Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compound 38, a novel potent and selective antagonist of adenosine A2A receptor, enhances arousal in mice

Abstract

Adenosine A2A receptor (A2AR) plays a pivotal role in the regulation of sleep-wake behaviors. We previously reported an A2AR selective antagonist compound 38 with an IC50 value of 29.0 nM. In this study, we investigated its effect on sleep-wake regulation in mice. Wild-type (WT) mice were administered compound 38 (3.3, 5.0, 7.5, 15, 30 mg/kg, i.p.) at 9:00, and electroencephalography and electromyography were simultaneously recorded. We showed that administration of compound 38 exhibited a dose-dependent effect on wakefulness promotion. To investigate the impact of compound 38 on sleep rebound, we conducted a 6 h (13:00–19:00) sleep deprivation experiment. We found that administration of compound 38 (30 mg/kg) produced a wakefulness-promoting effect lasting for 1 h. Subsequently, we explored the critical role of A2AR in the wakefulness-promoting effect of compound 38 using A2AR knockout (KO) mice and their WT littermates. We found that compound 38 enhanced wakefulness in WT mice, but did not have an arousal-promoting effect in A2AR KO mice, suggesting that the arousal-promoting effect of compound 38 was mediated by A2AR. We conducted immunohistochemistry and selectively ablated A2AR-positive neurons using cell type-specific caspase-3 expression, which revealed an essential role of A2AR-positive neurons in the nucleus accumbens shell for the arousal-promoting effect of compound 38. In conclusion, as a novel A2AR antagonist, compound 38 promotes wakefulness in mice via the A2AR and exhibits promising applications for further advancements in the field of sleep–wake disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Compound 38 increases wakefulness and decreases NREM sleep in mice during inactive phase.
Fig. 3: Compound 38 prolongs the mean duration of wakefulness and reduces the transitions of each stage.
Fig. 4: Compound 38 exhibits arousal-promoting effect following SD.
Fig. 5: Compound 38 does not exhibit a wakefulness-promoting effect in A2AR KO mice.
Fig. 6: Effect of compound 38 on c-Fos expression in densely expressed brain regions of A2AR.
Fig. 7: Arousal effect of compound 38 was abolished in A2AR-cre mice with ablated A2AR neurons in the NAc shell.
Fig. 8

Similar content being viewed by others

References

  1. Frank MG, Heller HC. The Function(s) of sleep. Handb Exp Pharmacol. 2019;253:3–34.

    Article  CAS  PubMed  Google Scholar 

  2. Wang YQ, Li R, Zhang MQ, Zhang Z, Qu WM, Huang ZL. The neurobiological mechanisms and treatments of REM sleep disturbances in depression. Curr Neuropharmacol. 2015;13:543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang ZL, Zhang Z, Qu WM. Roles of adenosine and its receptors in sleep-wake regulation. Int Rev Neurobiol. 2014;119:349–71.

    Article  PubMed  Google Scholar 

  4. Huang ZL, Urade Y, Hayaishi O. The role of adenosine in the regulation of sleep. Curr Top Med Chem. 2011;11:1047–57.

    Article  CAS  PubMed  Google Scholar 

  5. Lazarus M, Chen JF, Huang ZL, Urade Y, Fredholm BB. Adenosine and sleep. Handb Exp Pharmacol. 2019;253:359–81.

    Article  CAS  PubMed  Google Scholar 

  6. Korkutata M, Lazarus M. Adenosine A2A receptors and sleep. Int Rev Neurobiol. 2023;170:155–78.

    Article  CAS  PubMed  Google Scholar 

  7. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, et al. Adenosine and sleep homeostasis in the basal forebrain. J Neurosci. 2006;26:8092–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oishi Y, Huang ZL, Fredholm BB, Urade Y, Hayaishi O. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci USA. 2008;105:19992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rai S, Kumar S, Alam MA, Szymusiak R, McGinty D, Alam MN. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats. Neuroscience. 2010;167:40–8.

    Article  CAS  PubMed  Google Scholar 

  10. Methippara MM, Kumar S, Alam MN, Szymusiak R, McGinty D. Effects on sleep of microdialysis of adenosine A1 and A2a receptor analogs into the lateral preoptic area of rats. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1715–23.

    Article  CAS  PubMed  Google Scholar 

  11. Dong H, Chen ZK, Guo H, Yuan XS, Liu CW, Qu WM, et al. Striatal neurons expressing dopamine D1 receptor promote wakefulness in mice. Curr Biol. 2022;32:600–13.e4

    Article  CAS  PubMed  Google Scholar 

  12. Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev. 2015;35:790–848.

    Article  CAS  PubMed  Google Scholar 

  13. Ma WX, Yuan PC, Zhang H, Kong LX, Lazarus M, Qu WM, et al. Adenosine and P1 receptors: Key targets in the regulation of sleep, torpor, and hibernation. Front Pharmacol. 2023;14:1098976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li R, Wang YQ, Liu WY, Zhang MQ, Li L, Cherasse Y, et al. Activation of adenosine A(2A) receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology. 2020;168:107923.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan XS, Wang L, Dong H, Qu WM, Yang SR, Cherasse Y, et al. Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. Elife. 2017;6:e29055.

  16. Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, et al. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun. 2017;8:734.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. 2017;17:709–24.

    Article  CAS  PubMed  Google Scholar 

  18. Cervetto C, Maura G, Guidolin D, Amato S, Ceccoli C, Agnati LF, et al. Striatal astrocytic A2A-D2 receptor-receptor interactions and their role in neuropsychiatric disorders. Neuropharmacology. 2023;237:109636.

    Article  CAS  PubMed  Google Scholar 

  19. Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. 2005;8:858–9.

    Article  CAS  PubMed  Google Scholar 

  20. Atack JR, Shook BC, Rassnick S, Jackson PF, Rhodes K, Drinkenburg WH, et al. JNJ-40255293, a novel adenosine A2A/A1 antagonist with efficacy in preclinical models of Parkinson’s disease. ACS Chem Neurosci. 2014;5:1005–19.

    Article  CAS  PubMed  Google Scholar 

  21. Scharbarg E, Daenens M, Lemaître F, Geoffroy H, Guille-Collignon M, Gallopin T, et al. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose. Sci Rep. 2016;6:19107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsuura K, Tomimoto H. Istradefylline is recommended for morning use: a report of 4 cases. Intern Med. 2015;54:509–11.

    Article  PubMed  Google Scholar 

  23. Leone RD, Emens LA. Targeting adenosine for cancer immunotherapy. J Immunother Cancer. 2018;6:57.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jenner P, Mori A, Kanda T. Can adenosine A2A receptor antagonists be used to treat cognitive impairment, depression or excessive sleepiness in Parkinson’s disease? Parkinsonism Relat Disord. 2020;80:S28–36.

    Article  PubMed  Google Scholar 

  25. Ferré S, Köfalvi A, Ciruela F, Justinova Z, Pistis M. Targeting corticostriatal transmission for the treatment of cannabinoid use disorder. Trends Pharmacol Sci. 2023;44:495–506.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Korkutata M, Agrawal L, Lazarus M. Allosteric modulation of adenosine A2A receptors as a new therapeutic avenue. Int J Mol Sci. 2022;23.

  27. Zhu C, Ze S, Zhou R, Yang X, Wang H, Chai X, et al. Discovery of pyridinone derivatives as potent, selective, and orally bioavailable adenosine A2A receptor antagonists for cancer immunotherapy. J Med Chem. 2023;66:4734–54.

    Article  CAS  PubMed  Google Scholar 

  28. Chen J-F, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D, et al. A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci. 1999;19:9192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang YQ, Li R, Wang DR, Cherasse Y, Zhang Z, Zhang MQ, et al. Adenosine A2A receptors in the olfactory bulb suppress rapid eye movement sleep in rodents. Brain Struct Funct. 2017;222:1351–66.

    Article  CAS  PubMed  Google Scholar 

  30. Pagnussat N, Almeida AS, Marques DM, Nunes F, Chenet GC, Botton PH, et al. Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice. Br J Pharmacol. 2015;172:3831–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Urade Y, Eguchi N, Qu WM, Sakata M, Huang ZL, Chen JF, et al. Sleep regulation in adenosine A2A receptor-deficient mice. Neurology. 2003;61:S94–6.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan XS, Wei HH, Xu W, Wang L, Qu WM, Li RX, et al. Whole-brain monosynaptic afferent projections to the cholecystokinin neurons of the suprachiasmatic nucleus. Front Neurosci. 2018;12:807.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qu WM, Yue XF, Sun Y, Fan K, Chen CR, Hou YP, et al. Honokiol promotes non-rapid eye movement sleep via the benzodiazepine site of the GABA(A) receptor in mice. Br J Pharmacol. 2012;167:587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma WX, Li L, Kong LX, Zhang H, Yuan PC, Huang ZL, et al. Whole-brain monosynaptic inputs to lateral periaqueductal gray glutamatergic neurons in mice. CNS Neurosci Ther. 2023;29:4147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49:W5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE, et al. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci. 2011;31:10067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T. Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res. 2003;12:283–90.

    Article  PubMed  Google Scholar 

  38. Kuzmin A, Johansson B, Gimenez L, Ogren SO, Fredholm BB. Combination of adenosine A1 and A2A receptor blocking agents induces caffeine-like locomotor stimulation in mice. Eur Neuropsychopharmacol. 2006;16:129–36.

    Article  CAS  PubMed  Google Scholar 

  39. Offit M, Nagle B, Ozay G, Zhang I, Kerasidis A, Torres-Yaghi Y, et al. Adenosine A2A antagonists and Parkinson’s disease. Int Rev Neurobiol. 2023;170:105–19.

    Article  CAS  PubMed  Google Scholar 

  40. Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov. 2013;12:265–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Lera Ruiz M, Lim YH, Zheng J. Adenosine A2A receptor as a drug discovery target. J Med Chem. 2014;57:3623–50.

    Article  PubMed  Google Scholar 

  42. Qu WM, Xu XH, Yan MM, Wang YQ, Urade Y, Huang ZL. Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci. 2010;30:4382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE. Behavioral state instability in orexin knock-out mice. J Neurosci. 2004;24:6291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron. 2010;68:1023–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Groenewegen HJ, Trimble M. The ventral striatum as an interface between the limbic and motor systems. CNS Spectr. 2007;12:887–92.

    Article  PubMed  Google Scholar 

  46. Bayassi-Jakowicka M, Lietzau G, Czuba E, Steliga A, Waśkow M, Kowiański P. Neuroplasticity and multilevel system of connections determine the integrative role of nucleus accumbens in the brain reward system. Int J Mol Sci. 2021;22.

  47. Roy K, Zhou X, Otani R, Yuan PC, Ioka S, Vogt KE, et al. Optochemical control of slow-wave sleep in the nucleus accumbens of male mice by a photoactivatable allosteric modulator of adenosine A2A receptors. Nat Commun. 2024;15:3661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qualls-Creekmore E, Münzberg H. Modulation of feeding and associated behaviors by lateral hypothalamic circuits. Endocrinology. 2018;159:3631–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stratford TR, Wirtshafter D. Evidence that the nucleus accumbens shell, ventral pallidum, and lateral hypothalamus are components of a lateralized feeding circuit. Behav Brain Res. 2012;226:548–54.

    Article  CAS  PubMed  Google Scholar 

  50. Li YD, Luo YJ, Xu W, Ge J, Cherasse Y, Wang YQ, et al. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol Psychiatry. 2021;26:2912–28.

    Article  CAS  PubMed  Google Scholar 

  51. Luo YJ, Li YD, Wang L, Yang SR, Yuan XS, Wang J, et al. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat Commun. 2018;9:1576.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang YQ, Li R, Wu X, Zhu F, Takata Y, Zhang Z, et al. Fasting activated histaminergic neurons and enhanced arousal effect of caffeine in mice. Pharmacol Biochem Behav. 2015;133:164–73.

    Article  CAS  PubMed  Google Scholar 

  53. Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV, Sears CA, et al. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience. 2001;107:653–63.

    Article  CAS  PubMed  Google Scholar 

  54. Kumar S, Rai S, Hsieh KC, McGinty D, Alam MN, Szymusiak R. Adenosine A2Areceptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2013;305:R31–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu F, Zhu C, Xie Q, Wang Y. Adenosine A2A receptor antagonists for cancer immunotherapy. J Med Chem. 2020;63:12196–212.

    Article  CAS  PubMed  Google Scholar 

  56. Yang JN, Chen JF, Fredholm BB. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. Am J Physiol Heart Circ Physiol. 2009;296:H1141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol. 2004;73:379–96.

    Article  CAS  PubMed  Google Scholar 

  58. Arnulf I, Konofal E, Merino-Andreu M, Houeto JL, Mesnage V, Welter ML, et al. Parkinson’s disease and sleepiness: an integral part of PD. Neurology. 2002;58:1019–24.

    Article  CAS  PubMed  Google Scholar 

  59. Clark I, Landolt HP. Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials. Sleep Med Rev. 2017;31:70–8.

    Article  PubMed  Google Scholar 

  60. Snel J, Lorist MM. Effects of caffeine on sleep and cognition. Prog Brain Res. 2011;190:105–17.

    Article  PubMed  Google Scholar 

  61. Gardiner C, Weakley J, Burke LM, Roach GD, Sargent C, Maniar N, et al. The effect of caffeine on subsequent sleep: A systematic review and meta-analysis. Sleep Med Rev. 2023;69:101764.

    Article  PubMed  Google Scholar 

  62. Ranjan A, Biswas S, Mallick BN. Rapid eye movement sleep loss associated cytomorphometric changes and neurodegeneration. Sleep Med. 2023;110:25–34.

    Article  PubMed  Google Scholar 

  63. Boutrel B, Koob GF. What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep. 2004;27:1181–94.

    Article  PubMed  Google Scholar 

  64. Chen JF, Choi DS, Cunha RA. Striatopallidal adenosine A2A receptor modulation of goal-directed behavior: Homeostatic control with cognitive flexibility. Neuropharmacology. 2023;226:109421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lazarus M, Huang ZL, Lu J, Urade Y, Chen JF. How do the basal ganglia regulate sleep-wake behavior? Trends Neurosci. 2012;35:723–32.

    Article  CAS  PubMed  Google Scholar 

  66. Nakamura Y, Midorikawa T, Monoi N, Kimura E, Murata-Matsuno A, Sano T, et al. Oral administration of Japanese sake yeast (Saccharomyces cerevisiae sake) promotes non-rapid eye movement sleep in mice via adenosine A2A receptors. J Sleep Res. 2016;25:746–53.

    Article  PubMed  Google Scholar 

  67. Monopoli A, Casati C, Lozza G, Forlani A, Ongini E. Cardiovascular pharmacology of the A2A adenosine receptor antagonist, SCH 58261, in the rat. J Pharmacol Exp Ther. 1998;285:9–15.

    Article  CAS  PubMed  Google Scholar 

  68. Kaster MP, Machado NJ, Silva HB, Nunes A, Ardais AP, Santana M, et al. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc Natl Acad Sci USA. 2015;112:7833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2022YFA1604504 to YQW), the STI2030-Major Projects (2021ZD0203400 to ZLH), the National Natural Science Foundation of China (82171479 and 81871037 to YQW; 82020108014 and 32070984 to ZLH), the Program for Shanghai Outstanding Academic Leaders (to ZLH), the Shanghai Municipal Science and Technology Major Project, ZJLab (2018SHZDZX01 to ZLH), Lingang Laboratory & National Key Laboratory of Human Factors Engineering Joint Grant (LG-TKN-202203-01 to ZLH), the Research Funds of Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM (2023CXMMTCM011 to JH), the Major Project of Natural Science Foundation of the Department of Education of Anhui Province (2024AH040169 to JH), the Inheritance and Innovation Research Project of Traditional Chinese Medicine of Anhui Province (2024CCCX016 to JH), the Academic support project for top-notch talents in disciplines of universities in Anhui Province (gxbjZD2022043 to JH) and the Natural Science Foundation of Shanghai (24ZR1414500 to QX).

Author information

Authors and Affiliations

Authors

Contributions

HZ and WXM designed the study, conducted the experiments and drafted the manuscript; LFB, LXK and ZLW analysed the data and discussed the experiments; PCY did the animal experiments; QX, RHZ, CYZ, YHW and LW synthesed compound 38; JH and QX discussed the experiments and revised the manuscript; YQW and ZLH designed the study and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jun Han, Zhi-li Huang or Yi-qun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ma, Wx., Xie, Q. et al. Compound 38, a novel potent and selective antagonist of adenosine A2A receptor, enhances arousal in mice. Acta Pharmacol Sin 46, 1177–1189 (2025). https://doi.org/10.1038/s41401-024-01443-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01443-0

Keywords

Search

Quick links