Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Semaglutide administration protects cardiomyocytes in db/db mice via energetic improvement and mitochondrial quality control

Abstract

Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients. However, the cardioprotective mechanism of semaglutide, especially its direct effects on cardiomyocytes (CMs), is not fully understood. Here, we used 8-week diabetic and obese db/db mice treated with semaglutide (200 μg·kg·d−1, i.p.) to study its direct effect on CMs and the underlying mechanisms. Our results revealed that the consecutive application of semaglutide improved cardiac function. Increased AMPK and ULK1 phosphorylation levels were detected, accompanied by elevated [Ca2+]mito. Seahorse analysis revealed that semaglutide increases ATP production via elevated basal and maximum respiration rates as well as spare respiration capacity in CMs. Transmission electron microscopy revealed improved mitochondrial morphology in the cardiomyocytes of db/db mice. On the other hand, Western blot analysis revealed increased Parkin and LC3 protein expression, indicating mitophagy in CMs. Collectively, our findings demonstrate that semaglutide directly protects CMs from high-glucose damage by promoting AMPK-dependent ATP production as well as ULK1-mediated mitophagy in db/db mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenotype changes in db/db mice treated with semaglutide.
Fig. 2: Semaglutide improves cardiac function in db/db mice.
Fig. 3: Mitochondrial function is improved in db/db mice treated with semaglutide.
Fig. 4: Semaglutide treatment improves mitochondrial morphology in the cardiomyocytes of db/db mice.
Fig. 5: RNA sequencing analysis of cardiomyocytes from db/db mice and semaglutide treated db/db mice.
Fig. 6: Elevated mitochondrial Ca2+ uptake after semaglutide treatment in db/db mice.
Fig. 7: Semaglutide induces mitophagy to improve cardiac function in db/db mice.
Fig. 8: Schematic diagram of the mechanism by which semaglutide protects cardiomyocytes in db/db mice.

Similar content being viewed by others

References

  1. Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy. JAMA. 1974;229:1749–54.

    Article  CAS  PubMed  Google Scholar 

  2. Dillmann WH. Diabetic cardiomyopathy. Circ Res. 2019;124:1160–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61:21–8.

    Article  CAS  PubMed  Google Scholar 

  4. Wright AK, Carr MJ, Kontopantelis E, Leelarathna L, Thabit H, Emsley R, et al. Primary prevention of cardiovascular and heart failure events with SGLT2 inhibitors, GLP-1 receptor agonists, and their combination in type 2 diabetes. Diabetes Care. 2022;45:909–18.

    Article  CAS  PubMed  Google Scholar 

  5. Frías JP, Davies MJ, Rosenstock J, Pérez Manghi FC, Fernández Landó L, Bergman BK, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385:503–15.

    Article  PubMed  Google Scholar 

  6. Collins L, Costello RA. Glucagon-like peptide-1 receptor agonists. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Ryan Costello declares no relevant financial relationships with ineligible companies.: StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.; 2023.

  7. Garvey WT, Batterham RL, Bhatta M, Buscemi S, Christensen LN, Frias JP, et al. Two-year effects of semaglutide in adults with overweight or obesity: the STEP 5 trial. Nat Med. 2022;28:2083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanganalmath SK, Dubey S, Veeranki S, Narisetty K, Krishnamurthy P. The interplay of inflammation, exosomes and Ca2+ dynamics in diabetic cardiomyopathy. Cardiovasc Diabetol. 2023;22:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu Y, Jin M, Wang Y, Zhu J, Tan R, Zhao J, et al. MCU-induced mitochondrial calcium uptake promotes mitochondrial biogenesis and colorectal cancer growth. Signal Transduct Target Ther. 2020;5:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng H, Zhu H, Liu X, Huang X, Huang A, Huang Y. Mitophagy in diabetic cardiomyopathy: roles and mechanisms. Front Cell Dev Biol. 2021;9:750382.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M, et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation. 2012;125:1134–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: regulator of cell death. Cell Death Dis. 2023;14:648.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res. 2015;116:264–78.

    Article  CAS  PubMed  Google Scholar 

  14. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Q, Tuo X, Li B, Deng Z, Qiu Y, Xie H. Semaglutide attenuates excessive exercise-induced myocardial injury through inhibiting oxidative stress and inflammation in rats. Life Sci. 2020;250:117531.

    Article  CAS  PubMed  Google Scholar 

  16. Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Eur J Pharmacol. 2020;888:173376.

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 2013;112:1557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu S, Liao Z, Lu X, Katschinski DM, Mercola M, Chen J, et al. Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes. Circ Res. 2020;126:e80–e96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pereira L, Cheng H, Lao DH, Na L, van Oort RJ, Brown JH, et al. Epac2 mediates cardiac β1-adrenergic-dependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation. 2013;127:913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang Y, Zhang Y, Yang J, Zhang M, Tian T, Jiang Y, et al. Interdependent nuclear co-trafficking of ASPP1 and p53 aggravates cardiac ischemia/reperfusion injury. Circ Res. 2023;132:208–22.

    Article  CAS  PubMed  Google Scholar 

  21. Readnower RD, Brainard RE, Hill BG, Jones SP. Standardized bioenergetic profiling of adult mouse cardiomyocytes. Physiol Genomics. 2012;44:1208–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sindern S, van Eldik R, Bartholmes P. Influence of alpha-subunits on the high-pressure stability of apo and holo beta 2-subunits in the bienzyme complex tryptophan synthase from Escherichia coli. Biochemistry. 1995;34:1959–67.

    Article  CAS  PubMed  Google Scholar 

  23. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122:624–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia W, Bai T, Zeng J, Niu Z, Fan D, Xu X, et al. Combined administration of metformin and atorvastatin attenuates diabetic cardiomyopathy by inhibiting inflammation, apoptosis, and oxidative stress in type 2 diabetic mice. Front Cell Dev Biol. 2021;9:634900.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49:1751–60.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Tian J, Diao S, Zhang G, Xiao M, Chang D. GLP-1 receptor agonist liraglutide protects cardiomyocytes from IL-1β-induced metabolic disturbance and mitochondrial dysfunction. Chem Biol Interact. 2020;332:109252.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao YY, Chen LH, Huang L, Li YZ, Yang C, Zhu Y, et al. Cardiovascular protective effects of GLP-1: a focus on the MAPK signaling pathway. Biochem Cell Biol. 2022;100:9–16.

    Article  CAS  PubMed  Google Scholar 

  28. Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun. 2017;8:548.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20:31–42.

    Article  CAS  PubMed  Google Scholar 

  30. Poole LP, Bock-Hughes A, Berardi DE, Macleod KF. ULK1 promotes mitophagy via phosphorylation and stabilization of BNIP3. Sci Rep. 2021;11:20526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 2014;15:566–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nguyen TN, Padman BS, Lazarou M. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol. 2016;26:733–44.

    Article  CAS  PubMed  Google Scholar 

  33. Hirota Y, Yamashita S, Kurihara Y, Jin X, Aihara M, Saigusa T, et al. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy. 2015;11:332–43.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr., Bers DM, et al. The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res. 2003;92:912–9.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao H, Li T, Wang K, Zhao F, Chen J, Xu G, et al. AMPK-mediated activation of MCU stimulates mitochondrial Ca2+ entry to promote mitotic progression. Nat Cell Biol. 2019;21:476–86.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Tao A, Vaeth M, Feske S. Calcium regulation of T cell metabolism. Curr Opin Physiol. 2020;17:207–23.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Perrone M, Patergnani S, Di Mambro T, Palumbo L, Wieckowski MR, Giorgi C, et al. Calcium homeostasis in the control of mitophagy. Antioxid Redox Signal. 2023;38:581–98.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China 82121001 (YJ), 32200973 (SL), 82270393 (SL), and the Natural Science Foundation of Jiangsu Province BK20220310 (SL).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SL, YJ and MYT; methodology, JCH, MYT and JQY; software, MYT; validation, SL, YJ, MYT and JQY; formal analysis, MYT; investigation, SL, YJ, MYT, JCH and JQY; resources, SL, YJ, MYT, and JQY; writing-original draft, MYT; writing-review & editing, SL and YJ; visualization, MYT, SL and YJ; supervision, SL and YJ; project administration, SL and YJ; funding acquisition, SL and YJ.

Corresponding authors

Correspondence to Shan Lu or Yong Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, My., Yang, Jq., Hu, Jc. et al. Semaglutide administration protects cardiomyocytes in db/db mice via energetic improvement and mitochondrial quality control. Acta Pharmacol Sin 46, 1250–1261 (2025). https://doi.org/10.1038/s41401-024-01448-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01448-9

Keywords

Search

Quick links