Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

SP600125, a selective JNK inhibitor, is a potent inhibitor of NAD(P)H: quinone oxidoreductase 1 (NQO1)

Abstract

The c-Jun N-terminal kinases (JNKs) has been identified as a critical modulator in multiple cellular processes, including stress stimulus, inflammation, cell proliferation, apoptosis, etc. SP600125 is a widely used ATP-competitive reversible JNKs inhibitor. NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavoprotein mediated two or four electron-reduction of quinones. Here, we showed that SP600125 bind to the active pocket of NQO1 and inhibit NQO1 activity. SP600125 exhibits comparable inhibitory effects on NQO1-mediated quinone bioactivation, H2O2 generation, and cell death, as the specific NQO1 inhibitor dicoumarol (DIC). Importantly, the inhibitory effects of SP600125 on NQO1 are independent of JNKs inhibition. These results suggested that SP600125 is a novel NQO1 inhibitor, which provides new insights into the mechanism of action of SP600125. Furthermore, SP600125 should be used more cautiously as a JNKs inhibitor, especially when NQO1 is highly expressed.

SP600125 competed with β-Lap (NQO1-bioactivated drugs) for binding to NQO1, and inhibited NQO1-dependent cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SP600125 binds and inhibits NQO1.
Fig. 2: SP600125 inhibits β-lap-induced ROS and H2O2 generation.
Fig. 3: SP600125 reverses β-Lap-induced cell membrane rupture and cell death.
Fig. 4: SP600125 inhibits NQO1 independent of JNK1/2 inhibition.
Fig. 5: SP600125 inhibits NQO1 in vivo.

References

  1. Hibi M, Lin A, Smeal T, Minden A, Karin M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 1993;7:2135–48.

    Article  CAS  PubMed  Google Scholar 

  2. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994;369:156–60.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996;15:2760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239–52.

    Article  CAS  PubMed  Google Scholar 

  5. Bubici C, Papa S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014;171:24–37.

    Article  CAS  Google Scholar 

  6. de Los Reyes Corrales T, Losada-Perez M, Casas-Tinto S. JNK pathway in CNS pathologies. Int J Mol Sci. 2021;22:3883.

    Article  Google Scholar 

  7. Feng GT, Yang X, Shuai W, Wang G, Ouyang L. Update on JNK inhibitor patents: 2015 to present. Expert Opin Ther Pat. 2024;34:907–27.

    Article  CAS  PubMed  Google Scholar 

  8. Yan HY, He LF, Lv D, Yang J, Yuan Z. The role of the dysregulated JNK signaling pathway in the pathogenesis of human diseases and its potential therapeutic strategies: a comprehensive review. Biomolecules. 2024;14:243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu QH, Wu WD, Jacevic V, Franca TCC, Wang X, Kuca K. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. J Enzym Inhib Med Chem. 2020;35:574–83.

    Article  CAS  Google Scholar 

  10. Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA. 2001;98:13681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scapin G, Patel SB, Lisnock J, Becker JW, LoGrasso PV. The structure of JNK3 in complex with small molecule inhibitors: structural basis for potency and selectivity. Chem Biol. 2003;10:705–12.

    Article  CAS  PubMed  Google Scholar 

  12. Heo YS, Kim SK, Seo CI, Kim YK, Sung BJ, Lee HS, et al. Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125. EMBO J. 2004;23:2185–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang HY, Hsu HC, Fang YH, Liu PY, Liu YW. Empagliflozin attenuates doxorubicin-induced cardiotoxicity by inhibiting the JNK signaling pathway. Biomed Pharmacother. 2024;176:116759.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Tamimi M, Khan AQ, Anver R, Ahmad F, Mateo JM, Raza SS, et al. Pristimerin mediated anticancer effects and sensitization of human skin cancer cells through modulation of MAPK signaling pathways. Biomed Pharmacother. 2022;156:113950.

    Article  CAS  PubMed  Google Scholar 

  15. Gu L, He X, Zhang YQ, Li SL, Tang J, Ma R, et al. Fluorofenidone protects against acute liver failure in mice by regulating MKK4/JNK pathway. Biomed Pharmacother. 2023;164:114844.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang P, Wang Q, Chen J, Ci Z, Zhang W, Liu Y, et al. Chondrogenic medium in combination with a c-Jun N-terminal kinase inhibitor mediates engineered cartilage regeneration by regulating matrix metabolism and cell proliferation. Regen Biomater. 2023;10:rbad079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt M, Budirahardja Y, Klompmaker R, Medema RH. Ablation of the spindle assembly checkpoint by a compound targeting Mps1. EMBO Rep. 2005;6:866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Joiakim A, Mathieu PA, Palermo C, Gasiewicz TA, Reiners JJ. The Jun N-terminal kinase inhibitor SP600125 is a ligand and antagonist of the aryl hydrocarbon receptor. Drug Metab Dispos. 2003;31:1279–82.

    Article  CAS  PubMed  Google Scholar 

  19. Dvorak Z, Vrzal R, Henklova P, Jancova P, Anzenbacherova E, Maurel P, et al. JNK inhibitor SP600125 is a partial agonist of human aryl hydrocarbon receptor and induces CYP1A1 and CYP1A2 genes in primary human hepatocytes. Biochem Pharmacol. 2008;75:580–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol. 2021;41:101950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bianchet MA, Faig M, Amzel LM. Structure and mechanism of NAD[P]H:quinone acceptor oxidoreductases (NQO). Methods Enzymol. 2004;382:144–74.

    Article  CAS  PubMed  Google Scholar 

  22. Faig M, Bianchet MA, Talalay P, Chen S, Winski S, Ross D, et al. Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Proc Natl Acad Sci USA. 2000;97:3177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oh ET, Park HJ. Implications of NQO1 in cancer therapy. BMB Rep. 2015;48:609–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen LP, Jiang S, Yang Y, Yang HL, Fang YC, Tang M, et al. Pan-cancer and single-cell analysis reveal the prognostic value and immune response of NQO1. Front Cell Dev Biol. 2023;11:1174535.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Oh ET, Kim HG, Kim CH, Lee JH, Kim C, Lee JS, et al. NQO1 regulates cell cycle progression at the G2/M phase. Theranostics. 2023;13:873–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Asher G, Dym O, Tsvetkov P, Adler J, Shaul Y. The crystal structure of NAD(P)H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol. Biochemistry. 2006;45:6372–8.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou YJ, Chen YX, Xuan CY, Li XY, Tan YY, Yang MD, et al. DPP9 regulates NQO1 and ROS to promote resistance to chemotherapy in liver cancer cells. Redox Biol. 2024;75:103292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Z, Mu XW, Yang Q, Luo JJ, Zhao YJ. Hypoxia-responsive nanocarriers for chemotherapy sensitization via dual-mode inhibition of hypoxia-inducible factor-1 alpha. J Colloid Interface Sci. 2022;628:106–15.

    Article  CAS  PubMed  Google Scholar 

  29. Ma N, Zhang MW, Hu JQ, Wei ZT, Zhang SL. Daphnetin induces ferroptosis in ovarian cancer by inhibiting NAD(P)H:Quinone oxidoreductase 1 (NQO1). Phytomedicine. 2024;132:155876.

    Article  CAS  PubMed  Google Scholar 

  30. Luo ZY, Li Q, He S, Liu SQ, Lei R, Kong Q, et al. Berberine sensitizes immune checkpoint blockade therapy in melanoma by NQO1 inhibition and ROS activation. Int Immunopharmacol. 2024;142:113031.

    Article  CAS  PubMed  Google Scholar 

  31. Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR, Girard L, et al. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proc Natl Acad Sci USA. 2007;104:11832–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silvers MA, Deja S, Singh N, Egnatchik RA, Sudderth J, Luo X, et al. The NQO1 bioactivatable drug, beta-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. J Biol Chem. 2017;292:18203–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen YX, Wu RY, Li XY, Cao MR, Yang MD, Fu B, et al. β-Lapachone, an NQO1 bioactivatable drug, prevents lung tumorigenesis in mice. Eur J Pharmacol. 2024;973:176511.

    Article  CAS  PubMed  Google Scholar 

  34. Calahorra J, Blaya-Canovas JL, Castellini-Perez O, Aparicio-Puerta E, Cives-Losada C, Marin JJG, et al. Unlocking the effective alliance of beta-lapachone and hydroxytyrosol against triple-negative breast cancer cells. Biomed Pharmacother. 2024;174:116439.

    Article  CAS  PubMed  Google Scholar 

  35. Qadir MI, Iqbal MS, Khan R. β-lapachone: a promising anticancer agent with a unique NQO1 specific apoptosis in pancreatic cancer. Curr Cancer Drug Targets. 2022;22:537–40.

    Article  CAS  PubMed  Google Scholar 

  36. Froeling FEM, Swamynathan MM, Deschenes A, Chio IIC, Brosnan E, Yao MA, et al. Bioactivation of napabucasin triggers reactive oxygen species-mediated cancer cell death. Clin Cancer Res. 2019;25:7162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang XM, Dong Y, Bey EA, Kilgore JA, Bair JS, Li LS, et al. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Cancer Res. 2012;72:3038–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang LX, Liu YC, Tumbath S, Boudreau MW, Chatkewitz LE, Wang JW, et al. Isopentyl-deoxynboquinone induces mitochondrial dysfunction and G2/M phase cell cycle arrest to selectively kill NQO1-positive pancreatic cancer cells. Antioxid Redox Signal. 2024;41:74–92.

    Article  CAS  PubMed  Google Scholar 

  39. Li YR, Feng MY, Guo T, Wang Z, Zhao YJ. Tailored beta-lapachone nanomedicines for cancer-specific therapy. Adv Health Mater. 2023;12:e2300349.

    Article  Google Scholar 

  40. Yu J, Zhong BL, Jin L, Hou Y, Ai NN, Ge W, et al. 2-Methoxy-6-acetyl-7-methyljuglone (MAM) induced programmed necrosis in glioblastoma by targeting NAD(P)H: Quinone oxidoreductase 1 (NQO1). Free Radic Biol Med. 2020;152:336–47.

    Article  CAS  PubMed  Google Scholar 

  41. Zhong BL, Yu J, Hou Y, Ai NN, Ge W, Lu JJ, et al. A novel strategy for glioblastoma treatment by induction of noptosis, an NQO1-dependent necrosis. Free Radic Biol Med. 2021;166:104–15.

    Article  CAS  PubMed  Google Scholar 

  42. Yu J, Zhong BL, Zhao L, Hou Y, Ai NN, Lu JJ, et al. Fighting drug-resistant lung cancer by induction of NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated ferroptosis. Drug Resist Updat. 2023;70:100977.

    Article  CAS  PubMed  Google Scholar 

  43. Yuhan L, Khaleghi Ghadiri M, Gorji A. Impact of NQO1 dysregulation in CNS disorders. J Transl Med. 2024;22:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo KR, Li J, Jia YD, Yang XJ, Yan XQ, Wu LQ. Design, synthesis, and biological evaluation of quinolinedione-linked sulfonylpiperazine derivatives as NQO1-directed antitumor agents. Bioorg Chem. 2023;132:106385.

    Article  CAS  PubMed  Google Scholar 

  45. Dong YP, Chen SZ, He HS, Sun ZR, Jiang LX, Gu YQ, et al. Skullcapflavone II, a novel NQO1 inhibitor, alleviates aristolochic acid I-induced liver and kidney injury in mice. Acta Pharmacol Sin. 2023;44:1429–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lewis A, Ough M, Li L, Hinkhouse MM, Ritchie JM, Spitz DR, et al. Treatment of pancreatic cancer cells with dicumarol induces cytotoxicity and oxidative stress. Clin Cancer Res. 2004;10:4550–8.

    Article  CAS  PubMed  Google Scholar 

  47. Lei KC, Gu XX, Alvarado AG, Du YH, Luo SL, Ahn EH, et al. Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma. J Hematol Oncol. 2020;13:141.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moon DO, Kim MO, Choi YH, Kim ND, Chang JH, Kim GY. Bcl-2 overexpression attenuates SP600125-induced apoptosis in human leukemia U937 cells. Cancer Lett. 2008;264:316–25.

    Article  CAS  PubMed  Google Scholar 

  49. Mili D, Abid K, Rjiba I, Kenani A. Effect of SP600125 on the mitotic spindle in HeLa cells, leading to mitotic arrest, endoreduplication and apoptosis. Mol Cytogenet. 2016;9:86.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yu HY, Wu CL, Wang XY, Ban QH, Quan CH, Liu MB, et al. SP600125 enhances C-2-induced cell death by the switch from autophagy to apoptosis in bladder cancer cells. J Exp Clin Cancer Res. 2019;38:448.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee H, Park MT, Choi BH, Oh ET, Song MJ, Lee JH, et al. Endoplasmic reticulum stress-induced JNK activation is a critical event leading to mitochondria-mediated cell death caused by β-lapachone treatment. PLoS One. 2011;6:e21533.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Park MT, Song MJ, Oh ET, Lee HM, Choi BH, Jeong SY, et al. The anti-tumour compound, RH1, causes mitochondria-mediated apoptosis by activating c-Jun N-terminal kinase. Br J Pharmacol. 2011;163:567–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Development Fund of Macau SAR (0070/2022/A2, 0081/2021/A2), the Research Fund of University of Macau (MYRG-GRG2023-00072-ICMS-UMDF), and the Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau (SP2023-00001-FSCPO).

Author information

Authors and Affiliations

Authors

Contributions

BLZ and XPC designed the research; BLZ, YFZ, and HYZ performed the research; BLZ analyzed the data; BLZ, XPC, QC and HDL wrote and reviewed the paper.

Corresponding authors

Correspondence to Hua-dong Lu or Xiu-ping Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Bl., Zhang, Yf., Zheng, Hy. et al. SP600125, a selective JNK inhibitor, is a potent inhibitor of NAD(P)H: quinone oxidoreductase 1 (NQO1). Acta Pharmacol Sin 46, 1137–1144 (2025). https://doi.org/10.1038/s41401-024-01418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01418-1

Keywords

Search

Quick links