegso G, Toth M, Hidvegi M, Toronyi E, Langer RM, Dinya E, et al. Malignancies after renal transplantation during 33 years at a single center. Pathol Oncol Res. 2007;13:63–9.

    Article  PubMed  Google Scholar 

  35. Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11:3801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mullen NJ, Singh PK. Nucleotide metabolism: a pan-cancer metabolic dependency. Nat Rev Cancer. 2023;23:275–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kofuji S, Hirayama A, Eberhardt AO, Kawaguchi R, Sugiura Y, Sampetrean O, et al. IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma. Nat Cell Biol. 2019;21:1003–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Naffouje R, Grover P, Yu H, Sendilnathan A, Wolfe K, Majd N, et al. Anti-tumor potential of IMP dehydrogenase inhibitors: a century-long story. Cancers. 2019;11:1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wawrzyniak JA, Bianchi-Smiraglia A, Bshara W, Mannava S, Ackroyd J, Bagati A, et al. A purine nucleotide biosynthesis enzyme guanosine monophosphate reductase is a suppressor of melanoma invasion. Cell Rep. 2013;5:493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shireman JM, Atashi F, Lee G, Ali ES, Saathoff MR, Park CH, et al. De novo purine biosynthesis is a major driver of chemoresistance in glioblastoma. Brain. 2021;144:1230–46.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Keshet R, Lee JS, Adler L, Iraqi M, Ariav Y, Lim LQJ, et al. Targeting purine synthesis in ASS1-expressing tumors enhances the response to immune checkpoint inhibitors. Nat Cancer. 2020;1:894–908.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82330114 to QJH, and No. 82273949 to LD).

Author information

Authors and Affiliations

Authors

Contributions

MMZ contributed to the design, performed experiments and wrote the manuscript; JYL, HJG, JZ, LSW, KFJ, HHW and QJH contributed to the acquisition of the work, performed the statistical analysis and revised the article; LD and BY contributed to the conception of the work and provided project supervision.

Corresponding authors

Correspondence to Ling Ding or Bo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Mm., Li, Jy., Guo, Hj. et al. IMPDH inhibitors upregulate PD-L1 in cancer cells without impairing immune checkpoint inhibitor efficacy. Acta Pharmacol Sin 46, 1058–1067 (2025). https://doi.org/10.1038/s41401-024-01411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01411-8

Keywords

Search

Quick links