Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of MST1 protects filtration barrier integrity of diabetic kidney disease in mice through restoring the tight junctions of glomerular endothelial cells

Abstract

As a pathological feature of diabetic kidney disease (DKD), dysregulated glomerular filtration barrier function could lead to the increased levels of proteinuria. The integrity of tight junctions (TJs) of glomerular endothelial cells (GECs) is a guarantee of physiological function of glomerular filtration barrier. Mammalian sterile 20-like kinase (MST1) is a key regulatory protein in the blood-brain barrier (BBB), and it regulates the expression of TJs-related proteins in cerebral vascular endothelial cells. Our previous study showed that MST1 was involved in renal tubulointerstitial fibrosis of DKD. In the present study we investigated the role of MST1 in barrier function of GECs of DKD, and explored its regulatory mechanisms. In kidney tissue section of DKD patients and db/db mice, and high glucose (HG)-cultured mouse glomerular endothelial cells (mGECs), we showed that MST1 was inactivated in the GECs of DKD accompanied by disrupted glomerular endothelial barrier. In db/db mice and HG-cultured mGECs, knockdown of MST1 increased proteinuria levels, and disrupted glomerular endothelial barrier through decreasing TJs-related proteins, whereas MST1 overexpression restored glomerular endothelial barrier through regaining TJs-related proteins. In db/db mice and HG-cultured mGECs, we demonstrated that MST1 inhibition induced TJs’s disruption of GECs via activating YAP1/TEAD signaling. Verteporfin (an inhibitor of YAP1-TEAD interaction) and PY-60 (a YAP1 agonist) were used to verify the role of YAP1/TEAD signaling in the regulation effect of MST1 on barrier function of mGECs. In conclusion, MST1 activation recovers glomerular endothelial barrier of DKD by regaining TJs-related proteins via inhibiting YAP1/TEAD signaling. This study highlights the multiple regulation of MST1 activation on kidney injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MST1 activation was significantly decreased in the GECs of humans with DKD and db/db mice.
Fig. 2: Phosphorylated MST1 was significantly decreased in HG-cultured mGECs.
Fig. 3: Effect of MST1 knockdown on the glomerular endothelial barrier of normal mice and NG-cultured mGECs.
Fig. 4: Effect of MST1 overexpression on the glomerular endothelial barrier in vivo and in vitro.
Fig. 5: Effect of HG on YAP1/TEAD signaling pathway in vitro.
Fig. 6: Effects of MST1 on YAP1/TEAD signaling pathway in mGECs.
Fig. 7: MST1 regulated glomerular endothelial barrier via YAP1/TEAD signaling pathway in mGECs.
Fig. 8: Target and molecular mechanism by MST1 in GECs improving filtration barrier integrity of DKD.

Similar content being viewed by others

Data availability

Data and materials are available upon request to the corresponding author.

References

  1. Sawaf H, Thomas G, Taliercio JJ, Nakhoul G, Vachharajani TJ, Mehdi A. Therapeutic advances in diabetic nephropathy. J Clin Med. 2022;11:378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. John S. Complication in diabetic nephropathy. Diabetes Metab Syndrome Clin Res Rev. 2016;10:247–9.

    Article  Google Scholar 

  3. Yang T, Hu Y, Jiang W, Pang J, Zhou Y, Zhang H, et al. YY1 was indispensable for the alleviation of quercetin on diabetic nephropathy-associated tubulointerstitial inflammation. Phytomedicine. 2023;111:154659.

    Article  CAS  PubMed  Google Scholar 

  4. Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022;102:248–60.

    Article  CAS  PubMed  Google Scholar 

  5. Naylor RW, Morais MRPT, Lennon R. Complexities of the glomerular basement membrane. Nat Rev Nephrol. 2021;17:112–27.

    Article  CAS  PubMed  Google Scholar 

  6. Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol. 2020;16:317–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mohinder SJ, Vincent HG, John HW. Ultrastructural study of the kidney in the coelacanth latimeria chalumnae (Rhipidistia: Coelacanthini). Zool Sci. 2014;31:283–91.

    Article  Google Scholar 

  8. Wiggenhauser LM, Metzger L, Bennewitz K, Soleymani S, Boger M, Tabler CT, et al. pdx1 Knockout leads to a diabetic nephropathy– like phenotype in zebrafish and identifies phosphatidylethanolamine as metabolite promoting early diabetic kidney damage. Diabetes. 2022;71:1073–80.

    Article  CAS  PubMed  Google Scholar 

  9. Zakiyanov O, Kalousová M, Zima T, Tesař V. Chapter Four - Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in kidney disease. In: Makowski GS, Editor Advances in Clinical Chemistry. (Elsevier, 2021), 105, p 141-212.

  10. Al-Sadi R, Ye D, Boivin M, Guo S, Hashimi M, Ereifej L, et al. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One. 2014;9:e85345.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xu T, Dong Z, Wang X, Qi S, Li X, Cheng R, et al. IL-1β induces increased tight junction permeability in bovine mammary epithelial cells via the IL-1β-ERK1/2-MLCK axis upon blood-milk barrier damage. J Cell Biochem. 2018;119:9028–41.

    Article  CAS  PubMed  Google Scholar 

  12. Kurihara H, Anderson JM, Farquhar MG. Diversity among tight junctions in rat kidney: glomerular slit diaphragms and endothelial junctions express only one isoform of the tight junction protein ZO-1. Proc Natl Acad Sci USA. 1992;89:7075–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu C, Wu X, Hack BK, Bao L, Cunningham PN. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism. Physiol Rep. 2015;3:e12636.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xu G, Qin Q, Yang M, Qiao Z, Gu Y, Niu J. Heparanase-driven inflammation from the AGEs-stimulated macrophages changes the functions of glomerular endothelial cells. Diabetes Res Clin Pract. 2017;124:30–40.

    Article  CAS  PubMed  Google Scholar 

  15. Sun W, Gao Y, Ding Y, Cao Y, Chen J, Lv G, et al. Catalpol ameliorates advanced glycation end product-induced dysfunction of glomerular endothelial cells via regulating nitric oxide synthesis by inducible nitric oxide synthase and endothelial nitric oxide synthase. IUBMB Life. 2019;71:1268–83.

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Zhao X, Feng T, Jin G, Li Z. Rutin prevents high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the ROS/Rhoa/ROCK signaling pathway. Planta Med. 2016;82:1252–7.

    Article  CAS  PubMed  Google Scholar 

  17. Yin Q, Xia Y, Wang G. Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway. Biochem Biophys Res Commun. 2016;477:881–6.

    Article  CAS  PubMed  Google Scholar 

  18. Yang YY, Chen Z, Yang XD, Deng RR, Shi LX, Yao LY, et al. Piperazine ferulate prevents high-glucose-induced filtration barrier injury of glomerular endothelial cells. Exp Ther Med. 2021;22:1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Wang J. Sinomenine alleviates glomerular endothelial permeability by activating the C/EBP-α/claudin-5 signaling pathway. Hum Cell. 2022;35:1453–63.

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Li MH, Zhao YY, Xie YL, Yu X, Chen YJ, et al. LncRNA H19 deficiency protects against the structural damage of glomerular endothelium in diabetic nephropathy via Akt/eNOS pathway. Arch Physiol Biochem. 2024;130:401–10.

  21. Xu L, Shao F. Sitagliptin protects renal glomerular endothelial cells against high glucose-induced dysfunction and injury. Bioengineered. 2022;13:655–66.

    Article  CAS  PubMed  Google Scholar 

  22. Hara T, Ishida T, Cangara HM, Hirata K. Endothelial cell-selective adhesion molecule regulates albuminuria in diabetic nephropathy. Microvasc Res. 2009;77:348–55.

    Article  CAS  PubMed  Google Scholar 

  23. Lin J, Zhang L, Zhang M, Hu J, Wang T, Duan Y, et al. Mst1 inhibits CMECs autophagy and participates in the development of diabetic coronary microvascular dysfunction. Sci Rep. 2016;6:34199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim YH, Choi J, Yang MJ, Hong SP, Lee CK, Kubota Y, et al. A MST1-FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis. Nat Commun. 2019;10:838.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qin R, Lin D, Zhang L, Xiao F, Guo L. Mst1 deletion reduces hyperglycemia-mediated vascular dysfunction via attenuating mitochondrial fission and modulating the JNK signaling pathway. J Cell Physiol. 2020;235:294–303.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang P, Wang T, Zhang D, Zhang Z, Yuan S, Zhang J, et al. Exploration of MST1-mediated secondary brain injury induced by intracerebral hemorrhage in rats via hippo signaling pathway. Transl Stroke Res. 2019;10:729–43.

    Article  CAS  PubMed  Google Scholar 

  27. Qu J, Zhao H, Li Q, Pan P, Ma K, Liu X, et al. MST1 suppression reduces early brain injury by inhibiting the NF-κB/MMP-9 pathway after subarachnoid hemorrhage in mice. Behav Neurol. 2018;2018:6470957.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xu X, Zhang C, Jiang J, Xin M, Hao J. Effect of TDP43-CTFs35 on brain endothelial cell functions in cerebral ischemic injury. Mol Neurobiol. 2022;59:4593–611.

    Article  CAS  PubMed  Google Scholar 

  29. Qian X, He L, Hao M, Li Y, Li X, Liu Y, et al. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy. Acta Diabetol. 2021;58:47–62.

    Article  CAS  PubMed  Google Scholar 

  30. Lei D, Chengcheng L, Xuan Q, Yibing C, Lei W, Hao Y, et al. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol Res. 2019;146:104320.

    Article  CAS  PubMed  Google Scholar 

  31. Yang T, Heng C, Zhou Y, Hu Y, Chen S, Wang H, et al. Targeting mammalian serine/threonine-protein kinase 4 through Yes-associated protein/TEA domain transcription factor-mediated epithelial-mesenchymal transition ameliorates diabetic nephropathy orchestrated renal fibrosis. Metabolism. 2020;108:154258.

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Liu B, Zhao T, Quan X, Han Y, Cheng Y, et al. Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J Nanobiotechnol. 2023;21:70.

    Article  CAS  Google Scholar 

  33. Liu YY, Li L, Ji B, Hao SL, Kuang XF, Cao XY, et al. Jujuboside A ameliorates tubulointerstitial fibrosis in diabetic mice through down-regulating the YY1/TGF-β1 signaling pathway. Chin J Nat Med. 2022;20:656–68.

    CAS  PubMed  Google Scholar 

  34. Yang T, Hu Y, Chen S, Li L, Cao X, Yuan J, et al. Correction to: YY1 inactivated transcription co-regulator PGC-1α to promote mitochondrial dysfunction of early diabetic nephropathy-associated tubulointerstitial fibrosis. Cell Biol Toxicol. 2023;39:2787–92.

    Article  CAS  PubMed  Google Scholar 

  35. Yang T, Wang Y, Cao X, Peng Y, Huang J, Chen L, et al. Targeting mTOR/YY1 signaling pathway by quercetin through CYP7A1-mediated cholesterol-to-bile acids conversion alleviated type 2 diabetes mellitus induced hepatic lipid accumulation. Phytomed Int J Phytother Phytopharmacol. 2023;113:154703.

    CAS  Google Scholar 

  36. Zhang XL, Du WH, Qian SX, Lu XD, Yu X, Fang HL, et al. Glial growth factor 2 treatment alleviates ischemia and reperfusion-damaged integrity of the blood-brain barrier through decreasing Mfsd2a/caveolin-1-mediated transcellular and Pdlim5/YAP/TAZ-mediated paracellular permeability. Acta Pharmacol Sin. 2024;45:2241–52.

  37. Ye B, Chen B, Guo C, Xiong N, Huang Y, Li M, et al. C5a-C5aR1 axis controls mitochondrial fission to promote podocyte injury in lupus nephritis. Mol Ther. 2024;32:1540–60.

    Article  CAS  PubMed  Google Scholar 

  38. Kim SY, Choi YY, Kwon EJ, Seo S, Kim WY, Park SH, et al. Characterizing glomerular barrier dysfunction with patient-derived serum in glomerulus-on-a-chip models: unveiling new insights into glomerulonephritis. Int J Mol Sci. 2024;25:5121.

  39. Guo F, Wang W, Song Y, Wu L, Wang J, Zhao Y, et al. LncRNA SNHG17 knockdown promotes Parkin-dependent mitophagy and reduces apoptosis of podocytes through Mst1. Cell Cycle. 2020;19:1997–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Han X, Hong Q, Peng F, Zhang Y, Wu L, Wang X, et al. Hippo pathway activated by circulating reactive oxygen species mediates cardiac diastolic dysfunction after acute kidney injury. Biochim Biophys Acta Mol Basis Dis. 2024;1870:167184.

    Article  CAS  PubMed  Google Scholar 

  41. Cao Y, Sun H, Li X, Pommer W, Xiong Y, Chen X, et al. GSK343 modulates macrophage M2 polarization through the EZH2/MST1/YAP1 signaling axis to mitigate neurological damage induced by hypercalcemia in CKD mice. Cell Signal. 2024;116:111063.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Wang Y, Xu C, Zhang Y, Wang Y, Qin J, et al. Activation of the YAP/KLF5 transcriptional cascade in renal tubular cells aggravates kidney injury. Mol Ther. 2024;32:1526–39.

    Article  CAS  PubMed  Google Scholar 

  43. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261–74.

    Article  CAS  PubMed  Google Scholar 

  44. Wu W, Zhang M, Ou S, Liu X, Xue L, Liu J, et al. Early protective role of MST1 knockdown in response to experimental diabetic nephropathy. Am J Transl Res. 2016;8:1397–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao G, Tang Y, Liu X, Li P, Zhang T, Li N, et al. Pasteurella multocida activates Rassf1-Hippo-Yap pathway to induce pulmonary epithelial apoptosis. Vet Res. 2024;55:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang T, Li L, Heng C, Sha P, Wang Y, Shen J, et al. Sodium butyrate ameliorated diabetic nephropathy-associated tubulointerstitial inflammation by modulating the tight junctions of renal tubular epithelial cells. Food Funct. 2024;15:2628–44.

    Article  CAS  PubMed  Google Scholar 

  47. Yang T, Hu Y, Chen S, Li L, Cao X, Yuan J, et al. YY1 inactivated transcription co-regulator PGC-1α to promote mitochondrial dysfunction of early diabetic nephropathy-associated tubulointerstitial fibrosis. Cell Biol Toxicol. 2023;39:391–413.

    Article  CAS  PubMed  Google Scholar 

  48. Yang T, Shu F, Yang H, Heng C, Zhou Y, Chen Y, et al. YY1: A novel therapeutic target for diabetic nephropathy orchestrated renal fibrosis. Metabolism. 2019;96:33–45.

    Article  CAS  PubMed  Google Scholar 

  49. Li M, Deng L, Xu G. METTL14 promotes glomerular endothelial cell injury and diabetic nephropathy via m6A modification of α-klotho. Mol Med. 2021;27:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hoshiyama M, Li B, Yao J, Harada T, Morioka T, Oite T. Effect of high glucose on nitric oxide production and endothelial nitric oxide synthase protein expression in human glomerular endothelial cells. Nephron Exp Nephrol. 2003;95:e62–8.

    Article  CAS  PubMed  Google Scholar 

  51. Chen Z, Wang Z, Hu Y, Lin H, Yin L, Kong J, et al. ELABELA/APJ axis prevents diabetic glomerular endothelial injury by regulating AMPK/NLRP3 pathway. Inflammation. 2023;46:2343–58.

    Article  CAS  PubMed  Google Scholar 

  52. Seo G, McKinley J, Wang W. MAP4K2 connects the Hippo pathway to autophagy in response to energy stress. Autophagy. 2024;20:704–6.

    Article  CAS  PubMed  Google Scholar 

  53. Jung O, Baek MJ, Wooldrik C, Johnson KR, Fisher KW, Lou J, et al. Nuclear phosphoinositide signaling promotes YAP/TAZ-TEAD transcriptional activity in breast cancer. Embo J. 2024;43:1740–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen J, Wang X, He Q, Yang HC, Fogo AB, Harris RC. Inhibition of transcriptional coactivator YAP impairs the expression and function of transcription factor WT1 in diabetic podocyte injury. Kidney Int. 2024;105:1200–11.

    Article  CAS  PubMed  Google Scholar 

  55. Claude-Taupin A, Terzi F, Codogno P, Dupont N. Yapping at the autophagy door? The answer is flowing in the kidney proximal tubule. Autophagy. 2024;20:1465–6.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pagliari S, Vinarsky V, Martino F, Perestrelo AR, Oliver De La Cruz J, Caluori G, et al. YAP-TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell Death Differ. 2021;28:1193–207.

    Article  CAS  PubMed  Google Scholar 

  57. Moleirinho S, Hoxha S, Mandati V, Curtale G, Troutman S, Ehmer U, et al. Regulation of localization and function of the transcriptional co-activator YAP by angiomotin. eLife. 2017;6:e23966.

  58. Kim SY, Park SY, Jang HS, Park YD, Kee SH. Yes-associated protein is required for ZO-1-mediated tight-junction integrity and cell migration in E-cadherin-restored AGS gastric cancer cells. Biomedicines. 2021;9:1264.

  59. Goswami S, Balasubramanian I, D’Agostino L, Bandyopadhyay S, Patel R, Avasthi S, et al. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem. 2021;297:100848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Uemura S, Yamashita M, Aoyama K, Yokomizo-Nakano T, Oshima M, Nishio M, et al. YAP1/TAZ activity maintains vascular integrity and organismal survival. Biochem Biophys Res Commun. 2022;619:117–23.

    Article  CAS  PubMed  Google Scholar 

  61. Riz I, Hawley RG. Increased expression of the tight junction protein TJP1/ZO-1 is associated with upregulation of TAZ-TEAD activity and an adult tissue stem cell signature in carfilzomib-resistant multiple myeloma cells and high-risk multiple myeloma patients. Oncoscience. 2017;4:79–94.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jiang X, Shu L, Liu Y, Shen Y, Ke X, Liu J, et al. YES-associated protein-regulated Smad7 worsen epithelial barrier injury of chronic sinusitis with nasal polyps. Immun Inflamm Dis. 2023;11:e907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ji X, Li Y, Liu M, Chen L, Zhang X, Wang M, et al. Diesel exhaust exposure induced squamous metaplasia of corneal epithelium via yes-associated protein activation. Chemosphere. 2024;362:142564.

    Article  CAS  PubMed  Google Scholar 

  64. Chen J, Wang X, He Q, Bulus N, Fogo AB, Zhang MZ, et al. YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis. Diabetes. 2020;69:2446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gong S, Ma H, Zheng F, Huang J, Zhang Y, Yu B, et al. Inhibiting YAP in endothelial cells from entering the nucleus attenuates blood-brain barrier damage during ischemia-reperfusion injury. Front Pharm. 2021;12:777680.

    Article  CAS  Google Scholar 

  66. Cao Z, Xu T, Tong X, Wang Y, Zhang D, Gao D, et al. Maternal yes-associated protein participates in porcine blastocyst development via modulation of trophectoderm epithelium barrier function. Cells. 2019;8:1606.

  67. Zhong L, Meng X, Huang J, Hao W, Zuo Y. Expression of YAP suppresses cell proliferation and elevates the sensitivity of chemotherapy in retinoblastoma cells through lipid-peroxidation induced ferroptosis. Chin Clin Oncol. 2023;12:52.

    Article  PubMed  Google Scholar 

  68. Grzelak EM, Elshan N, Shao S, Bulos ML, Joseph SB, Chatterjee AK, et al. Pharmacological YAP activation promotes regenerative repair of cutaneous wounds. Proc Natl Acad Sci USA. 2023;120:e2305085120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shalhout SZ, Yang PY, Grzelak EM, Nutsch K, Shao S, Zambaldo C, et al. YAP-dependent proliferation by a small molecule targeting annexin A2. Nat Chem Biol. 2021;17:767–75.

    Article  CAS  PubMed  Google Scholar 

  70. Habshi T, Shelke V, Kale A, Lech M, Gaikwad AB. Hippo signaling in acute kidney injury to chronic kidney disease transition: Current understandings and future targets. Drug Discov Today. 2023;28:103649.

    Article  CAS  PubMed  Google Scholar 

  71. Choi S, Hong SP, Bae JH, Suh SH, Bae H, Kang KP, et al. Hyperactivation of YAP/TAZ drives alterations in mesangial cells through stabilization of N-Myc in diabetic nephropathy. J Am Soc Nephrol. 2023;34:809–28.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kuo WT, Odenwald MA, Turner JR, Zuo L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann N Y Acad Sci. 2022;1514:21–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Imafuku K, Iwata H, Natsuga K, Okumura M, Kobayashi Y, Kitahata H, et al. Zonula occludens-1 distribution and barrier functions are affected by epithelial proliferation and turnover rates. Cell Prolif. 2023;56:e13441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ardestani A, Lupse B, Maedler K. Hippo signaling: key emerging pathway in cellular and whole-body metabolism. Trends Endocrinol Metab. 2018;29:492–509.

    Article  CAS  PubMed  Google Scholar 

  75. Angelis V, Johnston SRD, Ardestani A, Maedler K. Case report: neratinib therapy improves glycemic control in a patient with type 2 diabetes and breast cancer. Front Endocrinol. 2022;13:830097.

    Article  Google Scholar 

  76. Ardestani A, Maedler K. MST1 deletion protects β-cells in a mouse model of diabetes. Nutr Diabetes. 2022;12:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu Y, Qi Z, Wang B, Wang J, Liu Q, Wang A, et al. Discovery of IHMT-MST1-58 as a novel, potent, and selective MST1 inhibitor for the treatment of type 1/2 diabetes. J Med Chem. 2022;65:11818–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (82073906, 82104258, 82273987 and 82473983), the Natural Science Foundation of Jiangsu Province (BK20241957 and BK20241958), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the initializing Fund of Xuzhou Medical University (D2018011), and Postgraduate Research Practice Innovation Program of Jiangsu Province (KYCX23-2967 and KYCX24-3118). We sincerely thank Dr. Fu-xing Dong from the Public Experimental Research Center in Xuzhou Medical University for his enthusiastic help in the experiment of laser scanning confocal microscopy.

Author information

Authors and Affiliations

Authors

Contributions

The pre-clinical experiments of this work were designed by XXY, QL and TTY, and were performed by YL, LL and YTS. The clinical experiments were designed by JJL and TW, and were performed by YL. YL, LL, YTS and DDP analyzed the data, edited of the figures and tables. MY and CH supplied reagent or helped in treatments to animals and cells. BJL, XZ, ZZJ and STQ helped with article structural configuration. TTY, YL and YTS wrote the manuscript. TTY, XXY, JJL and QL reviewed the manuscript.

Corresponding authors

Correspondence to Jun-jie Liu, Qian Lu or Xiao-xing Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement

All animal investigations were approved by the Laboratory Animal Ethics Committee of Xuzhou Medical University and adhered to ethical standards outlined in Guide for Care and Use of Laboratory Animals from National Institutes of Health.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Tt., Liu, Y., Shao, Yt. et al. Activation of MST1 protects filtration barrier integrity of diabetic kidney disease in mice through restoring the tight junctions of glomerular endothelial cells. Acta Pharmacol Sin 46, 1345–1360 (2025). https://doi.org/10.1038/s41401-024-01421-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01421-6

Keywords

Search

Quick links