Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AlphaFold3 versus experimental structures: assessment of the accuracy in ligand-bound G protein-coupled receptors

Abstract

G protein-coupled receptors (GPCRs) are critical drug targets involved in numerous physiological processes, yet many of their structures remain unresolved due to inherent flexibility and diverse ligand interactions. This study systematically evaluates the accuracy of AlphaFold3-predicted GPCR structures compared to experimentally determined structures, with a primary focus on ligand-bound states. Our analysis reveals that while AlphaFold3 shows improved performance over AlphaFold2 in predicting overall GPCR backbone architecture, significant discrepancies persist in ligand-binding poses, particularly for ions, peptides, and proteins. Despite advancements, these limitations constrain the utility of AlphaFold3 models in functional studies and structure-based drug design, where high-resolution details of ligand interactions are crucial. We assess the accuracy of predicted structures across various ligand types, quantifying deviations in binding pocket geometries and ligand orientations. Our findings highlight specific challenges in the computational prediction of ligand-bound GPCR structures, emphasizing areas where further refinement is needed. This study provides valuable insights for researchers using AlphaFold3 in GPCR studies, underscores the ongoing necessity for experimental structure determination, and offers direction for improving protein–ligand interaction predictions in future computational models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global comparison of AF3-predicted models and experimental GPCR structures.
Fig. 2: Comparative analysis of AF3 predictions and experimental structures for GPCR-peptide complexes.
Fig. 3: Comparative analysis of AF3 predictions and experimental structures for GPCR-ion or protein complexes.
Fig. 4: Comparative analysis of AF3 predictions and experimental structures for GPCR-antibody complexes.
Fig. 5: Comparative analysis of AF3 predictions and experimental structures for GPCR-G protein complexes.
Fig. 6: Flexible domain prediction by AF3.
Fig. 7: Multidisciplinary approaches to enhance AF3 predictions.

Similar content being viewed by others

References

  1. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–d44.

    CAS  PubMed  Google Scholar 

  3. Yang Z, Zeng X, Zhao Y, Chen R. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct Target Ther 2023;8:115.

    PubMed  PubMed Central  Google Scholar 

  4. Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. He XH, You CZ, Jiang HL, Jiang Y, Xu HE, Cheng X. AlphaFold2 versus experimental structures: evaluation on G protein-coupled receptors. Acta Pharmacol Sin. 2023;44:1–7.

    CAS  PubMed  Google Scholar 

  6. Duan J, He XH, Li SJ, Xu HE. Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol. 2024;20:349–65.

    CAS  PubMed  Google Scholar 

  7. Suno R. Exploring diverse signaling mechanisms of G protein-coupled receptors through structural biology. J Biochem. 2024;175:357–65.

    PubMed  Google Scholar 

  8. Lu S, He X, Yang Z, Chai Z, Zhou S, Wang J, et al. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun. 2021;12:4721.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo L, Zhang Y, Fang G, Tie L, Zhuang Y, Xue C, et al. Ligand recognition and G protein coupling of the human itch receptor MRGPRX1. Nat Commun. 2023;14:5004.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Betke KM, Wells CA, Hamm HE. GPCR mediated regulation of synaptic transmission. Prog Neurobiol. 2012;96:304–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. He X, Duan J, Ji Y, Zhao L, Jiang H, Jiang Y, et al. Hinge region mediates signal transmission of luteinizing hormone and chorionic gonadotropin receptor. Comput Struct Biotechnol J. 2022;20:6503–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Duan J, Xu P, Luan X, Ji Y, He X, Song N, et al. Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature. 2022;609:854–9.

    CAS  PubMed  Google Scholar 

  13. Liu H, Zhang Q, He X, Jiang M, Wang S, Yan X, et al. Structural insights into ligand recognition and activation of the medium-chain fatty acid-sensing receptor GPR84. Nat Commun. 2023;14:3271.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther. 2024;9:88.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Latorraca NR, Venkatakrishnan AJ, Dror RO. GPCR dynamics: structures in motion. Chem Rev. 2017;117:139–55.

    CAS  PubMed  Google Scholar 

  17. Liu H, Guo S, Dai A, Xu P, Li X, Huang S, et al. Structural and functional evidence that GPR30 is not a direct estrogen receptor. Cell Res. 2024;34:530–3.

    PubMed  Google Scholar 

  18. Zhuang Y, Wang Y, He B, He X, Zhou XE, Guo S, et al. Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell. 2022;185:4361–75. e19.

    CAS  PubMed  Google Scholar 

  19. He X, Huang N, Qiu Y, Zhang J, Liu Y, Yin XL, et al. Conformational selection mechanism provides structural insights into the optimization of APC-Asef inhibitors. Molecules. 2021;26:962.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pándy-Szekeres G, Caroli J, Mamyrbekov A, Kermani AA, Keserű GM, Kooistra AJ, et al. GPCRdb in 2023: state-specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Res. 2023;51:D395–d402.

    PubMed  Google Scholar 

  21. Shimada I, Ueda T, Kofuku Y, Eddy MT, Wüthrich K. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov. 2019;18:59–82.

    CAS  PubMed  Google Scholar 

  22. Fan W, Xu Y, He X, Luo P, Zhu J, Li J, et al. Molecular basis for the activation of PAF receptor by PAF. Cell Rep. 2024;43:114422.

    CAS  PubMed  Google Scholar 

  23. Shen S, Wang D, Liu H, He X, Cao Y, Chen J, et al. Structural basis for hormone recognition and distinctive Gq protein coupling by the kisspeptin receptor. Cell Rep. 2024;43:114389.

    CAS  PubMed  Google Scholar 

  24. He X, Ni D, Lu S, Zhang J. Characteristics of allosteric proteins, sites, and modulators. Adv Exp Med Biol. 2019;1163:107–39.

    CAS  PubMed  Google Scholar 

  25. Ciancetta A, Jacobson KA. Breakthrough in GPCR crystallography and its impact on computer-aided drug design. Methods Mol Biol. 2018;1705:45–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Duan J, Liu H, Zhao F, Yuan Q, Ji Y, Cai X, et al. GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature. 2023;620:676–81.

    CAS  PubMed  Google Scholar 

  27. Mafi A, Kim SK, Goddard WA 3rd. The mechanism for ligand activation of the GPCR-G protein complex. Proc Natl Acad Sci USA. 2022;119:e2110085119.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Corso G, Stärk H, Jing B, Barzilay R, Jaakkola T. Diffdock: diffusion steps, twists, and turns for molecular docking. In: International Conference on Learning Representations. Kigali, Rwanda: Machine Learning for Sciences; 2023.

  29. Su M, Yang Q, Du Y, Feng G, Liu Z, Li Y, et al. Comparative assessment of scoring functions: the CASF-2016 update. J Chem Inf Model. 2019;59:895–913.

    CAS  PubMed  Google Scholar 

  30. Goetz L, Seedat N, Vandersluis R, van der Schaar M. Generalization—a key challenge for responsible AI in patient-facing clinical applications. npj Digit Med. 2024;7:126.

    PubMed  PubMed Central  Google Scholar 

  31. Huisman M, Hannink G. The AI generalization gap: one size does not fit all. Radiol Artif Intell. 2023;5:e230246.

    PubMed  PubMed Central  Google Scholar 

  32. Chakravarty D, Schafer JW, Chen EA, Thole JF, Ronish LA, Lee M, et al. AlphaFold predictions of fold-switched conformations are driven by structure memorization. Nat Commun. 2024;15:7296.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jing B, Berger B, Jaakkola T. AlphaFold meets flow matching for generating protein ensembles. In: International Conference on Machine Learning. Vienna, Austria; 2024.

  34. Li S, Li M, Wang Y, He X, Zheng N, Zhang J, et al. Improving AlphaFlow for efficient protein ensembles generation. In: International Conference on Machine Learning AI for Science workshop, Vienna, Austria; 2024.

  35. Wang T, He X, Li M, Li Y, Bi R, Wang Y, et al. Ab initio characterization of protein molecular dynamics with AI2BMD. Nature 2024. https://doi.org/10.1038/s41586-024-08127-z.

  36. DeVore K, Chiu PL. Probing structural perturbation of biomolecules by extracting Cryo-EM data heterogeneity. Biomolecules. 2022;12:628.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao LH, Ma S, Sutkeviciute I, Shen DD, Zhou XE, de Waal PW, et al. Structure and dynamics of the active human parathyroid hormone receptor-1. Science. 2019;364:148–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Roy R, Al-Hashimi HM. AlphaFold3 takes a step toward decoding molecular behavior and biological computation. Nat Struct Mol Biol. 2024;31:997–1000.

    CAS  PubMed  Google Scholar 

  39. Ren F, Ding X, Zheng M, Korzinkin M, Cai X, Zhu W, et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chem Sci. 2023;14:1443–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Borkakoti N, Thornton JM. AlphaFold2 protein structure prediction: Implications for drug discovery. Curr Opin Struct Biol. 2023;78:102526.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Francoeur PG, Masuda T, Sunseri J, Jia A, Iovanisci RB, Snyder I, et al. Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design. J Chem Inf Model. 2020;60:4200–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Corso G, Deng A, Fry B, Polizzi N, Barzilay R, Jaakkola T. Deep confident steps to new pockets: strategies for docking generalization. In: International Conference on Learning Representations. Vienna Austria; 2024.

  43. Hayes T, Rao R, Akin H, Sofroniew NJ, Oktay D, Lin Z, et al. Simulating 500 million years of evolution with a language model. bioRxiv 2024. https://doi.org/10.1101/2024.07.01.600583.

  44. Fang Y, Zhang Q, Zhang N, Chen Z, Zhuang X, Shao X, et al. Knowledge graph-enhanced molecular contrastive learning with functional prompt. Nat Mach Intell. 2023;5:542–53.

    Google Scholar 

Download references

Acknowledgements

The project was supported by the National Key R&D Program of China (2022YFC2703105 to HEX); The National Natural Science Foundation of China (32130022, 82121005); CAS Strategic Priority Research Program (XDB37030103 to HEX); Shanghai Municipal Science and Technology Major Project (2019SHZDZX02 to HEX); Shanghai Municipal Science and Technology Major Project (HEX); the Lingang Laboratory, Grant No. LG-GG-202204-01 (HEX). The authors acknowledge the Beijing Super Cloud Center (BSCC) for providing HPC resources that have contributed to the research results reported within this paper. URL: http://www.blsc.cn/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Eric Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Xh., Li, Jr., Shen, Sy. et al. AlphaFold3 versus experimental structures: assessment of the accuracy in ligand-bound G protein-coupled receptors. Acta Pharmacol Sin 46, 1111–1122 (2025). https://doi.org/10.1038/s41401-024-01429-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01429-y

Keywords

This article is cited by

Search

Quick links