Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuropeptide-mediated activation of astrocytes improves stress resilience in mice by modulating cortical neural synapses

Abstract

Astrocytes are known to modulate synaptogenesis or neuronal activities, thus participating in mental functions. It has been shown that astrocytes are involved in the antidepressant mechanism. In this study we investigated the potential hormonal mediator governing the astrocyte-neuron interplay for stress-coping behaviors. Mice were subjected to chronic restraint stress (CRS) for 14 days, and then brain tissue was harvested for analyses. We found that the expression of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor PAC1 was significantly decreased in astrocytes of the prelimbic (PrL) cortex. By conducting a combination of genetics, in vivo imaging and behavioral assays we demonstrated that PAC1 in cortical astrocytes was necessary for maintaining normal resilience of mice against chronic environmental stress like restraint stress. Furthermore, we showed the enhancement of de novo cortical spine formation and synaptic activity under PACAP-mediated astrocytic activation possibly via the ATP release. The molecular mechanisms suggested that the vesicle homeostasis mediated by PACAP-PAC1 axis in astrocytes was involved in regulating synaptic functions. This study identifies a previously unrecognized route by which neuropeptide modulates cortical functions via local regulation of astrocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Astrocytic deprivation of PACAP axis induces anxiety-like behaviors.
Fig. 2: PACAP modulates astrocytic structure and calcium transients.
Fig. 3: Astrocytic PAC1 receptor mediates neuronal activity and synaptogenesis.
Fig. 4: PACAP activated astrocytes and spinogenesis in CRS-treated mice.
Fig. 5: PACAP stimulates astrocytic release of ATP.
Fig. 6: ATP or its analogue relieves anxiety-like behaviors induced by astrocytic PAC1 receptor deficiency.
Fig. 7: PACAP modulated cellular vesicle of astrocytes.

Similar content being viewed by others

References

  1. Shi DD, Zhang YD, Ren YY, Peng SY, Yuan TF, Wang Z. Predictable maternal separation confers adult stress resilience via the medial prefrontal cortex oxytocin signaling pathway in rats. Mol Psychiatry. 2021;26:7296–307.

    Article  CAS  PubMed  Google Scholar 

  2. Wang M, Perova Z, Arenkiel BR, Li B. Synaptic modifications in the medial prefrontal cortex in susceptibility and resilience to stress. J Neurosci. 2014;34:7485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Radley JJ, Rocher AB, Rodriguez A, Ehlenberger DB, Dammann M, McEwen BS, et al. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J Comp Neurol. 2008;507:1141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qu Y, Yang C, Ren Q, Ma M, Dong C, Hashimoto K. Regional differences in dendritic spine density confer resilience to chronic social defeat stress. Acta Neuropsychiatr. 2018;30:117–22.

    Article  PubMed  Google Scholar 

  5. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yao W, Cao Q, Luo S, He L, Yang C, Chen J, et al. Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Mol Psychiatry. 2022;27:1618–29.

    Article  CAS  PubMed  Google Scholar 

  7. Allen NJ, Eroglu C. Cell Biology of Astrocyte-Synapse Interactions. Neuron. 2017;96:697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie Y, Kuan AT, Wang W, Herbert ZT, Mosto O, Olukoya O, et al. Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development. Cell Rep. 2022;38:110416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19:773–7.

    Article  CAS  PubMed  Google Scholar 

  10. Du Preez A, Onorato D, Eiben I, Musaelyan K, Egeland M, Zunszain PA, et al. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun. 2021;91:24–47.

    Article  PubMed  Google Scholar 

  11. Re GF, Li H, Yang JQ, Li Y, Zhang Z, Wu X, et al. Exercise modulates central and peripheral inflammatory responses and ameliorates methamphetamine-induced anxiety-like symptoms in mice. Front Mol Neurosci. 2022;15:955799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hughes SM, Lillien LE, Raff MC, Rohrer H, Sendtner M. Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture. Nature. 1988;335:70–3.

    Article  CAS  PubMed  Google Scholar 

  13. Trentin AG, De Aguiar CB, Garcez RC, Alvarez-Silva M. Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: effects on astrocyte adhesion. Glia. 2003;42:359–69.

    Article  PubMed  Google Scholar 

  14. García-Cáceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell. 2016;166:867–80.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Timper K, Del Río-Martín A, Cremer AL, Bremser S, Alber J, Giavalisco P, et al. GLP-1 receptor signaling in astrocytes regulates fatty acid oxidation, mitochondrial integrity, and function. Cell Metab. 2020;31:1189–1205.e1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Müller W, Heinemann U, Berlin K. Cholecystokinin activates CCKB-receptor-mediated Ca-signaling in hippocampal astrocytes. J Neurophysiol. 1997;78:1997–2001.

    Article  PubMed  Google Scholar 

  17. Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology. 2016;65:54–66.

    Article  CAS  PubMed  Google Scholar 

  18. Singh L, Lewis AS, Field MJ, Hughes J, Woodruff GN. Evidence for an involvement of the brain cholecystokinin B receptor in anxiety. Proc Natl Acad Sci USA. 1991;88:1130–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang H, Sun Y, Yau SY, Zhou Y, Song X, Zhang HT, et al. Synergistic effects of two naturally occurring iridoids in eliciting a rapid antidepressant action by up-regulating hippocampal PACAP signalling. Br J Pharmacol. 2022;179:4078–91.

    Article  CAS  PubMed  Google Scholar 

  20. Joo KM, Chung YH, Kim MK, Nam RH, Lee BL, Lee KH, et al. Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol. 2004;476:388–413.

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira JF, Araque A. Astrocyte regulation of neural circuit activity and network states. Glia. 2022;70:1455–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lezmy J. How astrocytic ATP shapes neuronal activity and brain circuits. Curr Opin Neurobiol. 2023;79:102685.

    Article  CAS  PubMed  Google Scholar 

  23. Bonvento G, Bolaños JP. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 2021;33:1546–64.

    Article  CAS  PubMed  Google Scholar 

  24. Wu Z, He K, Chen Y, Li H, Pan S, Li B, et al. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron. 2022;110:770–782.e775.

    Article  CAS  PubMed  Google Scholar 

  25. Lezmy J, Arancibia-Cárcamo IL, Quintela-López T, Sherman DL, Brophy PJ, Attwell D. Astrocyte Ca2+-evoked ATP release regulates myelinated axon excitability and conduction speed. Science. 2021;374:eabh2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ryu JK, Kim J, Choi SH, Oh YJ, Lee YB, Kim SU, et al. ATP-induced in vivo neurotoxicity in the rat striatum via P2 receptors. Neuroreport. 2002;13:1611–5.

    Article  CAS  PubMed  Google Scholar 

  27. Arimura A, Somogyvari-Vigh A, Weill C, Fiore RC, Tatsuno I, Bay V, et al. PACAP functions as a neurotrophic factor. Ann N. Y Acad Sci. 1994;739:228–43.

    Article  CAS  PubMed  Google Scholar 

  28. Shioda S, Ohtaki H, Nakamachi T, Dohi K, Watanabe J, Nakajo S, et al. Pleiotropic functions of PACAP in the CNS: neuroprotection and neurodevelopment. Ann N. Y Acad Sci. 2006;1070:550–60.

    Article  CAS  PubMed  Google Scholar 

  29. Velasco ER, Florido A, Flores Á, Senabre E, Gomez-Gomez A, Torres A, et al. PACAP-PAC1R modulates fear extinction via the ventromedial hypothalamus. Nat Commun. 2022;13:4374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee EY, Chan LC, Wang H, Lieng J, Hung M, Srinivasan Y, et al. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc Natl Acad Sci USA 2021;118:e1917623117.

  31. Le N, Sayers S, Mata-Pacheco V, Wagner EJ. The PACAP paradox: dynamic and surprisingly pleiotropic actions in the central regulation of energy homeostasis. Front Endocrinol (Lausanne). 2022;13:877647.

    Article  PubMed  Google Scholar 

  32. Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470:492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vallejo M. PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis. Mol Neurobiol. 2009;39:90–100.

    Article  CAS  PubMed  Google Scholar 

  34. Perez V, Bouschet T, Fernandez C, Bockaert J, Journot L. Dynamic reorganization of the astrocyte actin cytoskeleton elicited by cAMP and PACAP: a role for phosphatidylInositol 3-kinase inhibition. Eur J Neurosci. 2005;21:26–32.

    Article  PubMed  Google Scholar 

  35. Seo H, Lee K. Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells. BMB Rep. 2016;49:128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blanco-Suárez E, Caldwell AL, Allen NJ. Role of astrocyte-synapse interactions in CNS disorders. J Physiol. 2017;595:1903–16.

    Article  PubMed  Google Scholar 

  37. Aten S, Kiyoshi CM, Arzola EP, Patterson JA, Taylor AT, Du Y, et al. Ultrastructural view of astrocyte arborization, astrocyte-astrocyte and astrocyte-synapse contacts, intracellular vesicle-like structures, and mitochondrial network. Prog Neurobiol. 2022;213:102264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park J, Chung WS. Astrocyte-dependent circuit remodeling by synapse phagocytosis. Curr Opin Neurobiol. 2023;81:102732.

    Article  CAS  PubMed  Google Scholar 

  39. Stogsdill JA, Ramirez J, Liu D, Kim YH, Baldwin KT, Enustun E, et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature. 2017;551:192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cho WH, Noh K, Lee BH, Barcelon E, Jun SB, Park HY, et al. Hippocampal astrocytes modulate anxiety-like behavior. Nat Commun. 2022;13:6536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan L, Wei JA, Yang F, Wang M, Wang S, Cheng T, et al. Physical exercise prevented stress-induced anxiety via improving brain RNA methylation. Adv Sci (Weinh). 2022;9:e2105731.

    Article  PubMed  Google Scholar 

  42. Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun. 2019;10:223.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Striedinger K, Meda P, Scemes E. Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+ oscillations and cell migration. Glia. 2007;55:652–62.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Verderio C, Cagnoli C, Bergami M, Francolini M, Schenk U, Colombo A, et al. TI-VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell. 2012;104:213–28.

    Article  CAS  PubMed  Google Scholar 

  45. Singh P, Jorgačevski J, Kreft M, Grubišić V, Stout RF Jr, Potokar M, et al. Single-vesicle architecture of synaptobrevin2 in astrocytes. Nat Commun. 2014;5:3780.

    Article  CAS  PubMed  Google Scholar 

  46. Takata-Tsuji F, Chounlamountri N, Do LD, Philippot C, Novion Ducassou J, Couté Y, et al. Microglia modulate gliotransmission through the regulation of VAMP2 proteins in astrocytes. Glia. 2021;69:61–72.

    Article  CAS  PubMed  Google Scholar 

  47. Dutta DJ, Woo DH, Lee PR, Pajevic S, Bukalo O, Huffman WC, et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc Natl Acad Sci USA. 2018;115:11832–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schwarz Y, Zhao N, Kirchhoff F, Bruns D. Astrocytes control synaptic strength by two distinct v-SNARE-dependent release pathways. Nat Neurosci. 2017;20:1529–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Xiang-dong Sun for his help in the 2-photon imaging assays. This work was funded by STI2030-Major Projects (2022ZD0207600) to LZ, National Natural Science Foundation of China (U22A20301 to KFS), Guangdong Major Project of Basic and Applied Basic Research (2023B0303000004) to KFS and LZ, Guangdong Basic and Applied Basic Research Foundation (2023B1515040015) to LZ, Guangdong Special Support Program for Young Talented Researchers (2023TQ07A102) to LZ, Guangzhou Basic and Applied Basic Research Foundation (SL2023A03J00544, SL2024A04J00149) to LZ, The Fundamental Research Funds for the Central Universities (21624207) to LZ, and the Key Research and Development Plan of Ningxia (2022BEG01004) to KFS.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JAW, and LZ; Methodology, JAW, JC, XRW, JY, and YFS; Validation, JAW and LZ; Formal analysis, JAW and BRZ; Investigation, JC, XRW, JY, YFS and BRZ.; Resources, JC. and XRW; Data Curation, JAW and LZ; Writing - Original Draft, JAW. and JC; Writing – Review & Editing, LZ and KFS; Visualization, JAW; Supervision, KFS and LZ; Project Administration, LZ; Funding Acquisition, LZ and KFS.

Corresponding authors

Correspondence to Li Zhang or Ji-an Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Wang, Xr., Yu, J. et al. Neuropeptide-mediated activation of astrocytes improves stress resilience in mice by modulating cortical neural synapses. Acta Pharmacol Sin 46, 867–879 (2025). https://doi.org/10.1038/s41401-024-01420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01420-7

Keywords

Search

Quick links